O. NEUGEBAUER and D. PINGREE

THE PAÑCASIDDHĀNTIKĀ OF VARĀHAMIHIRA

PART I

Det Kongelige Danske Videnskabernes Selskab

Historisk-Filosofiske Skrifter 6,1

Kommissionær: Munksgaard
København 1970
Det Kongelige Danske Videnskabernes Selskab udgiver følgende publikationsrækker:
The Royal Danish Academy of Sciences and Letters issues the following series of publications:

Oversigt over Selskabets Virksomhed $\left(8^{\circ}\right)$
(Annual in Danish)
Historisk-filosofiske Meddelelser (8°)
Historisk-filosofiske Skrifter (4 ${ }^{\circ}$) (History, Philology, Philosophy, Archeology, Art History)

Matematisk-fysiske Meddelelser (8°)
Matematisk-fysiske Skrifter (4)
(Mathematics, Physics, Chemistry, Astronomy, Geology)

Biologiske Meddelelser (8°)
Biologiske Skrifter (4°) (Botany, Zoology, General Biology)

Bibliographical Abbreviation
Overs. Dan. Vid. Selsk.

Hist. Filos. Medd. Dan. Vid. Selsk. Hist. Filos. Skr. Dan. Vid. Selsk.

Mat. Fys. Medd. Dan. Vid. Selsk. Mat. Fys. Skr. Dan. Vid. Selsk.

Biol. Medd. Dan. Vid. Selsk. Biol. Skr. Dan. Vid. Selsk.
Selskabets sekretariat og postadresse: Dantes Plads 5, 1556 København V.
The address of the secretariate of the Academy is:
Det Kongelige Danske Videnskabernes Selskab, Dantes Plads 5, 1556 Köbenhavn V, Denmark.
Selskabets kommissionær: Munksgaard's Forlag, Prags Boulevard 47, 2300 København S.
The publications are sold by the agent of the Academy:
Munksgaard, Publishers,
47 Prags Boulevard, 2300 Köbenhavn S, Denmark.

O. NEUGEBAUER and D. PINGREE

THE PAŇCASIDDHĀNTIKĀ OF VARĀHAMIHIRA

PART I

Det Kongelige Danske Videnskabernes Selskab Historisk-Filosofiske Skrifter 6, 1

Kommissionær: Munksgaard København 1970

PRINTED IN DENMARK
BIANCO LUNOS BOGTRYKKERI A/s

PREFACE

WYritten in the sixth century A.D., the Pañcasiddhāntikā of Varāhamihira is unquestionably one of the most important sources for the history of Indian astronomy and its relation to its Babylonian and Greek antecedents. The edition of the text with translation and commentary by Thibaut and Dvivedi, first published in 1889, has made the work generally available. But in the past decades not only have new manuscripts come to light, but also much new insight into Indian astronomy and into the astronomy of the Hellenistic period has been gained. It is hoped that the present publication will bear witness to the increase in our understanding of the Pañcasiddhāntikā thus obtained.

We are greatly indebted to the Kgl. Danske Videnskabernes Selskab, to the Institute for Advanced Study in Princeton, and to Brown University for their cooperation, which has made this publication possible.
O.N., D.P.

PART I

TEXT AND TRANSLATION
BY
D. PINGREE

TABLE OF CONTENTS TO PART I

Page

1. Introduction 7
A. Varāhamihira and his works 7
B. The epochs of the Pañcasiddhāntikā 8
C. Varāhamihira's sources 9
I. The Paitāmahasiddhānta 10
II. The Vasisṭhasiddhānta 10
III. The Romakasiddhānta 12
IV. The Pauliśasiddhānta 12
V. The Sūryasiddhānta 13
VI. Summary of attributions to the five Siddhāntas 14
VII. Varāhamihira's other sources 14
a. Āryabhaṭa 14
b. Lāṭadeva 14
c. Persians; Simha; Pradyumna; Vijayanandin; Jainas 15
D. The Pañcasiddhāntikā in later literature 16
E. The manuscript tradition of the Pañcasiddhāntikā 20
F. Appendix. Verses from the Brāhmasphuṭasiddhānta 22
2. Text 25
3. Translation 27
4. The bhūtasan̄khyā system in the Pañcasiddhāntikā 185
5. Metrological units in the Pañcasiddhāntikā 185
6. Index of proper names and titles 187
7. Index verborum 188

1. Introduction

A. Varāhamihira and his works

Varāhamihira, the son of Ādityadāsa, was a Maga Brāhmaṇa-that is, a descendent of one of those Persian Zoroastrians who entered India toward the beginning of the Christian era ${ }^{1}$. We learn from the penultimate verse of his Bṛhajjātaka (XXVIII, 9) that he was a native of Avantī or Western Mālwā (see also Pañcasiddhāntikā XVII,61) and resided in a village called Kāpattika. His date is delimited by his use of Lāṭadeva's epoch, A.D. 505, in the Pañcasiddhāntikā (see below p.8) and by the fact that Brahmagupta was familiar with his work when he wrote the Brāhmasphuṭasiddhānta in A.D. 628^{2}. It has further been suggested that he was connected with the Aulikara court at Daśapura (modern Mandasor), and in particular with Yaśodharman who is known to have been ruling in Sampat $589=$ A.D. 532^{3}, though no definite assertion can be made with regard to this hypothesis.

Varāhamihira was a prolific author in the three traditional skandhas of jyotihśāstra ${ }^{4}$. On gaṇita he composed only the Pañcasiddhāntikā; on horā he wrote the Bṛhajjātaka and the Laghujātaka; and on saṃhitā the Bṛhatsaṃhitā and the Samāsasaṃhitā. He also composed three works on military astrology - the Bṛhadyātrā, the Țikaṇikāyātrā, and the Yogayātrā - as well as a Vivāhapaṭala on the astrology of marriages. Several other works have been attributed to him, but their authenticity is doubtful.

Of the relative chronology of the works of Varāhamihira some notion may be derived from his cross-references. In Bṛhajjātaka XXVIII, $4-6$ he seems to indicate that his karaṇa, the Pañcasiddhāntikā, as well as treatises on interrogations ${ }^{5}$, on

[^0]military astrology, on omens (saṃhitā), and on the time of marriage (the Vivāhapaṭala) had already been written. Moreover, Pañcasiddhāntikā I,22 seems to refer to the fact that he had not yet composed his books on horā, which include the Bṛhajjātaka. The Bṛhajjātaka, then, was written after the Pañcasiddhāntikā.

But Pañcasiddhāntikā XV,10 refers to Bṛhatsaṃhitā V,8-11, while the Bṛhatsaṃitā in several places (I,10; II (p. 22); V,18 (cf. Pañcasiddhāntikā VII-IX); XVII,1; and XXIV,5 (cf. Pañcasiddhāntikā XIV,34)) refers to the Pañcasiddhāntikā. Varāhamihira must have been working simultaneously on both texts. Furthermore, Bṛhatsaṃhitā II (p. 68) lists the subjects to be covered by a work on horoscopy, but this list is not a table of contents to either the Bṛhajjātaka or the Laghujātaka. Later (p. 71) there is a list of subjects for a work on military astrology, but again the list does not correspond to any of his three books on this subject; and, moreover, Varāhamihira only remarks that the subject has been written on by ācāryas when he would certainly have mentioned his own work if any such yet existed. It appears, then, that the Pañcasiddhāntikā and Bṛhatsaṃhitā were composed simultaneously towards the beginning of his writing career, the Bṛhajjātaka towards its end, and at least one work on military astrology and the Vivāhapaṭala in between.

Against this theory it may be objected that Bṛhasaṃhitā I,10 states that Varāhamihira had previously written extensively ("vistaratas") on genethlialogy, military astrology, and marriage. Either one must conclude from this that he wrote all of his major works simultaneously, or assume that I, 10 was added to the Bṛhatsamphita by Varāhamihira after he had finished the Bṛhajjātaka. The latter seems to us the more probable solution.

B. The epochs of the Pañcasiddhāntikā

Varāhamihira in I,8-10 indicates that the ahargaṇa of the Romaka is counted from sunset at Yavanapura, which begins a Tuesday, at the beginning of the śuklapakṣa of Caitra in Śaka 428. We identify this date with 6 P.M. at Alexandria on Monday, 21 March 505 A.D., when the sunset day Tuesday began. The sunset at Yavanapura is reiterated in XV, 18 , where it is attributed to Lattācārya, the "commentator" of Varāhamihira's Romaka; and the Tuesday is confirmed by the rules for determining the week-days in $\mathrm{I}, 17-21^{6}$. In VIII, 1-5 we are given the Romaka's ksepas for sunset at Avantī on 21 March 505, from which it is clear that a mean conjunction of the Sun and Moon will indeed occur (by the Romaka's calculations) shortly before sunset in Yavanapura.

In the ārdharātrika system, which is used by Lāṭadeva's (?) Sūryasiddhānta, a sidereal year ends at $0 ; 3,9$ days after midnight at Avantī of $20 / 21$ March 505. It is for this time, or rather for the midnight exactly, that the ksepas of the planets are

[^1]given in XVI,1-6. However, it appears that there was an earlier Sūryasiddhānta which employed a noon-epoch; the kṣepas of the Sun, Moon, lunar apogee, and lunar node are given according to it for noon at Avantī of Sunday, 20 March 505. These deviations from the epoch of $I, 8$ are due to the facts that the parameters of the various siddhāntas do not yield identical times for conjunctions and that days are assumed to begin at various epochs.

But Varāhamihira not only does not use a single epoch throughout his work; he also fails to inform his reader accurately of the dates and sometimes even of the existence of the epochs he employs that are different from that given in $\mathrm{I}, 8-10$. His karaṇa thus becomes totally useless in many sections. If the reader remains ignorant of the epoch actually employed, he cannot obtain a correct result by following the rules in the text; and if he knows enough to be able to discover what the epoch was, he no longer will benefit (except as an historian) from the Pañcasiddhāntikā.

C. Varāhamihira's sources

In I, 3 Varāhamihira states that there are five siddhāntas: the Pauliśa, the Romaka, the Vāsiṣṭha, the Sūrya, and the Paitāmaha, and that of these the first two were commented on by Lātadeva. It is precisely these five siddhāntas which he urges an astrologer to study in Bṛhatsamhitā II (p. 22). But his sources, as he himself indicates, are more numerous; for he names Arhat (i.e., Jaina tradition) in XIII,8; Āryabhaṭa in XV,20; Pradyumna in XVII,62; the Magas in $I, 23$; the teacher of the Yavanas in XV,19; Lāṭadeva or Lāṭācārya in I, 3 itself and in XV,18; himself in XVII, 61, 62, and 64 ; his Bṛhatsaṃhitā in XV,10; Vijayanandin in XVII,62; and Siṃhācārya in XV,19. We are not justified, then, in regarding all the material in the Pañcasiddhāntikā as having been derived from one of the five siddhāntas named in I,3. We can only distinguish certain sections as being from one source or another on the basis of Varāhamihira's explicit statements, and then attempt to gather associated material around these nuclei on the basis of their use of identical parameters. The colophons cannot be blindly followed, as is demonstrated by that for chapter III; this attributes the whole chapter to the Pauliśasiddhānta, though III, 34-35 are certainly from the Romaka and III, 4 and 9 belong with II (Vasiṣṭha).

Aside from the Pañcasiddhāntikā, one of our chief sources for a knowledge of Varāhamihira's sources is the Brāhmasphuṭasiddhānta which Brahmagupta wrote in Bhillamāla in 628. He is mainly concerned there, when he mentions his predecessors, either with praising his main source, the Brahmasiddhānta (i.e., the Paitāmahasiddhānta of the Viṣụudharmottarapurāṇa) ${ }^{7}$, or with attacking Āryabhaṭa ${ }^{8}$; but he also discusses certain aspects of some of the other works. A translation of all the relevant passages will be found in the Appendix (cf. F, p. 22).

[^2]
I. The Paitāmahasiddhānta

This work is summarized in chapter XII of the Pañcasiddhāntikā. Its epoch is 11 January 80 A.D. and its elements are derived from the Jyotiṣavedānga of Lagadha. Varāhamihira does not refer to the Paitāmahasiddhānta of the Viṣṇudharmottarapurāna, though that work is apparently mentioned by Āryabhaṭa (Golapāda 50) and certainly used by Brahmagupta as the basis of his Brāhmasphuṭasiddhānta.

II. The Vasiș! hasiddhānta

There existed a Vasisṭthasiddhānta already in A.D. 269/70 as Sphujidhvaja writes in his Yavanajātaka (LXXIX,3):
"By following the opinion of the sage Vaśisṭha some of those concerned with (astronomical) rules (believe that this great lunisolar yuga) is best; for those led by the Yavanas ... (the lunisolar yuga) is 165 years."

Varāhamihira states in II,13 that the shadow-problem in II,12-13 is from the Vasisṭthasamāsasiddhānta (presumably an abridgement of a longer original Vasisṭthasiddhānta). We are inclined to believe that the rest of II is also from the Vasisṭha. If this assumption is true, we have Vasisṭtha's solar theory (II, 1), lunar theory (II, 2-6; see also III,4 and 9), theory of nakșatras and tithis (II,7), rules for computing the length of daylight (II,8), and gnomon-problems (II,9-13). The whole is based on Babylonian techniques filtered through Greek intermediaries. The epoch of the lunar theory is 3 December 499; this is perhaps the date at which the original Vasisṭhasiddhānta was turned into the Vasiș̣hasamāsasiddhānta available to Varāhamihira. A kṣepa (presumably added by Varāhamihira) accounts for the difference between this epoch and 22 March 505.

All manuscripts insert after XVII,5 a note attributing the theory of Venus in XVII,1-5 to the Vāsisṭhasiddhānta; but these verses are an integral part of the whole section XVII, 1-60 which presents a treatment of the motions of the five star-planets based on Babylonian methods. This also may well be properly assigned to the Va-sisṭha- (or Vasiș̣asamāsa-) siddhānta. The kṣepas indicate as epoch 22 March 505; they must have been added by Varāhamihira. An earlier Indian adaptation of Babylonian planetary theory is found in Sphujidhvaja (LXXIX,40-47).

By 628 Brahmagupta knows only of a Vasiṣṭhasiddhānta published by Viṣṇucandra (see Brāhmasphuṭasiddhānta I,62; II,46-47; X,13 and 62; XI, 31,46-51, and 55 ; XVI,36; XXI,37-39 and XXII,2), who apparently combined ārdharātrika (Lāṭa) and audayika (Āryabhaṭīya) elements with some from Vijayanandin. He is constantly linked in the Brāhmasphuṭasiddhānta with Āryabhaṭa and Śrīseṇa. It might have been argued that his was the version of the Vasișthasiddhānta which is summarized in the Pañcasiddhāntikā and which uses as epoch 3 December 499 (the epoch of the Āryabhaṭiya is also 499). But Viṣ̣ucandra's use of a mahāyuga and of epicycles, which are unknown to Varāhamihira's Vasiṣthasiddhānta, precludes this identification. Viṣnucandra, then, must be dated in the latter half of the sixth century.

Copies of Viṣnucandra's Vasișṭhasiddhānta were still available in the ninth century as Pṛthūdakasvāmin, in his commentary on the Brāhmasphuṭasiddhānta, quotes from it three āryās. The first (on XXI, 3; the first two pādas are also quoted on XXI,11a-b) is similar to Pauliśa frag. P 51:

Thus in the Vasișthasiddhānta ${ }^{9}$.
"The earth, consisting of the five mahābhūtas (i.e., earth, fire, water, wind, and space) stands in the middle of the space of the cosmic egg (jagadanda) for the existence of all creatures; it is round (and) called a sphere."
This verse is also quoted by Utpala on Bṛhatsaṃhitā II (p. 58).
The next fragment is quoted on XXI,4:
Thus in the Vāsișṭha siddhānta ${ }^{10}$.
"The sphere of the stars, which is covered with planets, naksatras, and constellations, constantly revolves from left to right in the sky."
And the third āryā is quoted on XI,54:
The yuga of precession (ayana) (is given) by Viṣnucandra at the beginning of his chapter on yugas (yugaprakarana) ${ }^{11}$:
"The yuga of the ayana is said to be 189411 (revolutions); this was formerly the opinion of Brahmā, the Sun (i.e., Sūrya), and so on."

Another āryā which is quoted as Vasisṭ̣ha's by Utpala on Bṛhatsaṃhitā II (p. 27) probably comes from Viṣnucandra's work:

So the revolutions of the Moon (in a mahāyuga), when multiplied by 27, (become the days of) the nākșatra measure in the opinion of Vasiș̣tha and others ${ }^{12}$:
"'The nākṣatra (days) in a caturyuga are said by the ancientsto be 1559340072. ."
Two other āryās of astrological content are quoted as Viṣnucandra's by Utpala. The first is found in his commentary on Bṛhatsaṃhitā XIX,8 and in that on Bṛhajjātaka II, 20^{13} :
"The conjunction with the Sun of (the five star-planets) beginning with Mars together with the Moon is called their (heliacal) setting, that (of the five star-planets) with each other a (planetary) conflict."

The second occurs in his commentary on Yogayātrā IV,48-53 ${ }^{14}$:

[^3]"If there is a (weak) malefic planet in a cardine with a strong benefic, there is success for one who sets out (on a military campaign), though with difficulty; but if it is a (weak) benefic with a strong malefic, there is no success."

III. The Romakasiddhānta

The Romaka (one of the two siddhāntas which Varāhamihira claims to have been commented on by Lāta) is evidently, because of its name, of western origin. Sections of the Pañcasiddhāntikā which can unquestionably be ascribed to the Romakasiddhānta in Lāṭa's edition are I, $8-10$; I, 15; III ,34-35; and VIII. These passages discuss the computation of the ahargana from the epoch-sunset at Yavanapura (= Alexandria) on 21 March 505; the elements of the Romaka's yuga; some speculation on a "world-year"; and solar eclipses. The use of sunset epoch, the Metonic cycle, the Hipparchan tropical year, and epicycles for the Sun and Moon indicate that the original Romakasiddhānta had an Hellenistic origin. One suspects that it arrived in India during the period of Śaka or Gupta rule in Western India. This Romaka is referred to by Brahmagupta in Brāhmasphuṭasiddhānta I,13.

But another Romakasiddhānta was known to Brahmagupta. This was composed by Śriṣena on the basis of elements from Lāṭa, Vasișṭha, Vijayanandin, and Āryabhaṭa (see Brāhmasphuṭasiddhānta I,62; II,46-47; X,13; XI, 31,46-47,48-51, and 55; XVI, 36 and 46 ; XXI,37-39; and XXII,2). Śriṣeṇa was evidently contemporary with Viṣnucandra.

IV. The Pauliśasiddhānta

To this work we can definitely assign I,11-13, in which Varāhamihira gives the rules for determining the ahargaṇa in the Pauliśasiddhānta as commented on by Laṭadeva. The same parameter for the length of a year appears in III,1, so that at least in part the colophon of III is correct in ascribing that chapter to Pauliśa (it has been noted above that III, 34-35 refer to the Romaka; Lātadeva, of course, may have inserted such a reference into his commentary). In this chapter again we find a mixture of Babylonian and Greek methods, though with a strong influence of Indian concepts (e.g., III, 18-27). We see no secure way to sort out the material in this chapter which may go back to the original Pauliśa.

The Pauliśasiddhānta was apparently based on an Hellenistic source, and Pauliśa may represent the Greek Пaũ入os; but he certainly had nothing to do with the astrologer Paulus Alexandrinus who wrote the Eỉo $\alpha \omega \gamma{ }_{\gamma}$ in A.D. 378^{15}. The identification depends on al-Bīrūn's misreading in the India (see fragment P 1 of the later Pauliśasiddhānta) of T.n.y.s.r. in Arabic (for Sthāṇvíśvara, the locality at which the later Pauliśasiddhānta was written) as S.y.n.t.r; the only difference in Arabic script is in the positioning of the dots. Al-Bīrūnī corrects himself in a later Maqāla (see fragment P 41 of the later Pauliśasiddhānta). Moreover, Paulus Alexandrinus the astrologer is

[^4] 237 n. 63.
not known to have written on astronomy; and his limits of solar daily motions $1 ; 2^{\circ}$ and $0 ; 57^{\circ}$ (Eỉ $\alpha \gamma \omega \gamma \eta^{\prime}$ XXVIII)-disagree with those found in the table apparently from the Pauliśasiddhānta incorporated in Pañcasiddhāntikā III,17-1;1 and $0 ; 57^{\circ}$.

The colophon of chapter VII, on solar eclipses, attributes it to the Pauliśa; chapter VI, on lunar eclipses, is closely connected with it and probably comes from the same source. This attribution may well be correct. There is more doubt about the colophon of chapter XVII, which ascribes the planetary theory of XVII,65-80 to the Pauliśasiddhānta though Varāhamihira in XVII,61-64 claims it for himself. In favor of the Pauliśa as the source of this section is the Babylonian character of the theory.

In the eighth century another Pauliśasiddhānta was written, which is essentially ārdharātrika. It is this work to which, e.g. Pṛthūdakasvāmin, Utpala, and al-Bīrūnī refer. Its fragments are gathered and discussed in the article mentioned in footnote 15 .

V. The Sūryasiddhānta

Varāhamihira speaks of Lāṭadeva as a commentator on the Pauliśa and Romaka, but says nothing of the name of any original work of his. We believe that he wrote the Sūryasiddhānta summarized in the Pañcasiddhāntikā. Such a tradition was known to al-Bīrūnī (India, ed. p. 118, trans. vol. 1, p. 153). The parameters of this work belong to the ārdharātrika system which, as Brahmagupta tells us (Kaṇdakhādyaka I,1), was promulgated by Āryabhaṭa; and Bhāskara, commenting on the Āryabhaṭīya (Kālakriyā 10) in 629, names Pāṇ̣̣uran̄gasvāmin, Lāṭadeva, and Niḥ́an̄ku as pupils to whom Āryabhaṭa directly expounded astronomy.

On the assumption of Lāṭadeva's authorship of this Sūryasiddhānta, Pañcasiddhāntikā I,8-15 appears as a unit summarizing Lāṭadeva's rules for determining the ahargana for a given calendar date with respect to his chosen epoch; I, 14 gives the rules for the Sūryasiddhānta, based on the same parameters as are IX,1-2; IX (on solar eclipses) is attributed to the Sūryasiddhānta in both the first verse and in the colophon. It, however, gives the epoch as noon at Avantī rather than as midnight. Since this is not an error in the text, it is a reflection of an earlier version of the Sūryasiddhānta using noon epoch.

The identity of parameters shows that chapter X (on lunar eclipses) is also from the Sūryasiddhānta. And finally XVI (on the planets) is stated in verse 1 and after verse 11 to be from the Sūryasiddhānta; the statement is confirmed by this chapter's use of ārdharātrika parameters.

The epoch of this ārdharātrika version of the Sūryasiddhānta is midnight of $20 / 21$ March 505 in XVI. But in IX there is evidence of an earlier Sūryasiddhānta using noon epoch and slightly different parameters for the mean motion of the Moon, lunar apogee, and ascending node. The kṣepas in IX, $1-5$ are computed for noon of 20 March 505 . We assume that it was Lāṭadeva who computed these ksepas, added the corrections in IX,4 and who authored the source of XVI. Another possible reflection of this earlier Sūryasiddhānta is the rule for computing the kakṣās and diameters of
the Sun and Moon given in $\mathrm{IX}, 15-16$. The underlying assumptions of the other ārdharātrika texts for the solution of this problem (see, e.g., Mahābhāskarīya VII, 23-24 and fragment P 59 of the later Pauliśasiddhānta) are missing. And the method employs the true hypotenuse, which, according to IX,7-8, is not involved in the present text's computation of the manda equation as one would expect if it is to be used in the later passage.

One Śatānanda wrote a Bhāsvatī whose epoch is Śaka 1021 or A.D. 1099. This work he claims to be based on the Sūryasiddhānta taught by (Varāha)mihira (vs. 6). This work has not been utilized in our discussion of the Pañcasiddhāntikā; but the fact that it contains a section of the projection of eclipses indicates that Satānanda probably considered Pañcasiddhāntikā XI to be from the Sūryasiddhānta.

VI. Summary of attributions to the five Siddhāntas

To the five siddhāntas, then, we can attribute the following chapters of the Pañcasiddhāntikā.

I, $8-15$	Romaka, Pauliśa, and Sūrya (Lāṭadeva's three)
II	Vasiṣtha
III (most)	Pauliśa
III,34-35	Romaka
VI	Pauliśa (?)
VII	Pauliśa (?)
VIII	Romaka
IX	Sūrya
X	Sūrya
XI	Sūrya (?)
XII	Paitāmaha
XVI	Sūrya
XVII,1-60	Vasiṣtha (?)
XVII,65-80	Pauliśa (?)

The other chapters are from various sources which we can only in part identify.

VII. Varāhamihra's other sources

a. Āryabhața is referred to in XV,20 as having used as epoch both midnight at Lan̄kā (in the ārdharātrika system) and sunrise at Lan̄kā (in the Āryabhaṭīya). But he is not subjected to a vicious attack such as that launched against him by Brahmagupta.
b. Āryabhaṭa's pupil Lātadeva ${ }^{16}$ appears in $\mathrm{XV}, 18$, where his epoch is stated to be sunset at Yavanapura (Alexandria); this is the Romaka's epoch ($\mathrm{I}, 18$). Within the Pañcasiddhāntikā we can also attribute to him some of the verses in XIII. Thus
${ }^{16} \mathrm{He}$ is referred to by Brahmagupta in Brāhmasphuṭasiddhānta XI,46-51.
with XIII,1-2 compare these verses of Lāṭa cited by Pṛthūdakasvāmin on Brāhmasphuṭasiddhānta XI,3:
"The symmetrically round sphere of the earth stands in the heavens, freestanding (?) on all sides, held up by all the good and bad actions of creatures ${ }^{17}$."
"It is covered on all sides with mountains, rivers, and seas, with cities, kingdoms, trees, quadrupeds, and so on, and with kadamba, puṣpa, and granthi flowers ${ }^{18}$."

With XIII,9 compare a verse cited by Pṛthūdakasvāmin on Brāhmasphuṭasiddhānta XXI,6:
"The gods see the Sun proceeding from left to right on the equator, which is the horizon of their vision; the demons, those warriors in battle, see it moving to the left on their (horizon) ${ }^{19}$."

Another pair of āryās quoted from Lāta by Pṛthūdakasvāmin on the preceding verse finds no direct parallel in the Pañcasiddhāntikā (but cf. XIII,5):
"As from this region, so in all directions does the circle of the constellations rise up; it leaves a center of fixedness (i.e., the pole). This (axial) line splits the surface of the earth; like a cloud in an extensive plain a star stands above it^{20}."

A half-verse of Lāṭa quoted by Pṛthūdakasvāmin on Brāhmasphuṭasiddhānta XXI, $8 \mathrm{a}-\mathrm{b}$ is comparable to Pañcasiddhāntikā XIII,27a-b:
"For a half of a year the Sun, having risen once, is seen by the Godss ${ }^{21}$."
Finally, Śan̄kara in his commentary on Bāṇa's Harṣacarita ${ }^{22}$ quotes an āryā defining vyatīpāta as Lāṭa's:
"For when, in the heavens, the Sun and Moon are together in one mārga (i.e., semicircle between equinoxes) and when (the longitude of) the Sun and (that of) the Moon equal half of a revolution (i.e., 180°), then there occurs vyatīpāta ${ }^{23}$."
c. The influence of Varāhamihira's Iranian (Maga) ancestors, which perhaps reached him through his father and teacher Ādityadāsa, is found in I,23-25; the guru of the Yavanas in XV,19 is perhaps a Sasanian astronomer. Simpha, who is also mentioned in XV,19, is referred to again only by Brahmagupta (Brāhmasphuṭasiddhānta XI,46-47). The same is true of Pradyumna and Vijayanandin whose names appear in XVII,62; for the first see Brāhmasphuțasiddhānta XI,46-47 and 57-58, for the second XI,48-51 and 57-58. Varāhamihira's only other recognizable source is the Jaina tradition recorded in XIII,8; with this compare Brāhmasphuṭasiddhānta XI, 3. To this same Jaina tradition may be due the term trailokya in the colophon of XIII.

```
17 kșitigolah samavṛtto khe kila tisṭhati samantāt tv apadeśah /
    sāmānyaiḥ sattvānāṃ śubhāśubhaiḥ karmabhir upāttaḥ //
18 parvatanadīsamudraiḥ purarāṣtradrumacatuḥpadādyaiḥ /
    pracitaḥ kadambapuṣpagranthibhiḥ samantatah kusumaiḥ
19 dṛgharije sve viṣuvati paśyanty amarāḥ pradakṣinagam arkam
    apasavyagatiṃ daityāḥ samare svāsthaṃ yudhā śraminaḥ //
20 tasmāt kșetroddeśād yathā yathā sarvato diśaṃ tathā/
    unnamati bhaganacakraṃ dhruvatvamadhyaṃ parityajate //
    bhittvā kṣititalam uttisṭ!hatīva meghaḥ prakrsstadesasthaḥ /
    rekhāpy eṣā tisṭ!haty upari jyotirgaṇo 'py evam /
21 saṃvatsarārdham amaraiḥ sakṛd udgata eva dṛsyate sūryaḥ/
22 Ed. A. A. Führer, Bombay 1909, p. }184\mathrm{ (I have emended his text).
\mp@subsup{}{}{23}\mathrm{ gagane hi himakarārkau yugapat syātāṃ yadaikamārgasthau /}
    bhaganārdham arkaś ca yadā śaśi tadā bhaved vyatīpātaḥ //
```


D. The Pañcasiddhāntikā in later literature

The first author to demonstrate a knowledge of the Pañcasiddhāntikā is Brahmagupta in his Brāhmasphuṭasiddhānta (I,13; XIV,46-49; and XXIV,2-3), which was written at Bhillamāla in A.D. 628. It is from the Brāhmasphuțasiddhānta and its commentary-tradition that al-Bīrūnī (India, ed. pp. 118-119, trans. vol. 1, p. 153; this is Pauliśa frag. P 1) knows of the five siddhāntas. In Brahmagupta's Khaṇḍakhādyaka, written in A.D. 665, the fractions by which the ahargaṇa is to be multiplied to find the mean longitudes of several of the planets are identical with those in the Sūryasiddhānta of the Pañcasiddhāntikā; but both sets may be independently derived from their common ārdharātrika parameters.

In A.D. 718 an Indian, Chüt'an Hsita, produced a work entitled Chiuchih-li at the T'ang court. The Chiuchih-li, whose epoch is A.D. 714, is said to be based on methods devised by Brahma and inherited by Wut'ung Hsienjên, "the excellent scholar of full understanding of five." This seems to be a reference to the Pañcasiddhāntikā. A number of passages in the Chinese work can be paralleled in our text, though it is clear that Chüt'an Hsita's source was based on other texts besides the Pañcasiddhāntikā; he uses, e.g., $R=3438$ rather than $R=120$.

The parallel passages are as follows:
I. The computation of the ahargana (pp. 499-502). The Chiuchih-li uses formulas which are the equivalents, with suitable substitutions for the new epoch, of the formulas in I,9-11 (Romaka).
II. The computation of the mean longitudes of the Sun, lunar apogee, and lunar anomaly (pp. 502-505). The rules in the Chiuchih-li are based on the parameters in IX,11-12 (Sūrya).
III. The computation of the solar and lunar equations (pp.506-511). This passage is derived from IX,7 (Sūrya).
IV. The computation of the length of daylight (pp. $511-513$). The Chiuchih-li depends on III, 10 (Pauliśa).
V. The determination of the daily progress of the Moon (p. 514). See III,9 (Pauliśa).
VI. The determination of the daily progress of the Sun (p. 515). See III, 17 (Pauliśa).
VII. The computation of the nakṣatra, nakṣatrasankrānti, and tithi (pp. 515-518). See III, 16 (Pauliśa).
VIII. The computation of the longitude of the lunar node (pp. 521-522). See III,28 (Pauliśa).
IX. The computation of lunar latitude (pp. 526-527). See IX,6 (Sūrya).
X. The computation of the duration of a lunar eclipse (pp. 528-529). See VI, 3 (Pauliśa?).
XI. The computation of the magnitude of a lunar eclipse (pp. 529-530). See VIII,18 (Romaka).
XII. The computation of the duration of totality of a lunar eclipse (pp. 530-531). See VIII, 16 (Romaka).

In A.D. 864 Pṛthūdakasvāmin of Sthāṇviśvara wrote a commentary on Brahmagupta's Khaṇdakhādyaka in which he refers to his already existing commentary on the Brāhmasphutasiddhānta. In this second commentary he quotes several verses from chapter XIII of the Pañcasiddhāntika ${ }^{24}$. Utpala, apparently a Kāśmïrian, wrote a commentary on Varāhamihira's Bṛhatsaṃhitā in A.D. 966 in which he quotes 117 of the Pañcasiddhāntikā's 443 verses ${ }^{25}$. Al-Bīrūnī, when he composed the India in 1030, knew of the Pañcasiddhāntikā only from his Panjābī paṇḍitas, whose information was evidently derived from Bṛhatsaṃhitā II (p.22) and from a commentary on the Brāhmasphuṭasiddhānta ${ }^{26}$; he had no manuscript of the text. Satānanda in 1099, at an unknown locality ${ }^{27}$, wrote the Bhāsvatī allegedly based on the parameters and methods of Varāhamihira's Sūryasiddhānta. And a Jaina author, Makkibhaṭta, wrote in Western India in the late fourteenth century a commentary on the Siddhāntaśekhara of Śripati in which he quotes several verses from the Pañcasiddhāntikā ${ }^{28}$. So far there is no indisputable evidence that the Pañcasiddhāntikā was known outside of an area roughly corresponding to the modern states of Madhya Pradesh, Gujarat, Rajasthan, the Panjab, Kashmir, and West Pakistan.

However, some verses from the text are quoted by fifteenth century Kerala astronomers of the dṛggaṇita school in their commentaries on the Āryabhaṭiya. Thus Parameśvara (c. 1380-1460) cites a verse ${ }^{29}$, and Nilakaṇtha (b. 1443) several others ${ }^{30}$. It is noteworthy that all four verses that they quote are also found in Utpala's commentary on the Bṛhatsaṃhitā, which was known in Kerala; it is not proved, then, that they had a copy of the Pañcasiddhāntikā.

The manuscript tradition also supports the theory that the Pañcasiddhāntikā was never known outside of Western and Northern India. All known manuscripts are descended from two copies of the text, which in turn are derived from a common, lacunose manuscript. The older of the two was copied in Stambhatīrtha (Cambay) in 1616, while the other was in Sojītrā in Gujarat in the 1870's. Its then owner claimed that it was copied from a manuscript in Benares, where other manuscripts of the text and a commentary were available ${ }^{31}$. No such other manuscripts have ever turned up, however, despite the extensive work in cataloguing private and forming public manuscript collections that has been carried on in Benaras between 1873 and the present. We therefore doubt the story of a Benares provenience, and assume that the Sojītrā manuscript represents a Gujarātī tradition.

[^5]The first modern scholar to note the existence of the Pañcasiddhāntikā was G. Bühler, who noticed the Sojītrā manuscript in his tour in search of Sanskrit manuscripts undertaken on behalf of the Government of the Presidency of Bombay in $1873 / 74$. The Cambay manuscript was procured in 1879/80, and copies of the two manuscripts (probably our D and E, now in the National Library in Calcutta) were sent to G. Thibaut in Benares, who collaborated with S. Dvivedin in attempting to interpret them.

The first results of their labors on the text were published in 1884^{32}, in which particular attention was paid to the Sūrya and Romaka siddhāntas. The following verses were edited, translated, and discussed: 1,1-10 and $14-15$; III,13; VIII,1,4-5, $7 \mathrm{a}-\mathrm{b}$ and 8 ; IX,1-4; XV,19; and XVI,1-11. Also cited are Brāhmasphuṭasiddhānta I,13 and XI,47-50b. From all of this they correctly concluded that none of the five siddhāntas summarized by Varāhamihira is presently extant.

Their main publication with regard to the Pañcasiddhāntikā was an edition of the text with English translation and Sanskrit and English commentaries, which appeared at Benares in 1889^{33}, The inherent difficulties of a technical text without a commentary and the corruption of the manuscripts, while frequently overcome, at many points obstructed their understanding of the work. It would serve no purpose to discuss here in detail our disagreements with their interpretations.

In the year 1890 S. B. Dikshit ${ }^{34}$, using a manuscript copied by Janardan Balaji Modak, Head Master of the Thāṇā High School, from the copy of the Sojītrā manuscript which we have denoted B^{35}, discusses the chronological implications of I,8 and 14 ; IX, $1-4$; XV, 18 and 20 ; and XVI, $10-11$. Dikshit concludes that the epoch of Varāhamihira is Tuesday 22 March 505 , but that, according to the Sūryasiddhānta, the kṣepakas in IX,1-4 are for noon of Sunday 20 March, and the kṣepakas in XVI, $10-11$ are for midnight of $20 / 21$ March in the same year.

In the same year Dikshit published a second article ${ }^{36}$ devoted to the Romakasiddhānta, in which he discusses I, 3 and 15 ; III,1; and VIII,1-5 and 8. He also discusses the Romakasiddhānta as known from Brāhmasphuṭasiddhānta I,13; XIV,46; and XXIV,2-3, and Śrīṣeṇa (and Viṣṇucandra) in Brāhmasphuṭasiddhānta I, 62; II,46-47; X,13; XI,31,46-50, and 55; XVI,36; XXI,38-39; and XXII,2. He concludes that Sriṣeṇa was not the author of the Romakasiddhānta summarized by Varāhamihira, that the kṣepakas in VIII,1,4-5, and 8 are computed for sunset of 20 March 505 , and that this is not the epoch of the original Romakasiddhānta, which he claims was written between the time of Hipparchus and A.D. 150 as it uses the Hipparchan length of year and says nothing of the calculation of the longitudes of the planets,

[^6]which Dikshit believes to indicate that the Romaka was pre-Ptolemaic. Dikshit later in 1890 compared his conclusions with Thibaut and Dvivedin's edition ${ }^{37}$.

Commenting on Dikshit's paper on the Romaka, J. Burgess ${ }^{38}$ compares the Romaka's luni-solar parameters with those of Ptolemy and contends that Hipparchus had a planetary theory. In the following year he claimed ${ }^{39}$ that the table of sines in IV,6-11 is closely related to the Ptolemaic table of chords and may have been derived from it.

In 1895 M. P. Kharegat of Bombay read a lengthy paper dealing with many difficult passages in the Pañcasiddhāntikā ${ }^{40}$: $1,8,10-13,17-20$, and $23-25$; II, 1 and $3-6$; III, $4,20-21$, and 29 ; IX,5 and $15-16$; X, 1 ; XII; and XIV, $34-38$. He has many valuable comments to make. He came near to explaining the computation of the ahargaṇa according to the Pauliśa in I, 11-13; he realized the Persian background of the "lords of the degrees" in I,23-25; he correctly explained the theory of solar motion in II,1; he understood the character of the Vasisṭha's lunar theory in II,4-6 and III,4; he noticed the kṣepa of the ascending node in III,29; he correctly emended IX, $15-16$ on the distances and diameters of the Sun and Moon; he realized that the reading 286 is correct in $\mathrm{X}, 1$; and he computed the epoch of the Paitāmahasiddhānta in XII (though we do not understand his reference to the yogatārā of Dhanișṭhā).

Serious investigations ${ }^{41}$ of the Pañcasiddhāntikā were only resumed in the 1950's. Neugebauer first recognized the Babylonian period relations in II, 2^{42} and in XVII,66-80 ${ }^{43}$. K. S. Shukla corrected and explained IX,15-16 in much the same way as had Kharegat, and emended XVI,23 ${ }^{44}$. T. S. Kuppanna Sastri interpreted II,1-6 and III, 4 as had Kharegat, and further explained II,7-13 3^{45}. Pingree noted the Babylonian character of XVII, $1-60^{46}$ and of III, 4 and VIII,5 5^{47}.

The present edition of the Pañcasiddhāntikā does not solve all the remaining problems connected with this text. We suspect that much will never be understood unless better manuscript material becomes available. Until that may happen we hope that future historians of Indian astronomy will find this volume a useful tool in their researches.

[^7]
E. The manuscript tradition of the Pañcasiddhāntikā

The surviving manuscripts of the Pañcasiddhāntikā fall naturally into 2 classes which I have designated α and β.

Class α

A. BORI 338 of $1879 / 80$. 22 ff . After the colophon is written: sampat 1673 varṣa śāke 1538 pravartamāne dvitīyāśvinaśudi 2 budhe adyeha staṃbhatīrthavāstavyaṃ paṃditaśrīpītāṃbara tatsūnuḥ śrīśrīrañga tatputraḥ paṃditanānā tattanayo paṃditagoviṃdaḥ tasyātmajena śaṃkareṇeyaṃ paṃcasiddhāntikā likhitā/ātmapaṭhanārtham tathā<paro〉pakṛtaye ca. The copying was finished, then, at Stambhatītha (Cambay) on Wednesday 2 October 1616 Julian by Śañkara, the son of Govinda, the son of Nānā, the son of Śrīran̄ga, the son of Pītāmbara. This manuscript (or D, a copy thereof?) was Thibaut and Dvivedin's main manuscript, which they reproduced in the left-hand column of their edition; we have quoted its readings from that reproduction.
D. NL Calcutta 39.24 ff . This recent manuscript agrees almost entirely with \mathbf{A}, of which it is most probably a copy-perhaps the copy utilized by Thibaut and Dvivedin. It now ends at XVII,79d. We have used a microfilm.
G. IO Bühler 268 (Keith 6288). 20 ff . This manuscript is a copy of A completed on Sunday Bhādrapada śuklapakṣa 1 of Sam. 1936, Śaka $1802=5$ August 1879 Julian. We have not used it.

Class β
B. BORI 37 of $1874 / 75.49 \mathrm{ff}$. This is a copy made in $1874 / 75$ of a manuscript belonging to Sadārāma Joshī of Sojītrā, who claimed to have procured it in Benares. Thibaut and Dvivedin quote some of B's readings (or those of \mathbf{E}, its copy?) in the apparatus to their edition, whence we have taken them. Where they are silent, β in our apparatus does not necessarily include \mathbf{B}.
C. OI Baroda 7165. 33 ff . After the colophon is written: sampat 1928 varsse sake 1793 pravartamāne māghaśuklā I śukre // jyotirviduttamarāmadurlabharāmeṇa likhitā // amadāvādanivāsinā mubāībaṃdaramadhye idaṃ pustakaṃ likhitaṃ. The copying (from Sadārāma Joshī’s manuscript?) was completed on Friday 28 January 1872 Julian by Uttamarāma Durlabharāma, a resident of Amadāvāda (Ahmadabad), at Mubāīandara (Bombay?). We have used a transcript prepared in 1958.
E. NL Calcutta 64. Pp. 7-114. This manuscript seems to be a copy of $\mathbf{B}-$ perhaps that used by Thibaut and Dvivedin. It now begins at I,22a. We have used a microfilm.
F. Bombay Univ. 288. 32 ff. After the colophon is written: sampat 1928 miti bhāda vadi pratipadā paṃcasiddhāntikākhyaṃ pustakaṃ jya likhataṃ nāthurāmapārikabrāhmaṇa. The copying was finished, then, on 17 September (?) 1871 Julian by Nāthurāma Pārika, a brāhmaṇa. This manuscript is a copy of the same manu-
script that C was copied from-i.e., perhaps that which belonged to Sadārāma Joshī. We have used a microfilm.

Besides these seven manuscripts there existed in 1890 the manuscript belonging to J. B. Modak of Thāṇā which was copied from B, and we know of a manuscript (no. 6674) of the Pañcasiddhāntikā in the Ānandāśrama in Poona. The manuscripts recorded as the property of Sjt. Puspachandra Sarma Daloi of Helach in Assam and of the Arsha Library in Vijayanagara (no. 506) probably contain the Bhāsvatī of Śatānanda, which is sometimes confused with our text.

The archetypes of α and β (henceforth denoted simply α and β) were derived from a common original. This is shown by their sharing not only numerous errors, but also several lacunae (e.g., IV,43c-45b and VI,9). In general α is more correct, but neither gives any evidence that its scribe understood the material he was copying. Aside from their respective readings, each class is distinguished by lacunae peculiar to itself. Thus α omits XIII, $3 \mathrm{~d}-4 \mathrm{~d}$ and β IV, $18 \mathrm{~b}-\mathrm{V}, 9 \mathrm{c}$, XIII, 11c-12d, and XVII, $6 \mathrm{c}-7 \mathrm{c}$. Moreover, β transposes XIV,33a-XV,7d (16 verses) so that they follow XV,24a ${ }^{48}$.

Utpala had a fuller text than do we; he knew IV,43c-44d and VI,9. There are probably other verses which were in the original text and which were not in the archetype of α and β and were not quoted by Utpala. See, for instance, Brāhmasphuṭasiddhānta XIV,46-49 and note that Varāhamihira in Bṛhatsaṃhitā XVII,1 says that he has dealt with planetary conflicts (transits) according to the Sūryasiddhānta in his karaṇa. Unfortunately, as useful as Utpala's quotations are, they do not contribute now all that they might to our knowledge of the text. This is due to the fact that we do not yet have a critical edition of Utpala's commentary on the Bṛhatsamhitā, but only a text prepared by Thibaut's collaborator, Dvivedin. Dvivedin was certainly influenced by the readings adopted in his edition of the Pañcasiddhāntikā; thus, in his edition where Utpala quotes $I, 8$, he prints somadivasādye which is the emendation he and Thibaut suggested for α^{\prime} 's saumya ${ }^{\circ}$ and β 's bhaumya ${ }^{\circ}$; but Dikshit had a copy of Utpala in which bhauma ${ }^{\circ}$ was read. In our apparatus, then, Utpala refers to Dvivedin's text and not necessarily to that tenth century scholiast.
${ }^{48}$ These 16 verses must have occupied 1 or 2 folios of β, which have obviously been misplaced. This proves that all β manuscripts go back to a single archetype, probably the Sojitrā manuscript.

F. Appendix. Verses from the Brāhmasphuṭasiddhānta

I,13. Yugas, manvantaras, and kalpas are said in smṛti to be the definers of time; as they do not occur in the Romaka, the Romaka is outside of smṛti.

I,62. Those who know Śrīṣeṇa, Āryabhaṭa, and Viṣnucandra, when they see one who (really) knows mean motion, do not stand and face him publicly as horses, when they see a lion, do not stand and face him.

II,46-47. At the beginning of a yuga the true longitudes for Āryabhaṭa, Mars and so on (i.e., the star-planets) for Srīsena, and all the planets for Viṣuucandra do not start out from the beginning of Aries. Since the true (longitudes of) Mars and so on have fallen far away (from the truth) in (the treatises) of Śriṣena, Āryabhaṭa, and Viṣnucandra, they are not respected by the wise.

X,13. For one observing (heliacal risings and settings) every day at sunrise or sunset and (making the calculations) described by Srīseṇa, Āryabhaṭa, and Viṣnucandra, there is no unity of observation and computation.

X,62. Even though one knows the tantras (written by) Āryabhaṭa, Viṣnucandra, and so on, he is not a teacher; but he who knows the Brāhma's operations in the dust (i.e., computations) has attained the status of a teacher.

XI,3. The Jina says that there are 54 nakṣatras, two Suns, and two Moons and that days are caused by the revolution of the dhruvamatsya; this is false.

XI,31. Since Śriṣena and Viṣnucandra compute solar eclipses with the five sines (the agrā, the madhyajyā, the raviśañku, the dṛggati, and the dṛkkṣepa), they share in the errors with respect to solar eclipses which have been enunciated by Āryabhaṭa.

XI,46-47. Ignorance is doubled every day by the disagreements of Sriṣeṇa, Viṣṇucandra, Pradyumna, Āryabhaṭa, Lāṭa, and Siṃha regarding eclipses and so on. The mistakes singly pronounced by Āryabhaṭa are properly to be considered the faults of Śișeṇa and the rest; I shall now mention some other faults.

XI,48-51. Śrisseṇa took the mean (motions of the) Moon and Sun and the Moon's apogee and node from Lāṭa; the mean (motions of) Mars, Mercury's śīghra, Jupiter, Venus' sighra, and Saturn (and their) revolutions in the years that have passed of the yuga from the Vāsișṭha, (and?) from the chapter (pāda) composed by Vijayanandin; and the apogees, epicycles, computation of true longitudes, and so on from Āryabhaṭa. Thus he made the Romaka, which was a clothes-binding knot (?),
into a patched garment. Viṣnucandra, taking these same (elements), made the Vāsiṣtha. In these two (works) there is never any agreement between observation and calculation with regard to eclipses and so on; whatever agreement there is is a happy chance. Therefore, what use are these two inaccurate (siddhāntas)?

XI,52. The center of the circle of perigee and apogee is called the "apogee" by the stranger to the sphere ${ }^{49}$; as the apogee is not there he does not know the apogee.

XI,53. Since (the planets) had various latitudes at the beginning of the Mahāyuga and their true longitudes were (their mean longitudes) increased by the equations due to the various positions of their apogees, therefore the (fixed) nodes and apogees (in some siddhāntas) are not correct.

XI,54. The most and fewest nāḍīs are respectively in daylight and in night-time (when the Sun is) at the end of Gemini (in the tropical zodiac); the ṛtus depend on the motion of the Sun (in the sidereal zodiac). There is no yuga for the ayana due to its (motion); but both ayanas are fixed ${ }^{50}$.

XI,55. That which is called a mahāyuga by Śriṣeṇa, Viṣnucandra, and others, but which is outside of the (system of) yugas, is stupid because at the beginning of the mahāyuga there are minutes of drggati in the case of the planets (i.e., the planets are not at the beginning of Aries).

XI,56. It is said in the smṛtis that the creation of the planets and constellations occurs at the beginning of a day of Brahma, their dissolution at its end. As there are very many (of their mahāyugas) in this mahāyuga, this (system of theirs) is incomplete.

XI,57-58. Because of the daily diasgreement (with observation) (of the longitudes) of the planets, tithis, karaṇas, nakṣatras, days, and months in such things as eclipses and planetary conjunctions, who would touch a chapter (pāda) with his foot (pāda)? As the lowest (pāda) karaṇas are those of the stigmatized (añkaciti ${ }^{51}$), Vijayanandin, Pradyumna, and so on, their errors will not be written down here.

XIV,46-49. The calculation of the naksatras that is described in the Pauliśa, Romaka, Vāsișṭha, Saura, and Paitāmaha (siddhāntas) ${ }^{52}$ is not mentioned by Āryabhaṭa; therefore it is described (here). Six nakṣatras are one and a half sized, six are half sized, and fifteen are equal sized; there is one bhoga of Abhijit. The (first) six are Keśa (i.e., Śravaṇa) Āditya (i.e., Punarvasu), Viśākhā, Proṣṭhapadā (i.e., Bhādrapadā), Āryamṇa (i.e., Uttaraphalgunī), and Vaiśvadeva (i.e., Uttarāṣāḍhā); the (second) six are Jyeṣthā, Bharaṇī, Svāti, Ārdrā, Vāruṇa (i.e., Satabhiṣaj), and Āśleṣa. The fifteen are not named here, and the one other nakșatrabhoga is called Abhijit, because this nakṣatra is difficult to learn for the slow-witted.

XVI,36. Since the eclipse falls far off (from the truth) in (the works of) Śriṣeṇa, Āryabhaṭa, and Viṣnucandra, because of the disagreement of calculation (with observation), (any) agreement is accidental.

[^8]XVI,46. (This) additional chapter on eclipses is not to be given away, even with curses for the destruction of someone's good fortune; the (original) section on eclipses, since (it follows the treatises of) Āryabhaṭa, Srīseṇa, and so on, is not accurate.

XXI,37-39. "If Rāhu obscures the Moon from the east, why does he not obscure the Sun thus? Why is there not so long a duration of a solar eclipse as there is of a lunar eclipse? How can the Sun pervade (all) objects and Rāhu be something else? Since there is a difference of obscuration in a solar eclipse, solar and lunar eclipses are not caused by Rāhu." (This opinion expressed) by Varāhamihira, Śrīseṇa, Āryabhaṭa, Viṣnucandra, and others is opposed to popular beliefs and is foreign to the Vedas, smṛtis, and saṃhitäs.

XXII,2. Since the sphere was not understood by teachers such as Śriṣeṇa, Āryabhaṭa, and Viṣṇucandra, the Brāhma's sphere was made accurate.

XXIV,2-3. The beginning of the yuga is simultaneously from sunrise in the south, from midnight in the west, from sunset in the north, and from noon in the east: just this was done by Sūrya, Indu (i.e., Soma), Puliśa, Romaka, Vasisṭtha, Yavana, and so on. Therefore one siddhānta was written and no other.

SANSKRIT
2. Text

〈श्रीवराहमिहिरविरचिता पंचसिद्यान्तिका प्रारय्यते \rangle त्रीरामचस्दोर्रोय नम: ।

टिनकर वसिष्ठपूर्बान् विविधमुनीन्द्रान् प्रणक्य यत्याटौ। जनकं गुरू च रास्त्रे येनास्मिनः कृतो बोध : $/ / 9 / /$ पूर्वाचार्यमते यो सट्> यच्शेष्षं लघु स्फुटं बीजम् / नत्तटिहाविकलमंं रहस्यम सुचतो वक्तुम् $/ / 2 / /$ पौलिरारोमकवासिष्षसौर यैतामहास्तु सिद्यान्ता: / पंचभ्यो हावायौ व्यास्यातौ लाटटेवेन //३// पौलिखास्त्बथ स्कुटो डसौ तस्यासन्चस्तु रोमकप्रोत: / स्पषतन : स्वाबिन्र : परिरोषौ टूरविय्रहौ // y// यतत्परं रहस्यं च्रमतन मतिर्यत्र तन्त्रकाराणाम् / तटहमपहाय मत्सरमस्भिन् वस्त्ये ग्नहं आतो: //u// टिक्स्थितिविमर्ट कर्ण प्रमाण वेला गहाग्नहाविन्दो: / तारागहसंयोगं टेयान्तरसाधनं चास्मिन् \|घ, \|

1 quoted by Utpala on BS 2,2 (p. 67)
Title:am.aß Invocation: त्रीगणेशाय नम: β ib विब्धुध तुनीन् याबत: त्रणम्यादौ Utpala $2 b$ यद् suppl. T.-D. यहेष्ट a, यत् क्रेष्ट B, com. T.-D. $2 c$ तत्कृटिहाविकल ${ }^{\circ} a$, तन्त (त्र C, न F) टि (हि C, हि F) हा (रा C, हालिं F) स्नलं β, com. T.-D. $3 a^{\circ}$ रोमयुं B, ${ }^{\circ}$ रोमयू ${ }^{\circ} F \quad 3 b$ वंच सिट्धान्ता: $a \beta$ $4 a$ पौलिशातिधि a, पौलिशतिथ: $\beta \quad 5 a$ यत्तत्पैरं $\beta \quad 5 c$ मच्चर ${ }^{\circ} B$, मप्सर ${ }^{\circ} \mathrm{CF} 5 \mathrm{~d}$ बच्चे a, वटये (चे C) β, сorr.T.-D. $6 a$ टिक्सं(म CF)स्थितिं० $\beta \quad 6 d^{\circ}$ साबनं a

3. Translation

Chapter I

I,1. Revering in the beginning with devotion the various leaders of the sages, beginning with the Sun and Vasiștha, and my father and teacher by whom I was instructed in this science;
$\mathbf{I}, 2$. whatever is the best, easy, accurate correction (bija) according to the opinions of the former teachers, that secret in its entirety I shall attempt to tell here.

I,3. The siddhāntas are the Pauliśa, the Romaka, the Vāsiṣtha, the Saura, and the Paitāmaha; of these five the first two were commented on by Lāṭadeva.
$\mathbf{I}, 4$. The Pauliśa is accurate; that which was pronounced by Romaka is near it; the Sāvitra (i.e. the Sūryasiddhānta) is more accurate; the remaining two have strayed far away (from the truth).
$\mathbf{I}, \mathbf{5}$. Whatever is the highest secret where the minds of the authors of tantras are perplexed, that - the eclipse of the Sun-I will explain in this (work), putting aside envy.
$\mathbf{I}, 6$. In it (in this work) are (the rules for computing) the direction, duration, totality, hypotenuse, magnitudes, and times (of solar eclipses), the occurrence or non-occurrence of lunar eclipses, the conjunctions of stars and planets, and the computation of longitudinal differences;

सममण्डलचन्द्रोट्यय-त्रच्छेयानि शाझ्रवच्छाया।
उपकरणान्यन्तज्याणलम्बकापक्रमाधानि // $9 / /$
सातासिवेटसंस्यं राककालमपास्य यैन्रशुकाटौ।
अर्धोस्नमिते थानौ यवनपुरे 2 औमटिबसाधे $/ /</ /$
मासीकृते समास्ने द्विषे साताहते sष्रयपपैैं /
लब्दैर्युतो s हिमासैस्त्रंयाट्घस्तिथियुतो हिष्ठ: //e //
सूद्रघः समनुशरो लद्धोनो गुणससतिर्द्यगण : /
रोमकसिद्युत्ते sं नातिचिरे पौलियो s प्येबम् $/ / 90 / /$
टिग्धा: साष्नवरसा: सौर〉टिबसा: कृतुसतनवर्ता:/
पौलिरामते 5 दिभासास्त्रिषड्डटिनाय्यवमसंब्चेप: //१9//
तिधिट्नांगमध टयाटधिमासार्थं स्बराम्बरैकाक्टे: /
अबमार्थं पंचतनुह्हि मितैस्तिधिरिावांतौष //92//
अधिमासकेष्णु यूयो इप्येक अन्तुम्बपंयके द्रियाब्टेष्णु।
देयो sवमेषु हेयो नवस्नहित्रिस्वयमेषु //१३//

8-10 quoted by Utpala on BS 2 (p.31)
\neg यंत्रहेप्रानि a, य(ध्घ CF) त्र हेयानि β तांड (अन D) वघाया a, β, com. T.-D.
$7 c$ उपक (का B) रणाध्वं $a \beta \quad 8$ स सौम्यं ${ }^{\circ} a$, चौम्य β, सोम ${ }^{\circ}$ Utpala T.- D.,
यौम ${ }^{\circ}$ Dikshit $a b$ हिस्थे (स्हे F) β ad नस्त्रिशघं a हिस्थ: β,

Kharegat, Sengupta साहां a β, com. Sengupta नवरस a दिबसा: om. β
कृर्तुं (त्रु० $D) a$, रू (स C) नु ${ }^{\circ} \beta$, कृतर्त्रु० Sengupta, कृतु Kharegat
$11 d$ ० स्त्रकृ (क $F,{ }^{3} F D$) तटिं $a \beta \quad 12 a{ }^{\circ}$ टरामया दव्या० A, टराम- द्या० D,
दरा दथां β, com. Kharegat, Sengupte © टमांशटौौधमासार्थं β स्वरांत्वरै:
 13 b ड्येकीकर्डुं $a \beta$, sल्येक एकर्तुं Kharegat थ्यांशोषु $a \beta$, corr. Kharegat

I,7. the prime vertical, the rising of the Moon, magical diagrams and geometrical constructions, the gnomon shadow, and useful matters such as the Sine of terrestrial latitude, the Sine of colatitude, and the declination.
I,8. Substract the Saka year 427 (from the given Śaka year) at the beginning of the first half-month (śuklapakṣa) of Caitra, which begins a Tuesday, when the Sun has half-set at Yavanapura.
I,9. Convert (the number of lapsed years) into months, add the (number of lapsed solar) months (of the current year), and put it down in two places; multiply it (in one place) by 7 and (divide) by 228 ; increase it (in the second place) by the resulting intercalary months. Multiply (the sum) by 30, add (the number of lapsed) tithis (of the current month) and put it down in two places.
I,10. Multiply it (in one place) by 11, add 514, and (divide) by 703 ; subtract the result (from the other place; the remainder is) the ahargana. This is in the Romakasiddhānta; it is not very different in the Pauliśa.
I,11. In the opinion of Pauliśa, the solar days multipled by 10 , increased by 698 and divided by 9761 are the intercalary months; there is an omitted tithi every 63 days.
I,12. One should give a tenth of a tithi every 107 days for the purpose of (computing) the intercalary months, (and one omitted tithi) every 25135 tithis for the sake of (computing) the omitted tithis.
I,13. Add one more to the intercalary months every 5506 years; subtract 1 out of every 203279 omitted tithis.

वर्षायुते धृतिघ्ये नबवसुगुणरसरसा: स्युरहि मासा: /
साविन्ने शरनवकेन्द्रियार्णवायास्तिधिप्रलया: //१४//
रोमकसुगमर्केन्होर्वर्षाप्याका रापंचवसुपता : /
सेन्द्रयदियो s हि न्मासा: स्वरकृतविषयाष्टय: प्रलया: /॥१द//
सुगवर्षमासपिण्डं रबिमानं साहि गासकंचान्द्रम् /
अवमविहीनं साबनमैन्टवमब्टा१्वितं चार्घम् $/ / 9 \varepsilon / /$
मुनियमयमद्वियुके टुगणे शून्यद्विचयमयक्ते /
प्रतिरारि सर्तुटहनैर्ले वर्षाणि यातानि //99//
तानि प्रपन्नसहितान्यग्निगुणान्यकिष्वर्ज्जतानि हरेत्।
सस्थथिरेवं रोषो वर्षाि्यितातः क्रमात् सूर्यात् $/ ॥\urcorner / /$
त्रिशद्रके मासा: प्रपन्तसहिता हिसदुणा: कार्या:/
सानोद्धृतावरोषे मासाधि पतिस्तथैवाकात् //9e//

16 quated by Utpala on BS 2 (p.30); 16a on BS 21,7;17-18 on BS 2 (p.31; 19 on BS 2 (p.32). $14 \mathrm{~d}^{\circ}$ न्दिया- (र्स्यवा $C F$) श्रा० β 15 b पंचयेस्तु (पस्तु C, मे सु F) पना:, 3
$15 d$ स्बकृ (3FD) त ${ }^{\circ} a$, स्यात्कृ (स्यकृ $C F$)न β, com. T-D. 16 a सुगवर्षणं सपिंड $\beta \quad 16 d$ तार्जें β, त्बार्जम्य् Utpala $17 \subset$ प्रतिराष a, गतिरा (ए F) ब, β,
com. T.-D. $17 d$ पातानि (मि D) a $18 b{ }^{\circ}$ नग्निगुणा ${ }^{\circ}$ om. B

- यद्धि वर्जिता a, यदित (दित C) वर्जितानि β, \circ यकिवर्जितानि Utpale Kharegat $19 b$ प्र(अC)मवसहिता: β व्येका: Utpale $19 c$ ब्बरोषो Utpala $19 d^{\circ}$ स्तथैवार्ध्या (धर्य F) त् BF

I,14. In the Sāvitra (i.e. Sūryasiddhānta), in 180000 years there are 66389 intercalary months and 1045095 omitted tithis.
$\mathbf{I}, \mathbf{1 5}$. The yuga of the Sun and Moon according to the Romaka is 2850 years; the intercalary months are 1050 ; the omitted tithis 16547.
$\mathbf{I}, 16$. The sum of the (solar) months in the years of a yuga is the measure of the Sun; increased by the intercalary months, it is (the measure of) the lunar (months). (This total multiplied by 30 and) diminished by the omitted tithis is the number of civil days; the lunar (months) increased by the number of years are the sidereal months.
I,17. Increase the ahargana by 2227 and divide (the sum) by 2520 ; with respect to the (remaining) amount, divide it by 360 ; the quotient is the number of lapsed years (in the current cycle of 7).

I,18. Increase these by the current year, multiply by 3 , and subtract 2 ; divide by 7 , and the remainder is the lord of the year, beginning with the Sun.
I,19. Divide (the augmented ahargana) by 30 ; increase the (resulting) months by the current one and multiply by 2 ; the remainder after division by 7 is the lord of the month beginning with the Sun.

ससोद्धूने टिनेशस्त्रिणुणो क्येको सुतन्ध होरायि:/
पंचघ्न: मातहृतो वित्तेय: कालहोरेश: $/ / 20 / /$
वर्षाधिपस्तुर्यों मासाधिपनिस्तथा तृतीयो $s=य$:/
होराधि पस्ष बष्ठो निरन्तरं टिबसनाथस // 29//
वर्षे यद्यस्य फल मासे च सुनिम्नणीतमालोक्य/
तनद्धत्रैर्वन्ये होरातन्रोतरविधाने: $/ 122 \|$
चुगणे रूपाभ्यहि के पंचर्तुगुणोद्धृते मगाक्टा: स्यु: /
शंर्रार्द्रके रोषं श्रेयं राश्यंशकेन्द्र $ण ा म ् य ~ / / 23 / / ~$
कमलोद्रव: प्नजेशा: स्बर्गेरशायास्तृरूद्रमन्युवस्नब:/
कमलानलान्तर बय: सरीन्द्रगोनिध्तिय: क्रमशः : //2y\|
हरयवगुरूपिनृवरूणा बलटेवसमीरणौं यमन्षैव।
वाक् श्रीधनटौ गिरयो घात्री बेधा: पर: पुरुष: // ح५//
करणावनार: //

20 quated by Utpala on BS 2 (p.35); 21 on BS 2(p. 36); 22 on BS 19 intr. 206 नुणु $a B C$ डह्ये (s प्ये C) कस (छ्ष C) होराटि: $a \beta$, व्येको सुतच होरायि $:$
 विश्रेया a काय (घC, घाF) होरेशः β होरेशा: a राa वतुर्ये $a \beta$ 216 ननोयो α, ततोयो $\beta \quad 21 \mathrm{c}$ होराधितनिय $\beta \quad 21 \mathrm{C}$ टिवसनाथ: स्यात् Utpala $22 a$ Ebegins with बर्षे यट् om. β (suppl. E^{2}) $22 c$ तन्तद्धृत्तै० om. o β, suppl. Utpala बच्चे $a C$ 22d वविध्धाने Utpala $23 a$ कगणे β $23 b$ गुणोघ नृते a, गुणोध व (हC(F) ने β मगाब्टा: इय मासा: $a \beta$ $23 d$ राइ्यंश्यें (चें F, यं E) दरणां $a \beta$, com. T.-D. $24 a$ कमलोद्रवा a प्रजेसा a $24 b$ स्वर्ये शस्त्र द (टु D) माय्यवासांसि a,स्ब (ख BE) र्r: (र्य: C) रास्त्रं रू (om. CF) द्रया (नाE) यवासांसि $\beta \quad 24 d^{\circ}$ नियतय: $\alpha \beta$, com. T.-D. $25 a$ हरनब० β
 25 वुरूष: a
$\mathbf{1}, \mathbf{2 0}$. When one divides (the augmented ahargana) by 7, (the remainder) is the lord of the day. Multiply (this remainder) by 3, subtract 1 and add the (elapsed) hours; multiply (the result) by 5 and divide by 7 ; (the remainder) is to be known as the lord of the hour.
$\mathbf{I}, \mathbf{2 1}$. The lord of the next year is the fourth (in order of the week-days); the lord of the next month is the third; the lord of the next hour is the sixth; and the lord of the next day is the next.
I,22. Whatever is the (astrological) result of each (planet) in a year or in a month, that I shall explain with mastered rules of horoscopy in the future after examining the opinions of the sages.
I,23. Increase the ahargana by 1 and divide by 365; (the quotient) is years of the Magas; when one divides (the ahargana increased by 1) by 30 , the remainder is to be known as belonging to the lords of the degrees of the signs.
I,24. Kamalodbhava, Prajeśa, Svargeśa, Śāstṛ, Rudra, Manyu, Vasu, Kamalā, Anala, Antara, Vayaḥ, Śaśi, Indra, Go, and Nirṛti in order;
I,25. Hara, Bhava, Guru, the Pitṛs, Varuṇa, Baladeva, Samīraṇa, Yama, Vāk, Śrī, Dhanada, the Giris, Dhātrī, Vedhāḥ, and Paraḥ Puruṣaḥ.

The Incarnation of the Karana.

कृतगुणमृतुसुतमे कर्तुमनुहृंत षड्यमेन्दुरितर्बियुजेत् / रारिस्बस्वमकृतस्बरनबनववसुषट्रविषयोने: $/ 19 / /$ रसगुणनवेन्टुसुके राशिगुणस्बगुोद्धृते घना घ्युणे। रोषे चवरिर्गुणिते गतयो डहजिने: पटं रोषम् $/ 12 / /$
घनषोडराद्धतरोषं प्रोज्डस्याधस्त्रिणुणितं चतुर्त्रम् /
यदि कला हिणुणघना: रशिमुनिनवयमा रास्याथा : //३॥
विषयधृतयो गतिघा गतिषषंशयनिता: कला: प्रोका: /
वेटाका: पटसंख्या गत्यद्धरं घनमृण्ण परत: $\|$ ४ $/$
गत्यद्ये अगणाह टेसं लिनाचतुष्कसंयुक्तम् /
रोषपटसमाधांगास्तैद्ध धनर्णात् फलं टेयम् //ul/
व्येकपद मिच्द्रियघं कृतनवद्यसंयुतं वियुंक च।
मनुवेट्यमेट्न: पद्गुणे त्रिषश्युद्धृते लिता : \|ع\|
$1 a$ कृतगुणषं (बय D) मृतुयुतमैकर्तुं a, कृतगुणषट्क (उु C, ट्ट E, ड्ट E^{2}, त्रुF) तु-
सुतमैकर्तु (र्श C) β, com. Kuppan- Sastr.. $1 b$ वर्वियतेत् $a \beta$
ic बस्बरकृ (क्र a) त• a β, cour. Kharegat, Kuppane Sastr. $2 a^{\circ}$ युक्त a,
ब्युंक (तुंC) β, com. T.-D. $2 b$ घता a 2d प्रतं β उaय्च (घEF)नषोडरा-
$E\left(\xi E\right.$,com. $\left.E^{2}\right)$ नं रोषं $a, \beta \quad 3 b$ त्रोज्र्याद्य ${ }^{\circ} a$, ग्रोज्याह ${ }^{\circ}, \beta$, com. Kuppana
Sastr, $3 c$ कल $\beta \quad 3 d^{\circ}$ यमाध (व a $B C$) रास्या (रा a) या : $\alpha \beta$
$4 b$ गृ (ग A) तनिषषांयों a, गृ (ग C) नतिघ्ना (घ्रा $C F$) षष्टांशों० β

$5 b$ लिसामतुष्क $0 a, 3$, com. T.-D. $\quad 5 d$ घनणा (रा F) त्फिनं β
द (दं A) त्यं (त्य β) a β, com. T.-D. $6 b$ हियुकंत β 6d त्रिषम्योधृते a β

Chapter II

II,1. (One should) multiply (the ahargana) by 4, add 6, divide (the sum) by 1461 , and subtract (successively) 126 diminished (respectively) by $1,0,0,0,2,4,7,9,9$, 8,6 , and 5 .

II,2. If one increases the ahargaṇa by 1936 and divides (the sum) by 3031, (the quotient) is (called) ghanas; if the remainder is multiplied by 9 and divided by 248 , (the quotient) is (called) gatis and the remainder the pada.

II,3. Divide the ghanas by 16 ; put the remainder aside below; multiply it by 3 and divide it by 4 ; (the quotient) in signs and so on (is to be subtracted; add) minutes (equal to) twice the number of ghanas, (and) $2^{s} 9 ; 7,1^{\circ}$; (the result) is (the longitude of the Moon) in signs and so on.
II,4. The gatis multiplied by 185 and diminished by $1 / 6$ of the gatis are called the minutes. A half of a gati is 124 padas; it is positive (in the first half), negative in the other.

II,5. In the (first) half of a gati one must give 180° plus 4 minutes. Take degrees equal to the padas or to the remainder (after subtracting 124); add to these the contribution from the positive or negative (halves of the gati).

II,6. Multiply by 5 the padas diminished by 1 ; add 1094 to it (in the first half) and subtract it (in the second) from 2414 ; multiply (each sum) by the padas and divide by 63 ; the results are minutes (of the longitudinal increment).

रास्यध्रटन त्रिकृतिझ्चमृन्नमंशस्थिता मुहूर्ता: स्यु: / व्यर्केच्ुटलं विषयाहतं निथिस्तद्धेवोक: $/ 19 / /$ मकराटौ गुणसुको मेषाटौ तिधियुतो रविर्टिवस्। कर्कटकाटिषु षट्सु त्रयस्त्रिका: रार्वरीमानम् $/ / \mathrm{c} / /$ कर्कटकाटिषु चुकंक हिगणां मध्यन्टिनी यवेच्धाया। मकराटिष्तु चाप्येबं किं चास्मिन् मण्डलाच्छोध्यम् $/ \mathrm{e} / /$ मध्याहच्छायाह सत्रियमको डयने सवेखाम्ये /
उटगयने संयोध मं पंचट्रायो रविर्भवनि $\|90\|$
द्वाटर्याि: सच्धायैर्मध्याहोनै र्जेद्रसहुताराम् /
यपराह्हे चक्राह दि्हियो्य सार्कं चवति लग्नम्- //99//
व्यके लग्ने लिसा: इाक् पच्धाच्छो हितनास्तु चक्राह तात् /
कार्य ख्टेद : शून्याम्बराष्ट लबणोटबस्रा नाम्, //92//
लबनं हाटराहीनं मध्याहच्तायया समायुनुम् !
सा विन्तेया हाया वासिष्षभाससिद्ध
चन्बत्रांटिच्छेट: //
$7 a$ रा (om. D) शाटनलं a, रा (om.C) शस्बटमं β, com. T.-D. $8 b$ मेखादौ $a B C$.
sc सत्सु $a \beta$, com. T.-D. a_{a} संक $\beta \quad a_{c}$ वाप्यें $a \quad$ वd यस्मिन्, $a<F$, त्वस्मिन् Kuppan- Sastr, मण्डलाशोध्यं a, मण्डलात् (त् om. F) यो (सो BE)
 β, com. T.-D. $\quad 1 \mathrm{c}$ चन्द्रार्थां $a \beta$, com. T.-D. $12 b$ त्राक्यसाशोधितास्तु a चक्राद्य (न् द्ज E^{2})नि: BEF $12 c$ काय (य:C) देट: $a \beta$, com. T.-D.
13 < quoted by Utpala on BS 2 (p. 64).
$13 a$ लघंब a $13 b$ ममायुका β

II,7. Multiply a fourth of the Moon's (longitude in signs) by 9 ; the product is the nakṣatra; the degrees (which remain) are muhūrtas. Half of the elongation between the Sun and the Moon (measured in signs) multiplied by 5 is the tithi; (the muhūrtas) are explained in the same way (as above).
II,8. At the beginning of Capricorn, (the longitude of) the Sun (in signs) plus 3 (muhūrtas) is the length of daylight; at the beginning of Aries, add 15 (muhūrtas); in the six signs beginning with Cancer, (add) 9 (muhūrtas to get) the measure of the night.
II,9. In the (six) signs beginning with Cancer, multiply the (number of signs from Cancer 0°) traversed (by the Sun) by 2 ; the result is the noon shadow. In the six signs beginning with Capricorn, do the same thing and subtract (the product) from 12.
II,10. Half the noon shadow plus three signs is the (longitude of the) Sun (in signs) in the southern ayana; in the northern ayana it is the same, subtracted from 15 (signs).
II,11. One should divide 36 by 12 increased by the shadow and diminished by the noon shadow; add the (longitude of the) Sun (in signs to the quotient); (the result) is the ascendent; in the afternoon, subtract (the quotient) from 6 signs (before adding the longitude of the Sun).
II,12. Subtract the (longitude of the) Sun from the ascendent; in the eastern (hemisphere), the (resulting) minutes are to be made the divisor of 64800 ; in the western, they must first be substracted from 10800 .
$\mathbf{I I}, \mathbf{1 3}$. The quotient (in signs) is to be diminished by 12 and increased by the noon shadow; (the result) is to be known as the shadow in the concise siddhānta of Vasiș̣tha.

Thus the Division of the Nakṣatras and so forth.

सारेंचे $ड$ ग्नहुतारानयास्य रूपाग्निबसुहताराकृतै : । ह्टत्वा क्रमाहितेयो मध्य: केन्दं स्वबिंशांशः //१ //
एकाटराष्टषटं रूपोना स्ततनिः ससुका च।
नबषट्रमज्घकृति चय: कला: केन्द्रराशिसमा: $\|2\|$
दशबट्राष्ससतनि: स्नतिरेकाहि का च नबषट्रम् /
पंचकृतिध्चोपचयो मह पमसूर्यः स्कुटो यवति $\|३\|$
<बि〉नवात् पटाह्वाधात् साiाशः स्वाधिर्वस्बरो युकि:।
गत्यह जन्ताच्धोहयो लिसायो नवसुनिबस्युय: $\|$ y $\|$
पटमेकोनंं पंधाष्टकहमेकर्तुपन्वबिषयेय्य : /
प्रोज्ड़्य पटघंन हिन्चानवयम्नमुनिरिन: कला इन्टों: //u//
स्वार्कि कंक यवेट्घत् परिशोध्यं तनः पुनः रांं बिशत् /

1 quoted by Utpala on BS 2 (p.41).
la ग्नहतागन $a B C \quad b^{\circ}$ मथास्य $a \subset \quad$ हद्वा $a, \bar{\xi}(\varepsilon C$) चा (बा C) β,
com. T.-D. क्रमाटितेशो a, क्रमाटिनेशो β ।ा हेंद्यं β सविंयांश a β
2 L ससुका $\beta \quad 2 c$ म्नुन्यकतिध a, मु (सु C) म (त्य F, य C) कृत्ध β, cow. T.- D.
$3 a$ स्नसनि om. $\beta 3 b$ स्नसनिनैकाधि तका $a \beta$, com. T.-D. 4 a विनवान् Kuppanna Sastr, पदTद ($\mathcal{C} C E F$) राब्रान् (घ्रात् F, घात् C) $\beta .4$ bस्थिस्नांबरो $\alpha \beta$,

 $5 b$ मेंकंतु० $a \beta$, com. T.-D. $s c$ त्रोध a, त्रोहना (हया $E F$, या C) β $6 b$ परियोएसा β नन् पुन: रानाट्टिं (हिं $E F$) यात् $a \beta$ 6d ने (ते $E F$) $a \beta$, corr. T.-D.

Chapter III

III,1. Multiply (the ahargana) by 120 , subtract 33 , and divide by 43831 ; the result is the mean (longitude of the) Sun in order (of revolutions, etc.). This increased by 20° (and diminished by the apogee) is the anomaly.
III,2. The negative minutes corresponding to signs of anomaly are: 11, 48, 69, 70, 54, 25.
III,3. $10,48,70,71,54,25$ are the positive ones. The mean (longitude of the) Sun is corrected (by them).
III,4. For every ninth pada, multiply (the pada) by 10 and take a seventh part (of the product; the result) increased by 702 (minutes) is the (Moon's) daily motion (bhukti); after the end of a half of the anomalistic month (gati), one must subtract (that result) from 879 (minutes).
III,5. Multiply by 40 the padas decreased by 1 , subtract (the product) from 5261 , multiply (the result) by the padas and divide by 729 ; (the result) is the minutes (of the equation) of the Moon.
III,6. Whatever (pada) is more than 120 , subtract 120 from it. It is additive to the Moon in the first half-gati, subtractive in the second.

न पटं त्रिष्टिपरतः प्रथमपटं सतनतिं त्वतिक्रम्य /
पटसुक्त: षट्पंचयुत्छ बिन्दुस्त्रिकृति सक्त: $1 / 9 \|$

तद्यानिं प्रथमपटे गतिटलपरत्न : शशिनि ट्यान्य $\| c / /$
विनवपटे सुस्सू इन्टुस 〈यन्द्रस्तटहि घोत्तमे /
तह्हिसेषाट्रु किनीचे थैबं पटे सनवे $/ / \mathrm{e} / /$
बिंशतिरधि : साधा पादोना: सस याजपूर्वाणाम् /
विषुच्छायागुणता: क्रमोत्कमाचरबिनाड्यो डहो $/ / 90 / /$
मेषाटिषु नट्पुपचितै कर्कटसेल्येषु च नटपयययितै : ।
दिन्वृद्दि: स्याद्येन चयस्तुलाथेषु वैष्युवतात् $/ / 99 / /$
सागरहिमाद्रिपरिध्रौ म्पएमिटं चरबिनाडिकाकर्म /
अन्यत्रापि ययैतन् स्पसं तच्छेवके बन्द्ये //92//

10 quated by Utpala on $B S$ 2 (p. 63).

($\Rightarrow \mathrm{Om} . E^{2}$) गुणाल (गा: E^{2}) a $E F$ नd-स्त्रिघन (ना a EF) यके (चक्रे F)
$a \beta \quad 8 a-b$ षष्टय (बसF) हिकं तु यद्वशिषंट यत् β 8c तड़ानि: $a \beta$
$8 d$ गतटल $a \beta$ पुरत: β राशि a हबा (ब B, शार C) च्यात् β

$a b$ चोत्पनै: a, चोत्पमप (2यद) टे β ac गतटलपरतु तै: inserted from 3d
β तद्विति तबा० β ac-d \circ ट्रुकिनी β, \circ ट्रुक्तिने a ad पटै: सनवे:
(पे: EF) a $10 a$ रसे:a सार्द्यण Utpala $10 b$ पाटत्रेना: β
चा (=्वाC) जपूणरि (पूर्वा C, पूर्वार F) गां (णां C) β 10d क्रोमोत्क्रमा० a है a, डर्द्री: Utpala 11 मेबालिष्टु (टु E, टु F, ट्C C) पचितं $a \beta$, com. T.-D. 116 ककेटायेष्यु a, β, com. T.-D. व्ययमिति $\beta \quad \| \subset$ माव्येन a, β, com. T.-D.

III,7. There are no padas after the 63rd pada (in the second series). (But,) when one attains the 70th pada, that is (to be treated as) the first pada; increase the padas by $560 / 9$.
III,8. When the padas are more than 60 , they are to be subtracted from 60 ; whatever remains one should give to the Moon negatively in the first pada after the (second) half-gati(?).

III,9. The (longitude of the) Moon on every next ninth pada, decreased by its daily motion is the (longitude of the) Moon on that day; as the converse of this, the daily motion (is the difference between the Moon's longitude then and that) on the preceding ninth pada.
III,10. Multiply the (noon) equinoctial shadows for the (three) signs beginning with Aries by $20,16^{1} / 2$, and $63 / 4$ (respectively); these, taken in direct and reverse order, are the vinādīs of the equation of daylight in the (first) half (of the zodiac).
III,11. In (the three signs) beginning with Aries, the increase in the (length of) daylight, (for each day) beginning with the equinoctial, is determined by adding these; in (the three signs) beginning with Cancer by subtracting them (successively); in (the six signs) beginning with Libra they are negative.

III,12. The operation (for finding) the vinādikās of the equation of daylight is correct (for the region) bounded by the ocean and the Himālayas; how it is made accurate elsewhere I shall explain in the chapter on geometrical constructions.

यबनान्तरजा नाड्य: सत्ताबन्त्यां त्रियागम्नयुका: /
बारणण्यां त्रिकृति: साधनम्यत्र वन्स्यामि //१३//
त्रिकृतिघान् सबसुह्टताथोज्ननपिण्डात् स्वताडिताज्ञहात् /
आन्वसविवरकृतिं मूलूं बट्रोद्धतं नाड्य: //१४//
देशान्तरनाडीय यन्ताड्यह द्वसस्तु पूर्वाहै।
चक्रस्याध चान्त्ये वृद्जिस्नद्रागम्नि जहात्//१५/।

गुणशिस्निगुणाग्नियम्राशिविसुता सैका स्वरूपरूपैका /
सैकबियुता थ आनो: पहिट्रुन्ति : क्रमादेबम $/ / 99 /$
सितबहुलयो: चयहन्नं बर्ञागा: रीतगोर्वररवियोगात ।
लित्रा: सर्तुहुनारौर्लकब ंं करणं तिधिबट-्यत्र ॥१र/।
$13 a$ य (चC) बना (ना om. C) त (च β)रजा (जा om. β) a β i3bस्तावंत्यास्त्रि $a \beta$,
com. T.-D. 146 मिंडा((J E) $a \beta$, com. T.-D. घताडिता० β
$14 \mathrm{c}-{ }^{\circ}$ क्र (कृ E) तिर्मूला: (ल्या: $B E$) a $B E F$ 14 बटटरोहृता (ता aB) a $B E F$
$15 a^{\circ}$ नादीय स० $a \quad 15 b$ नाड्यद्धं $a \beta \quad 15 c$ विक्रस्यार्द्य β

लिसारा (र्शां C, य a) ती a, β, com. T.-D. $16 b$ पन्दा त्तिधिद्धिं a,

- मन्दतिधि - दूं० β, com. T. $D . \quad 16 \mathrm{c}$ नु (शू F, सC) स (म E, न्न F, त्य्य C)

नुपाता० β 18a सितवज्ज (जBC, जुEF) लध्रो: (ह: β) a β, com. T.-D. 18 b 02 नोगान a, नोगान् β, com. T.-D.

III,13. There are $7^{1} / 3$ nādīs arising from the (longitudinal) distance between Yavana(pura) and Avanti; nine (between Yavanapura and) Vārāṇasī. I will explain the calculation for other places.
III,14. Multiply the sum of the yojanas (between the localities) by 9, divide (the product) by 80 , and square (the result); subtract from this the square of the difference between the two latitudes (of the two localities); the square-root (of the remainder) divided by 6 are the nādīs (of the longitudinal difference).
III,15. Subtract half the nāḍis of ascensional difference from the nādīs of longitudinal difference in the first half of the zodiac, add them in the second. One should ignore any fraction of them (?).
III,16. A nakșatra is 800 minutes. A tithi (is known) from (the longitude of) the Moon diminished by (that of) the Sun (being divided) by 12°. The limit (of a naksatra) is a consequence of the daily progress (of the Moon). (The limit) of a tithi is derived from the difference between the daily progresses of the Sun and Moon.
III,17. The daily progress of the Sun (in each of the zodiacal signs) is in order 60 (minutes) minus $3,3,3,3,2,1$; plus $1,1,1,1$; and minus 0,1 .
III,18. In the śuklapakṣa 6° are subtracted, in the kṛṣnapakṣa they are added. The minutes of the Moon (so modified and) diminished by the longitude of the Sun (are to be divided) by 360 ; the result is the karana. The rest is like a tithi.

बहुलयतुर्ट्रयद्यांद्ध हुवाणि राकुनिष्पदंद नाग: /
किंस्तुछ्रमिति चराष्यद्ध करणं तिथे: प्रवर्चतन $/ / १ २ / /$
अर्केन्दुयोगयके वैधृतमुकं टरार्चिसहितस्तु/
यटि चक्रो व्यतिपातो बेला मृग्यार्षितै सेगै : $/ 120 / /$
आस्लेषाह दाटासीचटा निन्ृत्तिः किलोष्णकिरणस्य/
सुक्रमयनं तटास्तीन् साम्प्रतमयनं पुनर्बसुत्व: $1129 / 1$
विपरीतायनपानो यटार्ककाष्ठांशर्श्रेशिर बिचेप: /
अबति तदा व्यतिपातो टिनकृच्शरियोगचक्राहें //22 //
मेषतुलाटो विबुबत्र बडरीतिसुसं तुलाटि ागेष /
बडयीतिसुम्नेषु रवे: पितृदिबस्ता से sबरोषा: स्यु: //23//
बडरीनिमुसं कच्याचतुर्टरो डहाटरो च मिधुनस्म।
मीनस्य हाविशो बड्विंशो कार्मुकस्पांशे $\|2 ४\|$

21 quated by Utpala on BS 2 (p.41).
$19 a$ बहुलयतुदृ (ह F) यंद्य BEF, बहुलयतु है (ह C) र्य (सं C) ह्रा (तात् C) a C,
com T.-D. 196 दिवाणि BEF ०निचनुष्पदं a 19 c केंसु (स्तुC) त्रा (घ)
सित β,किंम्तुघायिति a, com. T.-D. $19 c-d$ चरा (रBE) क्यो द्डे $a \beta$
$19 d$ करणानि बत् प्रवर्चते $a \beta \quad 20 b$ टथर्चें $^{\circ} a$ सहितेषु $a \beta$

a, β, com. T.-D. 22d टिनक्रह a $23 a$ मेस $^{\circ} a$ विषुब a
$23 b$ बड्सीति ${ }^{\circ} a \quad 23$ थे $^{2} a$, द्ये β, car. T.-D. विशेषा: a β, com. T.- D.
$24 b$ हाटर्रो $a \quad 24 d$ बड्हिंरो a

III,19. From the middle of the fourteenth tithi of the krṣ̣apakṣa the fixed (karanas) are Śakuni, Catuṣpada, Nāga, and Kiṃstughna; (the rest are) movable. A karaṇa is half of a tithi.
III,20. When the sum (of the longitudes) of the Sun and Moon is a revolution, it is called Vaidhṛta (yoga); but if it is a revolution plus 10 nakṣatras ($133 ; 20^{\circ}$), Vyatipāta. The time is to be ascertained by means of the degrees attained (by the luminaries).
III,21. When the return of the Sun was from the middle of Āsleṣā (at $113 ; 20^{\circ}$), then the ayana (-correction) was positive; now the ayana is from Punarvasu (at 90°).
III,22. When the falling away (from the mean position) of the ayana is reversed, then the correction (ksepa) for the Sun and Moon (equals) the degrees of the maximum declination (kāsṭhā) of the Sun $\left(23 ; 20^{\circ}\right)$. There is Vyatipāta if the sum (of the longitudes) of the Sun and the Moon is 180°.
III,23. The equator (viṣuvat) is at the beginnings of Aries and Libra. The șaḍaśitimukha ("eighty-six faced") is in the degrees beginning with Libra; in the sadasistimukhas of the Sun, whatever (days) are left are days of the Pitrs.
III,24. There is a ṣaḍaśitimukha at Virgo 14°, at Gemini 18°, at Pisces 22°, and at Sagittarius 26°.

उटजायनं मकरादाबृतब: थिशिराद्यक्ध सूर्यबशात्। द्वि नबनकालसमानं टच्चिणमयनं च कर्कटकात्र $\|24\|$ षषिघ्या चुकिहृता रविब्विम्बकला चवन्ति नाड्यस्ता: सक्र 1 नीनां काल : पुस्यो इतो 5 र्येन चायन्तात्त $\left\|2 \varepsilon_{2}\right\|$ तिध्यन्तं यदि सूर्य: स्थृरानुटेत्येष्यं वासरं चापि/ योगस्नटा च्रह:स्पृक् निधिन्रयस्पर्शानाटह : $1129 / /$ असगुणे टिनराशौ रूपेन्द्रियरीतररिमिि R रैके । लबा राहोरंशा चगणसमाद्ध चिपेन्विता: $\|2 \subset\|$ वृधिक लागा राहो: बह्रिखातिरेकलितिकालुता / आटिरत: त्रोन्ड्य मुस्वं षड्राश्रियुतं तु पुच्ब स्व्यम् $\|2 \mathrm{l}\|$ वस्नादधिकचन्दरो हीनः पुच्छाझ्ष याति 2 गणणोटक । हीनो बदने पुच्छे sदिको sसुकायाति टच्चिणनः $/$ ₹०/।

25 quoted by Utpala on BS 2 (p.23).
$25 a-b$ मकरादौ वृतृं (वृं om.a)त(न्तa) क a $\beta 25 b$ राशिरा० β

 $28 a$ टिनशारौौ $\beta \quad 28 b$-रशिमियर्र्य (ब्य C_{-}) के $\beta \quad 28 c$ राहोरंशा β 29 c आटित्यर (त्या C) न β प्रोझ α, प्रोज्य β 30a चक्राट०० β
$30 d$ मुरावाति $a \beta$

III,25. The northern ayana is at the beginning of Capricorn. The seasons beginning with Sisisira depend on the Sun; (each) is equal in time to (the Sun's passage through) two zodiacal signs. The southern ayana begins at Cancer.

III,26. The minutes in the (diameter of the) disc of the Sun multiplied by 60 and divided by the daily progress are nādīs; this is the auspicious time of the sañkrāntis, half before and (half) afterwards.
III,27. If the Sun rises touching the end of a tithi and also the coming day, then this is the yoga "touching three days"; (there is a yoga) for a day from its touching three tithis.

III,28. If the ahargana is multiplied by 8 and divided by 151 , the degrees of Rāhu are obtained; one should add (a number of) degrees equal to its revolutions.
III,29. The beginning (i.e. the longitude at epoch) for Rāhu is 26° of Scorpio diminished by one minute. Subtracting (its motion) from that (one obtains) the "head" (the ascending node); (this) plus six zodiacal signs is called the "tail".

III,30. When the Moon goes north of the zodiac, it increases (its latitude as it proceeds) from the head and decreases (it as it approaches) the tail; when it travels south from that, it decreases (its latitude) at the head and increases (it) at the tail.

थागनबत्या राहोधन्द्रों s तरितो sतिमहति विचेपे। लिसायतद्वयमे >त्यरीतिमनुपातो sतो sच्यत्र // ३१ // तिधिनन्तत्रच्छेटा प्रतिपन्निर्यदि तथा ततः साध्युः / न तथा च सद्रविष्ठोम्तथापि विनिबर्तते लोक: $/ / 32 \|$ 7 सुगपटुटयो आतोरस्तमयो वापि चवति सर्बत्र।
 मार्गाटुपेतमेतत् काले लघुता F ताबदनिटूरे । सविषय नूताषरसैरक्टै: पश्यास्य विनिपातम् $/ /$ ३४ // रोमकमहर्गणं पाटमर्कमिन्टुं च गणयतां ग्राह / चैत्रस्य पौर्णमास्यां चवम्यां चचत्रमाटित्यम् //३५// कालापेच्चा विध्ययं श्रौता: स्मार्ताच तटपचारेण / प्रायक्षित्ती यवति दिनो यतो sतो s दिगम्येटम् $\|z \varepsilon\|$
 -पातो ते (तC) $\beta 32 \mathrm{~b}$ व्पनित यदि $a \beta$, com.T.-D. 32 dथि om. a $33 a$ युगपदु (ड्斤ु C, टु E^{2}) ट्यो $\beta \quad 33 a-b$ भानुर (चु E, नोर E^{2}) म्तमयो $a \beta$, com. T.-D. 33d सुकिमिं α, यकिमिन्दु: β 34bतावैटतिदू (टु C)रो (रो om. E, र add. E^{2}) $\beta \quad 34 c$ र (र …. B, रो E) विषये $\beta \quad 35 b$ ग्याहा $a \beta$ $35 d$ नवमी $a \beta$

III,31. The Moon, being 90° distant from Rāhu, at its maximum latitude goes 280 minutes; elsewhere proportion (is to be used).

III,32. If the beginning (pratipatti) occurs when there is a separation of tithi and nakṣatra, then it is good. But it is not so in a bhadra tithi and Viṣṇu's nakṣatra (Śravana); for thus does the world disappear.

III,33. There is not simultaneously everywhere a rising of the Sun or its setting. In what place is its setting? From that basis they know what has passed of the day.
III,34. This is arrived at from a method; there is no quickness in so very long a time. Look at its (the world's) destruction in 68550 years.
III,35. Taking the Romaka ahargaṇa as the basis, let one calculate (the longitudes of) the Sun and the Moon on the full-moon (tithi) of Caitra; on the ninth (tithi) the nakṣatra is Āditya (Punarvasu).
III,36. The śrauta and smārta regulations depend on time; because a twice-born through offending them is a prāyaścittī (i.e., he has to perform propitiatory rites), therefore he studies this (i.e., time).

कुकरणबिदो हिजा से कथयन्त्यस्कुट〈मेसत्यं〈च गणितम्〉／
कुकरणकारसहिसताने ने चणं नरके कृतबासा：$\|39\|$
स्फुटगणितनिटिह लब्ह बा घर्मार्थयरांस्वि टिनकराटीनाम् $/ /$ そर／／
इति पौलिशसिद्धान्त：／／
$37 a$ अकरणनिदो β हिन्यो a ，द्वित्यो $\beta 37 b$ कधयन्त्यस्फुटं a ，
 $38 a$ लबा（ प्रा F）a β ，corr．T．－D．col．इति om．a

III,37. Whatever twice-born men, knowing a bad karaṇa, say that (astronomical) calculations are inaccurate and false, they, together with the makers of bad karanas, instantly make their homes in hell.

III,38. (But) one who knows accurate calculations of the Sun, and so on, obtains dharma, wealth, and praise in this world.

Thus the Pauliśasiddhānta.

बहिशातन्रयपरिए नेर्बर्ग हांशात् पंटं स् विकम्स: /
नदिहांशाचतुकं मंप्रकन्य्य राश्यष्टयागज्या //१ //
व्यासाह ${ }^{\prime}$ कृतिर्दुबम्वंच्चिता कृतांयम्तनः स मेषस्य /
हुबकरणी मेषोना द्योस्तु रास्यो: पंद ज्या: स्यु: $/ / 2 / /$
ऐोषेमिब्बेष्तु नुर्धिणुपदायोगरोषगुण हीना /
 त<स्यो पटो s थिमतज्या हुवा तटूनाबरोषपिण्डस्य /

इसांशद्विगणोनत्रि जज्ययोना त्रयस्य चापज्या /
षहिगुणा सा करणी तया हुनोनानरोषस्य $/ / \mathrm{Le} /$
मेषज्या: स्बरतिययो गुणारिणध नृतिरिन्घ विंशति: सहिता।
पंचनरकं रातार्दं न्रिस्मेतं बहितरिति लिसा: // ह//
la-b परिदे बर्ग $a \beta$, com. T.-D. ib विक्कुया: a जितदिहां (हा β) या घतुष्क a β, com. T.-D. Id मंत्रकप्रल्य a, प्रकल्यं β, com. T.-D. राश्याष्ब $\beta \quad 2 a$ कृते घुन $a \beta \quad 2 b$ कृतांयाः स्तन: $a \quad$ रोषस्य $a \beta$, com. T.-D. $2 c$ मेषोना a, येखो (यो $B E$) ना (ना om. BC) β सद्वर्योत्तु a, हयो (यो : C) सु β, cor. T.-D. $3 a-b$ घनुहिं a 3 म०गुणापदां β ब्योज्यं α, ज्योन्यै β ०गुणहिना a β, cor. T. -D. उद नृथ्या a,न्बन्या β, com. T.-D. सपा (प β) टार्द्राद्यूर्ग $a \beta$, com. T.-D. 3d हिगुणकार यो (घो a) समा (चTa) यो (त्रो β) ज्यं $a \beta \quad 4 a$ तस्य T.-D. $4 b$ तटुना ${ }^{\circ} a$
०रोजे $\beta \quad 4 d^{\circ}$ संच्रामन्यो $a \beta$,cor. T.-D. निदि नुक्त: a 5 रहधांरा a

- द्वगुणनि a $5 b$ बाय (प E) ज्या a β, cor. T.-D. $5<$ स a β, com.T.-D. कारण्ती a 5 घुबोनामरोषस्य a β, com. T.-D. ba रेषज्या a β, com. T.-D.

Chapter IV

IV,1. The square-root from the tenth part of the square (of a circle) whose circumference is 360 is the diameter. In this (circle), by one establishing four parts (i.e., quadrants), the Sine of an eighth part of a zodiacal sign $\left(3 ; 45^{\circ}\right)$ (is to be determined).
IV,2. The square of the radius is called the dhruva. A fourth part of this is (the square of the Sine) of Aries (i.e., of 30°). The dhruva-square is diminished by (the square of the Sine) of Aries; the square-root is the Sine for two zodiacal signs (i.e., 60°).

IV,3. When the remaining (Sines) are desired, the radius is diminished by the Sine of the remainder of the subtraction of twice the arc from a quadrant; the square of half of that (remainder) is to be added to the square of half (the Sine) of double (the arc).
IV,4. The square-root of that is the desired Sine. The dhruvā diminished by that (square is the square) of the remaining sum. Half of the dhruva-square is called the adhyardha (i.e., (square of the Sine of) one and a half (signs, or 45°)). Here another rule is described.

IV,5. The Sine of the arc of three (signs) is diminished by the Sine of three signs diminished by twice the given degrees; (the remainder) multiplied by sixty is the square (of the Sine of the given arc). The dhruva diminished by that (square) is the square of the remainder (i.e., of the Cosine).
IV,6. The Sines in Aries are $7,15,20$ plus 3 (= 23), plus 11 (= 31), and plus 18 (=38), 45, 50 plus $3(=53)$, and 60 minutes;

सैकाजे पंचाशत् पंचाष्टकंच बर्ग बेटास /
न्रिशघ्षतुर्दरहि का षट्यंचाशच्धरा: शून्यम //9//
षट्रत्रयोटरौकोनविंशतिस्त्र्यष्टको sयतस्त्रियत् ।
युक्ताम्बरपंचनबत्रिज्नगनियिर्लिस्तिका वृष्ने $\|\subset\|$

टाटरा षहिर्हीना मनुरि वर्बषयैर्बृषे बिकला : $\|\mathrm{C}\|$
गुणरसनबह्वाट्यविद्या हिस्त्रि नूतथूपात्तरज्ना: ।
ज्यालिता: पिण्डो डयं हिनीयराशाबनो विकला: $1 / 90 \|$
हृतिगुण वृतिपरिहीना षहि: यून्यं राताह रमनलोनम् /
वेटा ब्येकाह श्रानं पंचेति तटन्तरज्या: स्सु: /॥१ //
मुनयो 5 जे स्येकात्चे रसत्रयं पंचकौ कृताग्निर्गबि।
शिस्विपत्बचन्द्रशूया ट्विर्टिर्निने कला ज्यास्तु $\|92\|$
$7 a$ सैकाये $\beta \quad 7 e$ तुरिर्रर (र om. B) येका β 7d बहंध्याराघरा: a

- कान्यतं a β, com. T.-D. ०म्च्वंशनृ(चृ $D)$ a $8 \subset$ शूक्तांबर० A
$8 c-d^{2}$ नवा (वां $A C$) दि (दि, $A D^{2}, ~ f E E$) जागतिथि (2 位 a) लिल (लि a) सिका (काष्ट BEF) a β वa घत्बा (चाCF)रिंशद (द्य B) मा β वb सैकमिति गति $a \beta \quad a_{c}$ बषिहीना $a \beta$, com. T.-D. ad मनुरिलविषये a

$10 d^{\circ}$ राशायतो $\beta \quad 12 a$ मुनयो α, गुन (ण $C F$, cor. F^{2})यो, β ज्ये a, β,
com. T.-D. 121 पंचको β, को a कृताश्ये गवि a, कृता- (वे C, \sum) गवि $\beta \quad 12 c$ शिस्निपकृतचन्द्र० a 12d हिर्टि मियुने a

IV,7. in Aries 50 plus $1(=51), 5$ times $8(=40), 5^{2}(=25), 4,30$ plus $4(=34)$, 56,5 , and 0 (seconds).
IV,8. In Taurus (they are) $6,13,19,3$ times $8(=24)$, and 30 plus $0(=30)$, plus 5 $(=35)$, plus $9(=39)$, and plus $13(=43)$ minutes;
IV,9. in Taurus $40,3,7,50$ plus $1(=51), 13,12$, and 60 minus $14(=46)$, and minus $5(=55)$ seconds.
IV,10. The minutes of the Sines for the intervals are $3,6,9,12,13,3$ times $5(=15)$, twice $(=10)$, and 16 ; this sum is (added to the Sine for) the second sign (i.e., 1,$43 ; 55$). Then the seconds:
IV,11. 60 minus $18(=42)$, minus $3(=57)$. and minus $18(=42), 0,50$ minus 3 $(=47), 4,50$ minus $1(=49)$, and 5 . These are the differences between the Sines: IV,12. 7 in Aries, diminished by 1 in the last (Sine, thus 6); three sixes, two fives, and three fours in Taurus; twice each of three, two, one, and zero are the minutes in the Sines in Gemini.

मेषे विकलाध र्यनं सैकं व्येकेच्दियेखरं त्रिशत्र।
हाबिंशतिस्त्रवर्ग：〈पंयाराध्ध विषयस्ययुक्तम्\gg／／9३／／
खर〈मसुद्र〉 गुण〈द्विकृता：＞．．．．．．．．．．．．

मनुविषयनिधिरसा：स्युस्त्रिगुणा：मंचाएकं स्बरोपेतम／
समटरा नबपंचकं बोडरा चेति क्रमान्मिधुने＂१uell
जीवा व्यध्यह द्रानांश्या：साइ्रलिता टिनेशकाष्ठान्त：／
चन्द्रस्प स्व विच्चेपस्तटपक्रमो राशिपाटेय यः／／१घ ॥
लिसारातमशीतिं दरत्रिसंयुक्रामिच्दियमनूनाम्／
गति मन्तु वसुनिरैप＜त्रिगुषै：संयुतं च रातम् $\|99\|$
नबतिस्त्रयुता बहित्षत्बारिंशस्थिबाध मिसुनान्ते ।
मेष्षाटितो गत उदग्टच्चिणतो sटस्तुलाटिषु य $/ 19 \mathrm{c} /$

13 L सैक्यं（का F）β व्येकेन्द्रयस्व（स्व $B E$ ）रं a β ，com．T．－D． $13<$ द्विबिंय ${ }^{\circ}$ $a \beta$ ，com．T．－D． $14 \mathrm{c}-d^{\circ}$ यमनबकसमुद्रा $a \beta$ ind शिसिब्वर्गो：（गे B）$a \beta$ $15 c=$ बब（वom．B）पंचंक $\beta \quad 16 a$ क्या－（साC）र्ट्य सितांशा ：β ，हयार्व्वरातांशा： a 16 b सैका बहि टिनेश्रा० $a \beta 16 d$ बस्तदपक्रम $a, \beta \quad 17 b$ दर्यास्त्रष्ष（गBE）${ }^{\circ}$ a, β वुक्त（क A ）a $17 c$ गविसेमनुं $a \beta$ जि संयुनखयनं β
18 b after ०िथाइच a adds याम्योत्तरे कार्यें विषुवटिनसमध्य from 19 c － 20a；β adds यास्योत्नरे and then ouits $18 b$ मिभुनान्ते to $\Psi 9<$ तहुद्यकाले प्रतिनूं（मति E ）पत्र एक add．CEF अग्रो नास्ति add．β मिध्युतान्तरे a 18 c मेबाद्रनागतमुटं a

IV,13. In Aries the seconds are 50 plus $1(=51)$, minus $1(=49)$, minus $5(=45)$, and minus $11(=39), 30,22,3^{2}(=9)$, \langle and 55\rangle.

IV,14. \langle In Taurus they are 4$\rangle 0,\langle 2\rangle 3,\langle 4\rangle, 44,2\langle 2\rangle,\langle 5\rangle 9,34$, and $1\langle 1\rangle$.
IV,15. In Gemini they are, in order: 14 times $3(=42)$, 5 times $3(=15), 15$ times 3 $(=45), 6$ times $3(=18)$, 5 times 8 plus $7(=47), 17,9$ times $5(=45)$, and 16 .

IV,16. The Sine of the maximum declination (kāsṭhā) of the Sun is 50 minus $2(=48)$ parts an: 9 minutes. (As) there is a latitude of the Moon, (so) is there a declination (of the Sun; it is) for fourths of a sign:

IV,17. 180 minutes plus $10(=190)$, plus $3(=183)$, minus $5(=175)$, and minus 14 ($=166$); in Taurus 100 plus 14 times $3(=142)$, plus 11 times $3(=133)$, plus 7 times $3(=121)$, and plus 1 times $3(=103)$;
IV,18. 90,60 plus $3(=63)$, 40 plus $3(=43)$, and 11 at the end of Gemini. As (the Sun) proceeds from the beginning of Aries, it is to the north; in the (six signs) beginning with Libra, to the south.

रहुचतुर्बिस्तारे बृत्ते घायाप्रवेशनिर्गमनात्त !
अपरैन्द्रीटिक्सिद्जिर्येेच याम्योत्तरे कार्ये $/ / 9 \mathrm{e} / /$
विषुबहिनसममध्यचायानर्गात् सबेटकृतरूपात् /
मूलेन रानं विशद्विषुबच्छायाहतं हिन्यम्य $/ / 20 / /$
लब्दं विषुबज्नीवा चापरम्नोतो कचो डथवा यथेष्टटिने।
मेषाघपक्रमयुत्तुलाटिषु विवर्जित : स्वानः //29//
अयनोनमुताचज्या तत्त्रिज्याकृतिविशोषमूलेन /
हिन्या हाटयगुणिता लबहा माधयाहिकी हराया //22//
विषुणज्ज्यायामाध बर्गनिल्लेषमूलमबलम्बक :
क्रान्तिज्यात्रिज्याकृत्यन्तरान् पटटहि ट्निव्यास: $/ 12$ द/"
अजवृषमिधुनापक्रमजीवा: बड्घास्तु वेट्मुनिवसबः /

20-21 quoted by Utpala on BS 2(p. 62); 22 quoted by Utpale on BS 2 (p 63); 23 quoted by Utp-la on BS 2 (p.62).
$19 a$ संकु (कु D) घतुविस्तारे a 19b-c-fनर्गमनान्तरैरेद्री $^{\circ} a$, com.T.-D.
 20 c गते a 20 d हिध्चात्र Utpula 21 b डयैवैमिघटटिने Utpala
21dस्बोन्ब: a $22 a$ अपमोन्म० Utpala ब्युताच्चां a Utpala, com.T.-D.
22 b तात्रिज्याक्रति ${ }^{\circ} a$, त्रिज्यातत्कृति ${ }^{\circ}$ LIpala, com. T.-D. ॰मूला a
22 द घिन्याह प्रागुणितां Utpala 22 d मा याह्तकी a $23 a^{\circ}$ घरायामत्यार्द्ध०
a 236° मूलबलं $[ब]$ लंब : A, 0 मूलय तो लम्ब: $D 23 c-d \circ$ ज्याक्रांत्यंतरात्
a क्रान्तित्रिज्याकृत्योरत्तरपटं हिणुणं टिनव्यास: Utpala $24 b$ बह्या (घ्य्या D, com. to द्या D^{2}) स्तु a, com. T.-D. $24 c-d^{\circ}$ षट्काषाड्विकलायदिधिका a, com. T.-D.

IV,19. From the entrance and exit of a shadow into a circle whose diameter is four times (the length of) the gnomon is the attainment of the directions west and east; north and south are to be determined by means of barley-corn (figures).

IV,20. Multiply the equinoctial shadow by 120 and divide (the product) by the square-root of the square of the noon equinoctial shadow increased by 144 .

IV,21. The result is the Sine at the equinox; its arc is the terrestrial latitude. Or else, on any given day, (the Sun's coaltitude at noon) increased by the declination (of the Sun when it is) in Aries and so on, and decreased (by the declination) in Libra and so on, is one's terrestrial latitude.
IV,22. The Sine of terrestrial latitude, increased or decreased by the declination (of the Sun), is to be divided by the square-root of the difference between the squares of that (Sine so increased or diminished) and of the radius; the quotient, multiplied by 12 , is the noon shadow.

IV,23. The square-root of the difference between the squares of the Sine at the equinox (i.e., the Sine of terrestrial latitude) and of the radius is the Sine of terrestrial colatitude. The diameter of the day (-circle) is twice the square-root of the difference between the squares of the Sine of declination (of the Sun) and of the radius.
IV,24. The Sines of the declination (of the Sun at the ends) of Aries, Taurus, and Gemini are (respectively) 4 times $6(=24), 7$ times $6(=42)$, and 8 times $6(=48)$; they are to be increased by 3 times $8(=24), 15$, and 6 times $8(=48)$ minutes (respectively).

```
<पंचत्रिशात्रेच्यक्टकसरूपघृ〈〉तरसंयुतोग क्रमाहिशानी /
पंचाएकनिधिविकलाधिएको वृषान्त्यो टिनव्यास्सः!24॥
व्यासक्रान्तिज्याघी विषुबज्ज्या लम्बकयुपैर्यह्टता।
    तझापकलात्र्यंराच्धरस्बण्ड विनांडिका : स्पषा: |! 2k-\|!
    चरसण्डकपन्वांराज्याझमहर्बासमुद्रेत्र ख्वजि नै : /
    द्वि: कृत्वा तह्रात्रात् काचिज्याकृतियुता-मूलम् \(\|29\|\)
    तेन विलजेन् चितिज्यां व्यास्तार्धगुणायवासम ज्ञज्या।
    नवतेरनोनाया: क्रमरो ज्या लम्बको 2 वर्नि \(/ / x</ /\)
    थापक्रम्नजाकृतिविक्षेषमूलरगुणिताट्त〉 विस्तारात् !
    घ्नुव्यासहृताधां टिएघं राश्युट्यमविनाड्य: \(/ 12 \mathrm{e} / \|\)
    वसुसुनिपता व्येकं रातत्रयं त्रिद्विकाग्नयध्ञात् ।
    परतस्त एब वामा: षडुत्क्रमात्ते तुलायह रे // \(30 / /\)
27-28 quoted by Utpala on BS 2 (p.62); 30-31 quoted by Utpala on BS 2(p.63).
    \(25 a\) पंचत्रिंटात् suppl. T.-D. \(25 b^{\circ}\) हृताक्रमाद्विशाति as com. T.-D.
    25<-d विकलाधि को \(a\), com. T.-D. 25d वृषात्यौ \(a\), com. T.- D.
    26 b लं[ब] \(^{\circ} A\), लक० \(D\) ([ब] add. \(D^{2}\) ) \(27 b^{\circ}\) महससुद्रेत्र \(a\)
    \(27 c\) व्यावृद्दि (द्वि \(D\) ) कृत्वा नद्वन् \(a\) 27d ०युता-सुलं a \(28 a\) धितिज्यां \(a\),
    स्थितज्यां Utpale, cal. T.-D. 28 b व वात्त (E am. D, add. D \({ }^{2}\) ) पच्तज्या a
    \(28 c^{\circ}\) रन्चोसोनाया \(a \quad 29 a\) अपक्रम्न \(^{\circ} a \quad 29 a-b^{\circ}\) ज्याक्रतिबिऐषषमूल-
    विम्तरात् \(a\), com. T.-D. 29 द्युद्वास्हताचाप \(a\), com. T.-D.
```



```
    ग्नयझ्धां: Utpala, com. T.-D. 30 d बड्रक्रमास्ने नुताधर्द्रे \(a\)
```

IV,25. The diameters of the day-circles are in order 200 plus 35 ($=235$), 200 plus 3 times 8 (= 224), and 200 plus 18 plus 1 (= 219); (those for the ends of) Taurus and the last sign (Gemini) are increased by 5 times $8(=40)$ and 15 minutes.
IV,26. Multiply the Sine at the equinox (i.e., the Sine of terrestrial latitude) by the diameter and by the Sine of the declination (of the Sun); divide (the product) by the Sine of terrestrial colatitude and by the diameter of the day (-circle); a third of the minutes of the arc of that (Sine) is the accurate vināḍikās of ascensional difference.
IV,27. Multiply the diameter of the day (-circle) by the Sine of half of the ascensional difference and divide (the product) by 240 ; put this (earth-Sine) down twice. (Take) the square-root of the squares of this increased by the square of the Sine of the declination (of the Sun).

IV,28. Multiply the earth-Sine by the radius and divide by this; the result is the Sine of terrestrial latitude. The Sine of 90° diminished by the terrestrial latitude is the Sine of terrestrial colatitude.

IV,29. Multiply the diameter by the square-root of the difference between the squares of the Sines of the declinations (of the Sun) and (of the Sines of the ends of the several) signs and divide (the products) by the (respective) diameters of the day (-circles). The arc from this, multiplied by 10 , (equals) the vinādīs of rising of (each) of the signs.

IV,30. From Aries they are 278; 300 minus 1 (= 299); and 323; afterwards they are the reverse. These six in reverse order are in the half (of the zodiac) beginning with Libra.

चरकालटलन्वीणास्त्र्यस्त्रय: संयुता: प्रतीयैस्तै : /
उटयर्चतुन्यकालेन यान्ति तन्सम्नाधास्तम् // ३१ //
इस्तोत्तरगोलापक्रमांश्राकज्यां र्वयास्करव्यस्ताम् /
हृत्बाधजीवया नघापाटुद्येन नत्काल: $/ / ३ 2 \|$
तस्मिन् टिनकृत् कुरूते सम्नण्डलसंश्रयं टिनाध्रहै।
ताबस्थेषे परतो न तुलाटिसु वियने घैतत् $/ / 33 / /$
सजिनघी क्रान्तिज्या लम्बहृता चुबगुणा ट्रुटैघ्येह्धता।
तझापस्प रस्वांशः स्वकल: स्याधिनरतिोवृद्जा \{: /\|३४ \|
उत्तरगोले s क्रज्या काषान्तगुणा धुबज्यया यका।
ता: राश्कु लिसिकास्यास्तारिन: सम्नम्डलच्धाया // ३द//
सममण्डललेखासंप्रवेशवेलां करोति यो डर्कस्य /
तन्प्रत्ययं य जनयति जानाति स्न यास्करं स्मम्यक् //३हा/

32-33 quoted by Utpala on BS 2 (p.42); 35-36 quoted by Utpale on BS 2 (p. 43).
$31 a$ चरटलकालं Utpala, चरकालटरां${ }^{\circ} a$, cor. T.-D. $31 b$ म्रतीपैस्ते a 31d यंति तसमाधास्तान् $a \quad 32 b$ सनस्कराव्यस्तां a, बयास्कराययस्तां Utpala $32 c$ होतानजीवजा a 33 b०ंशया a टिनादे वा Utpala
 $34 b$ चुटैदर्या (घय D) हितात् (न् om. D) a, com. T.-D. $34 c$ तक्षापंश a, cor. T.-D. 34d मकलसदिनवृध्यूर्द: $a \quad 35 b$ काषांतरगुणा a 35 d सम्नण्डले घाया Utpala $36 a$ मंडललेषा० a $36 \mathrm{~L} \circ$ वेला: a करोतिर्यो कस्य a

IV,31. (The right ascensions of) three (signs) are diminished by half the times of the (local) ascensional difference, (those of the next) three are increased by these in reverse; in a time equal to that of the sign which is rising the seventh (sign) from it sets.

IV,32. Multiply the Sine of the given degrees of declination in the northern gola by 120 and divide (the product) by the Sine of terrestrial latitude. From the arc of that (Sine is known) the time (since Sun-) rise;

IV,33. in this (time), which is in the first half of day (-light), the Sun reaches the prime vertical; so much (is the time) on the other side (to the west) in the remainder (of daylight). This is known not (to apply when the Sun is) in the (six signs) beginning with Libra.
IV,34. Multiply the Sine of declination by 240 , divide (the product) by the Sine of colatitude, multiply (the quotient) by (the Sine of) the terrestrial latitude, and divide (the product) by the diameter of the day (-circle). A sixth of the arc from this (Sine) is all of a half of the increase of day (-light).

IV,35. (When the Sun is) in the northern gola, multiply the Sine of (the longitude of) the Sun by (the Sine of) its maximum declination (kāṣthānta) and divide (the product) by the Sine of terrestrial latitude. These are called "the minutes of the gnomon"; by means of them (is found) the shadow (when the Sun is) at the prime vertical.
IV,36. Whoever computes the time of the Sun's entrance into the prime vertical and produces confidence in that, he knows the Sun completely.

बर्षण यगणमको यदि युंके एंक तनो यधेषटिनै: /
अज्ञो s प्येबं गणयति किं 7 रबिं लोष्टरेखायि $: / / ३ 9 / /$
कृतटिग्नहणे बृत्ते रेखां पूर्वापरां यदा छाया।
प्रविर्याति सम्यक् रईं, समयमण्डलगस्तदा सूर्य: ॥३ट॥
इष्टक्तिज्तियंं व्यासरखोकलं लम्बयकमुष्णांशु: ।
समपूर्वापर ेखामतीत्य यात्यम्नमुट्यं वा /३e //
तेन हृता सार्कही क्रान्तिज्या लम्बको डस्य 〈योषापम् /
तेन चवतिर्बरहीना यच्हेषें ने डच्चयागा: स्यु: $\|४ ०\|$
तत्कालचरविनाडीद्विटरांयं हिषमजतुलायेषु।
बड्घीट्यो नाडीय यो जलात् संयोजयेखापि //४१ //
तज्ज्या स्थिनज्यया संयुता विस्सयोजिताखन्तुलावेषु।
अविंशोहनेन जीवा बड्झीनामेखे कर्तब्या $/ / 42 \|$

38 quoted by Utpala on BS 2 (p. 43); 41-44 quoted by Utpala on BS 2 (pp. 63-64).
$37 a^{\circ}$ म्रक्रो a, cor. T.-D. $37 b$ तयो a, com. T.-D. $38 a$ कृतटिग्नहणे a
38 c रांकु: 38 सममंडलगतस्तcा $a \quad 39 a^{\circ}$ ज्याझा a 39 व्यासकल $^{\circ} a$,
ब्यासशकल० ${ }^{\circ}$ T.D. लम्बकांशमुं a $39 d^{\circ}$ मती (ली D, cor. to ती D^{2})
न्पयात्यम्त ${ }^{\circ} a$, cor. T.-D. 40 a हता a, cor. T.-D. सार्ल (घु D ही a, corr.
T.-D. $40 b$ स्पसापं a, com. T.-D. 40 c -d 0 हीना सयेघत्ते बलागा: a, com.
T.-D. $41 a-b$ नाड़सटशांयां $a \quad 41 c$ बचायो a $42 a$ तज्या a $42 b$ विस्सयोजिताताव्चेषु $a \quad 42 c$ शीबा $a \quad 42 d$ घःी (घां A) नामेकर्न्तया a

IV,37. If the Sun traverses the zodiac in a year, how much (does it traverse) in any given (number of) days? How does even an ignorant fellow not compute (the longitude of) the Sun thus by means of rows of markers?

IV,38. When the shadow of the gnomon completely enters into the east-west line in a circle wherein the directions have been indicated, then the Sun is on the prime vertical.

IV,39. Multiply the radius by the Sine of the given declination and divide (the product) by the Sine of terrestrial colatitude; (the result is the Sine of amplitude). The Sun, having passed the east-west line by an equal (amount) sets or rises.
IV,40. Multiply the Sine of the declination by 120 and divide (the product) by that (Sine of amplitude); whatever is the (corresponding) arc of that (result) is the terrestrial colatitude. Whatever is the remainder after that (terrestrial colatitude) has been subtracted from 90 is the degrees of terrestrial latitude.
IV,41. (Put down) in two places a twentieth part of the vināḍis of ascensional difference for that time; (as the Sun is) in Aries and so on, or in Libra and so on, one should subtract (this) from, or add it to, the nādis multiplied by 6.
IV,42. The Sine of that (amount) is to be increased or diminished by the Sine of what has been put aside (as the Sun is) in Aries and so on, or in Libra and so on. The Sine (of the nādis) multiplied by 6 without any correction is to be found.

एबं कृत्बा हचाद् घुब्यास्पेनावल्लम्बकेनन।

तन्कृतिबिनाकृतानां स्वबेटसमुद्र्रीतर शमीनाम्य /
पट्मकंघं राक्षं शुलास्यलिसोद्धृतं शाया $/ /$ प४ //
शायाद्वादराकृत्योयोगान्मूलेन लम्बक शेने/
स्बस्बस्बधिमुनीन्टंत विभ्ज्य लब-ाा प्रथमजनीवा //४le//
तट्यदुकान्तिज्याश्री विषुनज्जया लम्बकोट्रुता स्थाप्या।
प्रथमज्या निक्केष्या मेष्षाले s यत्र संयुक्ता //४छ $/ /$
नत्थितजीवे शुणिते मनजिनैर्युब्यास्थाजिते थापे /
युनियुते इजतुलाटिषु बड्रुप्रता नांडिका लबका : //89//
षड्चे शथना चुमाने हिने सहाट्रौर्वमाध्यातैः:
धायाड़ुलैर्गतास्ता नाड्य: त्राक् पृष्ठत : रोषा: \|४ट॥

48-49 quoted by Utpala on BS 2 (p. 64).
$43 a$ कृधाa हथा a $43 \mathrm{c}-45 \mathrm{~b}$ om a $45 a-b$ suppl. T.-D.
45 cम्नरबब्बध्धमु ${ }^{\circ}$ a, com. T.-D. $45 \mathrm{c}-\mathrm{d}^{\circ}$ नींद्राधि ज्य a
46 a तव्युज्या ($-D$, ज्या add. D^{2}) कांत्रीज्याः्ची a, com. T.-D. $46 b$ विषुणज्या as com.T.-D. $46 c$ निस्सेषा $a, c o m . T .-D .46 d$ स्मेषाव्ये $a, c o r . T .-D$. नात्र a,
com. T.-D. $47 a$ नस्थितिजीने a, com. T.-D. 47b सजिने युय्यास्ष ${ }^{\circ} a$, com.
T.-D. $47 c$ पतुलाटिष्यु a, com. T.-D. $47 d$ बदुद्रुतो a, com. T.-D. $48 a$ बट्हो a डथ म्वयुमिते Utpala $48 b$ सहाट्रो निमध्याके a $48 c$ बरतास्था a 48d नाद्य: a प्रघतो a

IV,43. Having done thus, one should multiply (the Sine) by the diameter of the day (-circle) multiplied by the Sine of terrestrial colatitude, and divide (the product) by 28800 ; the result is called "the minutes of the gnomon" (i.e., the minutes of the Sun's altitude).
IV,44. Of 14400 diminished by the square of these (minutes) (take) the square-root; multiply (it) by 12 and divide (the product) by the minutes called "the digits of the gnomon" (i.e., by the minutes of the Sun's altitude); (the result is) the shadow.
IV,45. Take the square-root of the sum of the squares of the shadow and 12 and multiply it by the Sine of terrestrial colatitude; divide 172800 by the product; the quotient is the "first Sine".
IV,46. Multiply the Sine at the equinox (i.e., the Sine of terrestrial latitude) by the Sine of declination on that day, and divide (the product) by the Sine of terrestrial colatitude; put (the quotient) down (in two places). The "first Sine" is to be diminished (by this, if the Sun is) in Aries and so on, otherwise it is to be increased (by it).
IV,47. Multiply both, that (Sine) and the Sine which was put aside, by 240 and divide both (products) by the diameter of the day (-circle); the two (corresponding) arcs are to be added together or subtracted one from the other (as the Sun is) in Aries and so on, or in Libra and so on. The resulting (degrees) divided by 6 are nāḍikās.
IV,48. Or else multiply the length of daylight by 6 , and divide (the product) by the digits of the shadow increased by 12 and diminished by (the digits) of the noon (shadow). (The result is), in the east, the nādīs that have passed, in the west the remaining ones (that are to come).

शायार्की नाडीरिर्दिनमानं षड्घमुद्धरेत्तत्र।
लब्धं ढाटशहीनं मध्याहच्बायया सहितम्／／४е／।
टृष्टा नाड्यो घुनिो चन्द्रोट्यनाडिस्कोयुतििधीना：！
तायिस्तत्कलेन्दो नानोरिव चिन्तयेच्छायाम् $/ / \omega^{\circ} / /$
चरनाड्यस्टेक्रमरदिणनिधि ना घुव्यासापक्रमबिन्तेपम्／
अस्नमये पूर्बविधिए：रोषाणां सुक्कितधिन्त्यम्／／に9／／
हायार्क बर्गयोगारत्र पटूवियाज्याक्नज़ुरीणरो त्रिज्या।
बिषुवज्नीवागुणिता ल＜म्ब〉क तका नु सूर्याग्ना／／u2／／
काष्ठारहोताकेमोर्या लम्बकहृतया विहीनसंसुका／
सूर्याग्नाजनुलास्तै कर्णघी त्रिज्ययापह्टता \｜५३॥
लब्द तुुलानि कोटिस्तश्शायावर्गविबरमूनं 〈सत्〉／
स च बाहुर्टिग्नहपो सममिति कोट्या तु टेसमृजु $/ 4 \% / /$
$49 a$ नाiडियि．a $49 b$ बड्समुं a soa युनिरां a ，com．T．－D．
50 b° नाडियुतनिहिना a ，cnw．T．－D．Soc बस्तन्कालंटों० a ，cor．T．－D．
$51 a$ चरनाडीक्रम ${ }^{\circ} a \quad 51 b$ युव्यासान्यथमतिबिन्चेपं a
Sic अस्तमयो a，com．T．－D．प्यहबविधि：a $52 a$ योगा a ，com．T．－D．
$52 b$ पदे a ज्सुणा a $52 d$ लंकायका a, com．T．－D． $53 a$ काषे यार्क०
a，cor．T．－D．53b विधितसंयुका a ，cor．T．－D． $53 c$ सूर्याग्राचनुलाहतौ a ， com．T．－D． $54 a$ काटिं a ，cor．T．－D． $54 b$ यत् suppl．T．－D．
$54 c$ बाद（Eु D ）टिगहणे a ，com．T．－D． $54 d$ कोटा a ，corr．T．－D．
टेयमृण्ण as con．T．－D．

IV,49. Multiply the length of daylight by 6 , and divide (the product) by the nādís (which have passed); diminish the quotient by 12 and increase it by the (digits of the) noon shadow. (The result is) the shadow of the Sun.

IV,50. The observed nāḍīs are to be increased or decreased by the nāḍīkās of the rising of the Moon as it is day or night; by means of these one should find out the shadow of the Moon at that time as (one finds out that) of the Sun.
IV,51. By means of the rules (for computing) the nādis of ascensional difference and the declination (of the Sun, one should compute) the diameter of the day (-circle), the declination, and the latitude (of the Moon). The previous rules (apply also) for setting. For the rest (of the planets) it is to be thought out by reasoning.
IV,52. The radius multiplied by 12 is to be divided by the square-root of the sum of the squares of the shadow and of 12 ; (the quotient) is to be multiplied by the Sine at the equinox (i.e., the Sine of terrestrial latitude), and (the product) divided by the Sine of terrestrial colatitude; (the result) is the Sine of the amplitude of the Sun.

IV,53. Multiply (the Sine of) the maximum declination (of the Sun) by the Sine of the Sun's (longitude), and divide (the product) by the Sine of terrestrial colatitude; the Sine of the amplitude of the Sun is to be decreased or increased (by that amount, as the Sun is) in Aries and so on, or in Libra and so on. Multiply (the result) by the hypotenuse, and divide (the product) by the radius.
IV,54. The digits (thus) obtained are the koti; whatever is the square-root of the difference between the squares of that and of the shadow is the bāhu. In determining the directions, (the bāhu) is level (on the east-west line) and is to be given as forming a right angle with the koṭi.

घायास्ममरेखान्तुणिता त्रिज्या स्वकर्ण नकास्या: / एकत्वे s नरितैथ्या सूर्याग्ना संयुतायत्वे//फ.e// लम्बरंकोगुणता सा ₹्या काषामौर्या हतार्ता: स्यात्। सूर्योद्नवेन विधिना ग्नहास्ततो 5 से कीि कर्तव्या: //दरू// इति करणाह यायसतुर्य: //

55 c तिर (रom. A) तेष्या a 55 d सूर्यम्ना a, cor. T.-D. S6a लंबगुणिता a, com. T.-D. $56 b$ मनोर्के: a 56 ग्नहास्चतो a, com. T.-D.

IV,55. Multiply the radius by the distance between the shadow and the east-west line, and divide (the product) by its (i.e., the shadow's) hypotenuse. If (this and the koṭi are) in the same direction, their difference is to be taken; if in opposite directions, their sum. (The result) is the Sine of the amplitude of the Sun.
IV,56. Multiply this Sine by the Sine of the terrestrial colatitude, and divide (the product) by the Sine of maximum declination; (the quotient) is the Sun's (longitude). By the rules applying to the Sun the other planets are to be calculated.

Thus the fourth chapter, the Karana.

अयनान्तरसंयुकान्तूनगुष्येच्हयाङ्रू विविवरात् ।
मूलेनायनविबरे घिने बिन्चेपसंगुणने $/ /$ a $/$
फलमिन्द्रक बिरोषाच्धोह यं त्वयनानुकुलविच्चिसे।
तद्धत्यासे टेयं विपरीतं पूर्वस्चन्धायाम् $/ / 2 / /$
टिनकृत्समम्य बनान्तेनोटयनाडिकाह्यं यटि वा।
वियति विमले तटेन्टोर्लोकस्यालोकमायाति $\|$ ह $\|$
हिगुणन्ने निक्यंशा: शहड्ञ सुट्तुरंशुडुगणाहि पतने ।
टेसं य सुज्ञात्तथ्धौन्क्यं कर्गेहिष्टांश: $\|$ ४ $/$
असयनान्तर विच्चेपावेकान्यत्वे युतोनितौ कोटि:।
कर्णों रबीन्तुबिबरं तन्कृतिबिबरात् परं बाहु: \|ul/
सबिता यतः राशाक्रात् कोट्या परिकल्पितस्तन :) कोटि: /
टेयांराकाजुलसमा चुजकणौं चाझुलैरेव $/ / \varepsilon_{2} / /$

1-10 quoted by iJtpala on BS 4,15
$1 a$ अयनंतर $^{\circ} a$, उपमान्तर० Utpala $1 b^{\circ}$ तदूनयुकास्रांक a

- बिबराचट a, विबरे Utpala, com. T.-D. IC मूलेन्नापम्नबिबरे Utpala
$2 a$ फलसिध्वर्क० a $2 b$ ययनानु० \sim, त्वपमानु० Utpala ०निच्चिसो a

Utpala निष्यंश: a lltpala 4 oमुट्संसुडुगुणाधियति : a
4d कर्णाद्धिं a, कर्णाद्धिं Utpala ०्ट्कांशम्य Utpala Saअनांतर० a,
अपमान्तर० Utpala $5 b^{\circ}$ वैकानत्बे a, •बैकान्यन्ने Utpala, cor. T. -D.
यातोनिता a नdतत्रति a बाहो: $6 b$ कोज्या परिकल्पितकोटि:
a

Chapter V

V,1. Multiply the difference of (the longitudes of) the Sun and Moon increased by the difference of their declinations (corresponding to this elongation), by the (first difference) diminished by that (second difference); by the square-root (of the product) divide the difference of their declinations, multiplied by (the Moon's) latitude.
$\mathbf{V , 2}$. The result is to be deducted from the difference between the Sun and Moon if the (Moon's) latitude is in the same sense as its declination; if it is in the opposite sense, it is to be added. In the case of the eastern twilight, (the procedure) is reversed.

V,3. If that (result) has two nāḍikās of rising-(to be taken) from the sign that is seventh from the Sun-then, if the sky is clear, visibility of the Moon comes to the world (of men).
$\mathbf{V}, 4$. In the diameter of the Moon are 15 parts; its horn is elevated. A twelfth of the hypotenuse is the illuminated portion; it is laid off from the bhuja.

V,5. The difference of the declinations it to be added to or subtracted from the (Moon's) latitude as they are in the same or in the opposite directions; (the result is) the koṭi. The hypotenuse is the difference of (the longitudes of) the Sun and Moon. The squareroot of the difference between the squares of these (i.e., of the koti and of the hypotenuse) is the bāhu.

V,6. On whatever side the Sun is from the Moon, on that side lies the koṭi. The koṭi is laid off with parts equal to digits; the bhuja and the hypotenuse are also (laid off) with digits.

रशिम्यात् त्राक कर्णः कोटितो इतो चुज्ञः राशाईगतः।

याम्योट ग्नजे पाहिषुणच्धायसाइचादूवि नकारा :
उट्ये शशिान्नो बृद्जि: च्यो विपर्यस्तम्त्तमये \|C\|
एवं व्यक्काहस्द्रोय्येनोना राशयः षड़ि का वा/
नहुट्यकालेन टिवा निरि य राशाइोट्यो बाच्य: $/ / \mathrm{e} / /$ कृत्बैवं घयवृड्डिं व्यक्कं चन्द्रं विशोघय चक्राह्रात् । रोषोट्यकालसमे निति टिबसे डस्तं राशी याति //90// इति राशिटर्रोनम्य ॥

Ta प्राकर्ण: a 7_{c} नाम: a $7 d$ यौन्ब्यं a Utpala मध्यातटल्तुसूंन्ं a मध्याद्जनुम्तत्र Utpala $8 b$ "हिष्युज्याघाद्र विस्तरावांता: a, - द्विबत्याधाद्रविथिरबासांश: Utpala $8 d$ विपर्यस्तमय एबम् Utpala a_{a-b} वर्काधाध्चेनोना a, व्यक्राघन्द्रावयूना Utpala
$a b$ बडधिकाया $a \quad a c$ नहुट्याकालेन $a \quad \beta$ begne वन टिबा $10 a$ तथै (चै F, त्र C) वं β चयनृद्धी Utpala 10 मेखो (णा C) ट्यं० $a \beta$ 108 रा(घ्वा E) शिटिबसा(घचा F) रें राशि (शी a Utpala) मध्ये a β Utpala, cour. T.-D. col. इति om. a

V,7. First (is drawn) the hypotenuse from the center of the Moon, then the koti; then the bhuja goes toward the (center of the) Moon. On the circumference (of the Moon) is the akṣa; after that, from the midpoint of the illuminated portion (i.e., from the akṣa) (is laid off) the sūtra.
V,8. Multiply the equinoctial shadow by the latitude to the south or north; divide the resulting degrees by 12 . (The result) is positive or negative at the rising of the Moon, the opposite at its setting.
V,9. The signs (resulting) from the subtraction of the Sun from the Moon (or these) increased by 6 (signs) are to be diminished by this. The rising of the Moon by day or at night is to be described (as occurring) in the rising-time of these (signs).
$\mathbf{V}, 10$. Making it thus negative or positive, subtract the Sun from the Moon and subtract (the remainder) from 180°; the Moon sets at night or by day in a time equal to the rising-time of the remainder.

Thus the Visibility of the Moon.

चैष्यास्तिथिनाइ्यो 5 कोट्याअक्राह र्ोनेन्दुरवि<वियवरात् /
पाण्डवधाध रोध्या: स यवति तत्कालरारी लिस्: : //9,/
राहो: सषट्कृतिकलां हित्वांयां नच्दयाइ्क विबरांतौ : /
गहणं त्रयोटशान्तः पंचट्यान्तस्तमस्तस्य \|2 \|
बिचेपकलाकृतिवर्जितस्य पंचोनषहिवर्गस्य /
मूल्ं हिगुण तिथिवह्धि जज्य कालः स्थिते र्जबति $\|z\|$
राशितिमिरविबर नागैस्त्रयोटयोना: राराहता: न्वेप्या: /
स्थित्या निनाडिकास्ता राहावहिके sयथा हानि: \|४ \|
किं त्वन्नरांरहीनै: पंचयि सूनाहता दरा कृतघा: /
तत्पट्मेकाधिघंधं पंचांशो डस्माहिम्मरकला: //u //
स्थितिटलवियर्टटटलयोर्बिरोषकाले इसकलं तमो इत्तीन्द्यम् /
प्रग्नहमोने राशिराहुविबरयागैद्य टिएवाच्या $\|E\| /$
$1 b s$ को (डके β) ट (टे β) या संदं (द, $B E$) स (य $B E$, घ्य. F) मेन्टु (टु $a F$, टू C) र विबरात्त् (चृa) $a \beta \quad \mathrm{c}$ व (पं D) शुद्रवाअ a, स्थु (स्यु $C E$)द (一द $B E$) बाहव: (बr: E,
om. B) $\beta \quad$ Id ${ }^{\circ}$ राशि a β, com. T.-D. after शरारी a adds टिबसार्द्रे
$2 a$ सषट्ततिं $^{\circ} \beta \quad 2 b$ हिवा (चा CF) यां β तष्ठराद्धं, β
2d पंचदशान्तममस्तस्य β उa कलाक्रति ${ }^{\circ} a \quad 3 c$ मूलो a, β, com. T.-D.
$5 a$ चं (चC) तरायहीन: $\beta \quad 5 b$ पंचायी (β थCC) रू (रु $C E$)ना $\pi^{\circ} \beta$
दरा a, द β क्रतध्या: $a \quad$ Sced ०मेकाधि (fिBE)-(-om.C) पंचांयो β
$6 a$ स्थिटल $^{\circ} a 6 b$ र्विरोषको (का β) मे $a \beta$ सकलीमतीत्तरं (त्रीं om. β)
दुं (टु: $B E$, टं F) $a, \beta \quad 6 c$ प्रग्रहण (T om. $F)^{\circ} \beta$ मोच्व a, मान β, cor.
T.-D.

Chapter VI

VI,1. The lapsed nādīs of the (current) tithi at sunrise are to be subtracted from (i.e., diminished by) five times the difference between (the longitude of) the Sun and (that of) the Moon diminished by 180°; the Moon at that time is obscured.

VI,2. Put down the degree of the ascending node increased by 36 (or by 26 ?) minutes. (Operate) with the degrees of the difference between this and (the longitude of) the Moon; if they are within 13°, there is an eclipse, and if within 15°, a darkening of it (the Moon).
VI,3. Subtract the square of the minutes of (the Moon's) latitude from the square of 55 ; double the square-root (of the remainder). From dividing this up as (is done) with a tithi there results the time of the duration (of the eclipse).

VI,4. Subtract the degrees of the difference between (the longitudes of) the Moon and the node from 13° and multiply (the result) by 5 . The (resulting) nāḍikās are to be added to the duration of the eclipse if the ascending node is greater (in longitude), otherwise subtracted.

VI,5. Multiply 10 diminished by (the remainder from) 5 diminished by the degrees of difference (between the Moon and the node) by that remainder, and multiply (the product) by 4; multiply the square-root of that (product) by 21. A fifth part of that (product) is the minutes of the totality of the eclipse.

VI,6. In a time equal to the difference between half the duration and half the totality the darkness eats the Moon, but not entirely. The directions of first contact and last contact are to be determined by means of the degrees of difference between (the longitudes) of the Moon and the node.

विच्चेपविपर्यासम्तुरीय थागे हृते त्रयोटशाधा।
परिघ तौ प्रास्त्रयृतीच्टोर्ग्रहणा 2ा <तद्येकेत् पर्व // $9 / /$
राशिपरिधिदलाध दे खेन्द्वत्तर ागसकुणे चाचे /
सस्बरूपाष्टहृते प्राग्वलनं वारं परे सब्यम् $\|\subset\|$
निथ्यन्ते ग्नहमध्यं प्राक् परतः स्थितिटलेन चावन्तौ।
रककपिलौ च वर्णा वुचाध:स्थे परे Pितराम्प्याल/।
सर्बग्रासिन्येंब वर्णविशोषं बटे नियानाये।
उट्यास्तमये धूम्नं सण्डग्नहणे सलिल< \Rightarrow ाम्यम् $1 / 70 /$
राहु मुस्नोनचक्र त्रियमह्विगुणं शशिरहीनोसंयुक्तम् /
अभिन्क्नेशो डयमुत्ञः क्रियादि: कन्यान्तगो नीचः //व9//
समद्याएत्रिंरान्तहुयलितायितेन सूत्रेण /
रशिराहुस्थितिवृत्तान्येकस्थानि वा संलेस्य $\|92\|$

9-10 quoted by Utpala on BS 5,18.
$7 a-b$ विपर्यासां (नं D) नरीया नागे $a \beta \quad 7 b$ क्रते a, तने β
य (OM.F)योटराधा (घ्न D) $a \beta$, com. T.-D. $T \subset$ परिघमै a प्रास्त्रानृतोंटो $a B C$
 com. T.-D. 8 वाचे $a \beta$, com. T.-D. $\delta<$ स्वस्बस्पाष्ट्रते β म्राग्बलनT $\alpha \beta$, com.T.-D. $8 d$ युते a, युते β, com. T.-D. $9 \mathrm{om} . a \beta 10 a$ पर्बग्रासिब्ये (e्ये C) वं $\beta \quad 106$ वेटच चिशानाथे β 10c उद्यास्तगांसधूम्र्र $a \beta$ 10d after सण्डग्रहृण a adds च सलिलायं $a \beta$ llaराहुमुखोनं चक्रं $a \beta$
 IId नीय: $\beta \quad 12 a$ समत्त्शाष्टा ${ }^{\circ} a \beta$, com. T.-D. $12 a-b$ त्रिंशन (त om.C) द्वस्य ${ }^{\circ} \beta$ $12 b \circ$ लिमामतेन a $12<$ राशिना (न F) वहुस्थिति ${ }^{\circ} a \beta$, com. T.-D.

VI,7. The direction of (first contact in) the eclipse is opposite to (the direction of) the (Moon's) latitude, on a quadrant of the circumference of the Moon, beginning from the east (-point), divided 13 times. One should say that this is the parvan (i.e., the point of contact).
VI,8. Multiply a quadrant of the Moon (i.e., 90°) by the terrestrial latitude and multiply (the product) by the degrees of difference between (the longitudes of) the (mid)heaven and the Moon; divide (the product) by 8100. The (resulting) deflection is to the north (if the Moon is) in the east, to the south (if the Moon is) in the west.
VI,9. The middle of the eclipse is at the end of the tithi; (the times of) its beginning and end, to the east and to the west, (are determined) by half its duration. Blood-red (rakta) and reddish-brown (monkey-colored: kapilla) are the colors when (the impact is) respectively up and down, especially in the west.
VI,10. One should say that there is a distinctive color (or: a diversity of colors) in the Moon when it is totally eclipsed. It is smoke-colored (dhūmra) (when the eclipse occurs while the Moon is) at the ascendent or at the descendent; it is cloud-colored if the eclipse is partial.
VI,11. (The longitude of) the ascending node, (or) 360° diminished by (the longitude of) the ascending node, [multiplied by 223,] is diminished or increased by (the longitude of) the Moon; the result is (the direction of) impact (of the eclipse). It is high (if the Moon is) at the beginning of Aries, low if it is at the end of Virgo.
VI,12. Draw the circles (representing) the Moon, the shadow, and the (maximum) duration of the eclipse, (all) having one center, by means of a string measuring (respectively) 17,38 , and their sum (55) in minutes.

प्रोतायासेशकल कात्तोपूर्वापरसोध पार्थ्थयोखायि।
आकामिन्यो रेख्वास्तयोटरा समान्तरा: कार्या: //93// चन्द््शेच्यकमेत धास्यागम्यं समासतो S निहितम् / ग्रास्विर्टर्थितयः संस्थानेनात्रा टृस्सन्ते $/ / 9 ४ / /$ स्वे नूहायामिन्चु: स्पृरास्योतः स्पृथ्यते न पध्धाह:/
यानुग्नहे S कमिन्तो: प्राक्त्रग्नहणं रवेर्नान: //96 /"
चन्द्नहण्ण षष्ठो 5 घयायः //
is quoted by Utpala on BS 5, 12.
$13 a$ त्रोकायांसकलंका a, प्रोकायोंसवूलंका $\beta 13 b$ पूर्वापयोस a

पश्यो्दू Utpala 15 c यागनुग्रहे a

VI,13. In the two sides to the east and west of the afore-mentioned radii are to be drawn thirteen long lines having equal intervals (between them).
VI,14. This projection of the Moon, which is to be approached with a commentary, has been summarily set forth; in it are seen, by means of the representation, the first contact, totality, and duration of the eclipse.

VI,15. In its own (eclipse) the moon touches the shadow of the earth; therefore its western half is not touched. In an eclipse of the Sun, (the Moon touches) the Sun; (therefore) the first contact of the Moon is in the east, but not that for the Sun.

The sixth chapter: the Eclipse of the Moon.

टिनमध्यमंप्रासा याबत्यो नाडिका ब्यतीता वा /
ताम्नः बड्डुणिय्यो ज्या त्रिशांश्नियेनाम: //१//
पंचलास्त्रिम माता 〈नेपो〉 s ने मुसमुच्वयों र्नर्ण : /
नदाशिचरणायनगुणं घनमृणं नाइ्यो द्विकवियका: //2//
उटलयने पूर्वाधे धनमृणं टनिणे प्राच्याम् /
पसाट्रंनं तु याम्य उट्गृणं वामतः पुच्हे //३//
टिनयातरोषनाड्यन्धन्द्रायनसझुणास्त्बरीतिहृता: /
मेषतुलाध्यृण घनं बिपरीतं वामतः पुच्छे //४//
राहो: सबट्कृतिकलां हित्वांरां तथूराक्र निबरांतौ: /
ग्रहणं त्रयोटरान्तः राशानो आनोस्तथाष्टान्तः //ul/
नहर्गमपास्पेन्टोर्नवर्कुपाद्रवे: कृतरसाध /
तन्गूलं माटोनं स्थितिकालधन्द्र थान्बोध्घ $/ / \varepsilon \|$
पौनियसिद्जन्ने रबिग्नहणं सतम्नो डह्याय: //

1 equals 이 9. 5a-c equal II $2 a-c$.
$1 b$ यावन्त्यो β वत (न् $B, त ् त E$, तन् C) $\alpha \beta$, corr. T.-D. ib न्यास्त्रिरांशस्तिथि
 दन्ना-मुस्न ${ }^{\circ} a \beta \quad 2 b^{\circ}$ पुद्रयोर्द्वर्मे a, पुष्योर्द्रन्मे $\beta 2=$ तन्तराशि ${ }^{\circ} a$, तत् राश्रि० β 2dzनमृणना (ना β) ड्यो $a \beta$ उbघनं अण्ण $a C F$ टिणे a, टन्बिणं β, com. T.-D. $3 \mathrm{c-d}$ याम्ये टगृषं a, याम्मे टृ (टC) गुगृणं β 3d पुeे β $4 a-b \cdot$ रोषं नाड्यक्द्रानय (ब C) $=^{\circ} \dot{\beta} \quad 4 b{ }^{\circ}$ सुुणास्त्रशीति $a, 0$ सभुणाया(स्ब $C F$) रीति ${ }^{\circ} \beta$, com. T.-D. कृता : C, ${ }^{\circ}$ चता: $E,-$ ता: F पc रोषत्तुलाटि अहणधनं o β $5 a$-कृतिकिलां a, हकृतिकला $\beta \quad 5 b$ हित्वासं as हिचास्व β, com. T.-D.
$5 d$ स्तथाषीन: $\beta \quad 6 a-b$ तहर्गसमासेन्टोच्तव (च β) र्तुरूपान्नेे $a \beta$, com. T. $-D$.
$6 b$ षतरसा (स EF) प्रु $a \beta$ 6d यानोध a $B E, \circ$ थान्योस C

Chapter VII

VII,1. As many as are the nādikās till noon is attained or that have passed (since noon), multiply them by 6 and (take) the Sine (of the product); a thirtieth part (of the Sine) is called the "displacement of the tithi" (parallax in longitude).
VII,2. Multiply the nāḍis by 5 and divide (the product) by 23 ; divide (again) by 2 . The lunar latitude is added to the terrestrial latitude at the ascending node (i.e., if the latitude is northern), subtracted from it at the descending node (i.e., if the latitude is southern). Add or subtract this (sum or difference) to the declination of a fourth of the zodiacal signs (i.e., of the nonagesimal). (Take the Sine of this and) multiply it (by the amount found at the beginning of the verse).
VII,3. In the northern ayana it is positive in the east, in the southern (ayana) negative in the east; in the southern ayana it is positive in the west, in the northern negative. (The signs are) reversed at the descending node.
VII,4. Multiply the nādis that have passed or that yet remain in the day by the declination of the Moon and divide (the product) by 80 ; (the result) is negative in Aries and so on, positive in Libra and so on. (The signs are) reversed at the descending node.

VII,5. Put down the degree of the ascending node increased by 36 (or by 26 ?) minutes. (Operate) with the degrees of difference between this and (the longitude of) the Moon; if they are within 13°, there is an eclipse of the Moon, and if within 8°, an eclipse of the Sun.

VII,6. For the Moon, deduct the square of its (distance from the node) from 169 ; for the Sun, deduct the square of its (distance from the node) from 64. The squareroots of these (differences), diminished by their fourths, are the times of duration of their eclipses for the Moon and Sun.

The seventh chapter: the Eclipse of the Sun in the Pauliśasiddhānta.

रोमकसूर्यों व्युगणात् कतिधिद्चात् पंचकर्तुपरिहीणात् /
समाष्टकसास्तकृतेन्द्रयो द्षतान्यध्यम: क्रमशः ://१//
रविशशिनो: स्फुटकरणं स्बकेन्द्र-बनाह स्ममिते: स्वण्डै : /
तत्क्रमरान्य पुनस्तैर्भिभुनदनं रोध्यते 5 र्कस्य $/ / 2 / /$
निधिमनुटराकृत्वहिता रसमनुरबितहीना च बिंयािर्हिता।
धृतिनिषयोना द्विटराहिद्धृतिष्षु वृट्रि: कला बिकला: //३//
सर्बरूपाष्टगुणघात् कृताषनबकैकवर्जिताट् चुगणात् /
त्रिबिषयाई स्वकृता शापरिलक्याय यरीतांश्यु: // y //
शून्यैकैका यस्तान्वरून्यर साच्विताहिनसमूहात् /
रूपत्रिस्वगुण लक्तात् केन्दं राशिनो sस्तगमवन्त्याम् //u//
मनु नबयमसहितों डरो वसुहोत्रा वर्जितो घृतिकृत्च।
विषयकृतिरषिषट्कं चबतिहींन <हि>तं चन्टेण // ह//

1 quoted by Utpala on BS $2(p .41)$.
la रोमसूया (यो D) a 16° परिही (हि C)णान्न (न्न E) a β, com. T.-D.

महयमा: $a \beta$, cor. T.-D. क्रमश: $a \beta$, सूर्य: Utpala $2 a$ स्फुरठकरणं β $2 b$ स्बकेन्टुं $a \beta$, सरेन्टुं Diksh.t, com. T.-D. $2 d$ क(बC) स्य (स्थ C) β $3 b$ रसमनुहीनायविंयति ही (ही β) ना $a \beta$ 3d व्धृतिष्ट β कला द्विरकि(कE)ला $a \beta$, कलाद्धिरकिला Dikshit, com. T.-D. $4 a^{\circ}$ रूपाष्टगुणाष्टघात् (न् om. C) a β, com. T.-D. $4 b$ क्र (क्रा F) ताष्${ }^{\circ}$ a β, cor. T.-D.

- वर्जिता (ता om. β) घुगणात् $a \beta$, com. T.-D. $4 c$ त्रिविषये च क्रकृतां 0β, corr. Dikshit $4 d^{\circ}$ परिशुद्जान्मध्य ${ }^{\circ} a \beta$ ${ }^{\circ}$ शीतांशो: $a \beta$, com. T.-D.
$5 a$ गून्यैकैका-यस्ता ${ }^{\circ} a \beta$, com. T.-D. $5 d$ म्तगमबयां a, स्तगमबट (टع EF) गाम् β, cor. T.-D. $6 a-b$ स्सहितांशौ बसुहोता वर्जितौ धृतिकृतौ च $a \beta$, com. T.-D.

Chapter VIII

VIII,1. Multiply the ahargana by 150 , subtract 65 (from the product), and divide (the remainder) by 54787 in order; from this (is obtained) the mean (longitude of the) Sun (according to) the Romaka.

VIII,2. The calculation of the true longitudes of the Sun and the Moon are by means of segments measured in halves of zodiacal signs of their anomalies, (both) in direct order of these and in reverse. A half of Gemini (i.e., 75°) is subtracted from (the mean longitude of) the Sun.
VIII,3. The minutes are 20 plus 15 (=35), plus $14(=34)$, plus $10(=30)$, plus 4 (=24), minus $6(=14)$, and minus $14(=6)$; the seconds are minus 18 , minus 5 , plus 2, plus 10 , plus 16 , and plus 18 .

VIII,4. Multiply the ahargaṇa by 38 100, subtract 1984 (from the product), and divide (the result) by 1040953 ; from this (is obtained) the mean (longitude of the) Moon.

VIII,5. Multiply the ahargana by 110 , add 609 (to the product), and divide (the sum) by 3031 ; from this (is obtained) the anomaly of the Moon at sunset at Avanti.

VIII,6. A degree plus $14\left(=1 ; 14^{\circ}\right)$, $11\left(=1 ; 11^{\circ}\right)$, and $2\left(=1 ; 2^{\circ}\right) ; 4$ times 18 minus 8 times $3\left(=0 ; 48^{\circ}\right) ; 5^{2}\left(=0 ; 25^{\circ}\right)$; and 6 times 16 minus $90\left(=0 ; 6^{\circ}\right)$; (these are) used with the Moon.

सनबनगा: राशियुकि: कृतबसुमुनुय: राशाझकेन्द्रस्य / -
यानस्फुटान्तरे टिबस्चुक्तिरागामिकी औैरी $/ / 9 / /$
ज्यक्टकगुणने टघाद्रत्तुयमषट्रूपंचकान् राहो : /
2 वबरूपागच्यहिहृने क्रमाज्डबात् सोच्यते बकत्रम् //ट//
दिनमहयमसंप्रासा यावत्यो नांडिका व्यतीता वा/
ताय्यः ष्बुुणनायो ज्या त्रिंशांथस्तिथेर्नाम: $/ / \mathrm{e} / /$
उट्यात् प्रयृति च नाड्यो या: स्सु: प्राग्लग्नमानयेत्तायि: /
तस्मान्तु नबसमेताटपक्रमांशा विनिनिधन्त्या : $/ / 9 ० / /$
लग्नासुरविऐवोरज्यां हिनाणां सरसासामकक्रमांशात्र /
नहाधिग्यत्यासे विचेपैक्ये तयोर्योग: //११ //
उत्तरमन्वाच्धुड्रं याम्यं सांचं च टनिणं विखात् /
उत्तरमन्बाधटहि कमुतरमेंबं विजानीयात् //१२//

9-18 quoted by Utpala on BS 5, 18; 9 equals VII 1.
$7 b$ क्रते $^{\circ} a$, न(ल om. C) त्त (नृ C) β, com. T.-D. $7 d^{\circ}$ नुति आगायिकी $a \beta$, com. T.-D. 8 a त्र्य (त्य am. E, add E^{2}) एगुणिते (2tBE) β 8b पंचकानाहो:
a $8 d$ क्रमा (मान् $(F) a \beta$, com. T.-D. झसांत्तोव्यते a, टु (डCF) खां (सो F) तोच्यते β वकत्रां a $a b$ या (त्या C)यत्या β टिनाटिका a
αc बडुुणितायो $a \beta \quad$ ad न्तिधिर्ना (नी D, ना D^{2}) म a β 10 a व a 106 पु: प्रा (का C) लग्नमानये (वे C)तारि: $\beta \quad 100$ नबम (मam. E, add. E^{2})
मेता ${ }^{\circ} a \beta \quad 10 d^{\circ}$ क्रमांशान् Utpale विनिधित्या a, द्विनिधित्य β, विनिध्रित्य
Utpala, com. T.-D. lla बग्रासुरविरज्यां a, लग्नासु (स्न C)रविरच्यां β, लग्नत्र्यगु विबरज्यां Utpala $11 b$ मवसांसम्नंतुयमयरान्- a, या (यर F, सर C) सांस (रु C) संपुनय (य om. C) ममरान् β, वरसांशसंमितामपमात् Utpala lc जहाटिग्य (ग्वC) त्यासौ $a \beta$ IId बित्तैयैके $a \beta \quad 12 b$ यटचि (टीव्व C) वं $\beta \quad 12 c$ उत्तमना० β

VIII,7. The daily progress (bhukti) of the Moon is 790 (minutes), (that) of the Moon's anomaly 784. In the difference between the past (and present) true longitudes (are found) the day's bhukti (and that) for the coming night.
VIII,8. Multiply (the ahargaṇa) by 24 , add (to the product) 56266 , and divide (the sum) by 163111 ; the (result, counted) in (reverse) order from Pisces, is called "the face of Rāhu" (i.e., the ascending node).

VIII,9. As many as are the nādikās till noon is attained or that have passed (since noon), multiply them by 6 and (take) the Sine (of the product); a thirtieth part (of the Sine) is the deplacement of the tithi (i.e., the parallax in longitude).
VIII,10. By means of those nādīs which (have elapsed) since sunrise one should calculate the ascendant; from this increased by 9 (zodiacal signs) the degrees of declination are to be determined.
VIII,11. Multiply the Sine of the difference between the (madhya)lagna (the nonagesimal) and the node by 2 and divide (the product) by 60 ; one should subtract (the result) from the degrees of declination if the directions are opposite, add them together if the latitude (and declination) are in one direction.

VIII,12. If (the result) is northern and is subtracted from the terrestrial latitude or if it is southern and is added to it, one should know that (the result) is southern; if it is northern and is greater than the terrestrial latitude, one should know (the result) is northern.

तज्ज्याघीं राशिएयुक छृत्वा घृतिरि: राते: स्कुटाबनति : /
मध्यममानं त्रिंराद्नानो: शशिनचतुस्त्रिंशत्त //9३//
समलिमराहुबिबरज्या-यस्ता मूर्घना चबहृता च/
अवनत्या युनुविल्लेषिता घ टिक्रसाम्यवैलोम्ये //१४ //
मध्यममानार्यस्ता स्फुट्नुत्तिर्मध्युक्ति क्ता च/
यवति कलापरिमाणं तत्कालीनं रविहिमांचो: //qu//
अबनतिबर्गं जहाद्रवीन्टुपरिमाणयोगदलवर्गात् /
त-मूलान्तु दि-ुणास्तिधि चुकबटाटिरोत् काल्मम् $19 \mathrm{\varepsilon} /$
रनिश्रिमानसुतिदलादबनतिहीनाद्रवन्ति या लिता: /
तान्यझुलानि बिन्याद्रानो रहचन्तानि चन्द्रमसा $/ / 99 / /$
अर्थेनालिख्य रविं दत्वाबनतिं यथाटिरां मध्यात्/
अवनत्यन्ताधन्द्रं बिलिसेद्रासार्थम हैन //qc//
इति रोमकसिद्यान्ते s कर्नहणमषमो s घ्यायः //
$13 a$ तज्याघीं (छी β) $a \beta 13$ हुत्वा (चा F) β स्मृतानवरि: α
$13 c-d$ त्रिशन्टानो: $\beta \quad 13 d \circ$ स्त्रंशान्र $a \quad 14 a-b$ ममलितादुविबर्यान्यस्ता a,
सम्नलिति ($A E, F+E^{2}$) ता (ता om. $E, a d d . E^{2}$) द्रविबरज्यान्यक्ता $\beta \quad 14 b$ चबदृ ($\xi E F$)

बिबार्य β, युनिबन्मेषितास a 14 टिक्साम्ये $a \beta 15 a$ मध्यमभा (मा $E F$) ना (ताE)
यस्ता $a \beta$ 15b सुट (टे E) चुनित (चुकि $\mathrm{om} . \mathrm{BE}$) मध्यमय नुक्ति त्रा $a \beta$
$15 c$ कलापपरियाणं $\alpha \beta$ isd हिमांच्यो (सो om. $B C$) यो: $\beta \quad 16 a \circ$ वर्ग्रं a
$16 b^{\circ}$ द्रबिन्टुं $a C F$ व्वग्रति $\beta \quad 16 c$ तन्युलान्तु $a \quad 16 \mathrm{c}-\mathrm{d}$ हिगुणा तिधि० β
$17 b$ •ट्रवति $a \beta$ 17d "द्वानोशन्चानि $a C$ चंद्रमद (द, om. A; ", lleg'ble" written above
it by D^{2}) मस्ता (स्म D, स्स and then प्स D^{2}) a $18 b$ दत्वा (त्राC, घा F) चवतिं a β 18 c अवनत्यां (त्या β) नखंट्रं $a \beta$ 18d विलिखेत् (न F, चु E) ग्रासा ${ }^{\circ} \beta$ col. इति om. a रोमफसिद्धान्ते a

VIII,13. Multiply the velocity (bhukti) of the Moon by the Sine of that (result) and divide (the product) by 1800 ; (there results) the accurate avanati. The mean measure (of the diameter) of the Sun is 30 (minutes), (that) of the Moon 34.
VIII,14. Multiply the Sine of the difference between the longitude of the Moon at conjunction (samalipta) and the node by 21 and divide (the product) by 9 ; (the result) is added to or subtracted from the avanati as their directions are the same or opposite.

VIII,15. Multiply the accurate velocity by the mean measure (of the diameter) and divide (the product) by the mean velocity; (the result) is the accurate measure in minutes of (the diameter of) the Sun or Moon at that time.

VIII,16. One should subtract the square of the avanati from the square of half the sum of the measures of the Sun and Moon; multiply the square-root of that (remainder) by 2. From this one should indicate the time (of the eclipse) as (is done) in the case of the lapsed portion of a tithi.
VIII,17. Subtract the avanati from half the sum of the measures of the Sun and Moon; one should find that the minutes that result are the digits of the Sun that are covered by the Moon.

VIII,18. Draw the Sun with (a radius equal to) half (of its measure) and lay off the avanati from its center in the proper direction; one should draw the Moon with (a radius equal to) half (of its measure) from the end of the avanati for the sake of (determining) the magnitude (of the eclipse).

Thus the Solar Eclipse in the Romakasiddhānta: the eighth chapter.

व्युगणे s को इस्यत户्टे विपन्यबेदार्ण बे s केसिद्धान्ते /
स्बरस्वायिधिनवयमो द्थने क्रमाहिनटले sबन्त्याम् $/ / 9 / /$
नवशनसहस्तगणिते स्बौरैकपनाम्बरस्वरनूने /
षह्योमेन्द्रियनवबसुबिषयजिने आाजिते घन्द्र: // 2//
नबरातगुणिते दथाद्यनिकयगुणाम्बर र्तुयमपच्चान्ट/
नबबसुससाष्म्बरनवाधिर नके शशाझेधम्: $/ 13 / /$
रशिशिषयधानीन्दो: सार्नाग्निह्धतानि मण्डलानि न्वणम् /

त्रिध्नरातथे नबैकैकपन्वरामेन्दुटहनषट्सहिते /
करयमबसु नूतार्ग बगुण्धृति के <कोमादाहु: Null
चक्रात् पतिनं वक्त्रं बड्राशियुतं च पुच्छरास्यम् /
तिभिरविबरस्य लिमा लिनेप: सतनिर्द्रियती $/ / \varepsilon / /$

1 quoted by Utpala on BS 2 (pp. 41 and (7).
la घुगुणे a के a β lc-dस्बरम्ना (म्बाF) दिधि (दिधि Tom.F) नबयमोद्धि (घृ β)ते $a \beta$ Id बत्यां a, ब (य C) त्या $\beta \quad 2 b \circ$ पन्ताबर ${ }^{\circ} a$ स्बरर्तु (र्त a) ने (ने om. C) a β, com. T.-D. $2 c$ षडूनेंदिय्ये a, षय्च (उत्य C) नैंद्रियं β, cor. D.ksL.t $3 a^{\circ}$ गुणितं $a C F$ $3 b^{\circ}$ गुणावर a पचान्त β 3c-d ${ }^{\circ}$ समाष्टास्बरनबासिक्ते a $4 a^{\circ}$ विषयघीनींटों: β

T.-D. पd स्बरटस्तययोह्ध (घ $\beta \beta$) ते $a \beta$, स्बररध्रयमो द्षेते Diksh.t sa दिधनगज्नघे a β, com. Kuppanna Sastr, and Sarma स्ब (न् च $C F$) के० β sb०cहन ($=$ om. a) राब्टा: स (प्रBE) fिने a β, corr. Kuppanma Sastr, and Sarma
 यू(2FF, मू C)ता β, com. Kuppama Sastr, and Sarma $2 \pi\left(म ा \beta D\right.$, corr. to चा $\left.D^{2}\right)$ दाहो: $a \beta$ $6 a$ वस्तं] चक्रं $a \beta$, corr. T.-D. $6 b$ व a, तु β, cor. T.-D. $6<$ तिभिर $\left.{ }^{\circ}\right]$ सहित a, ग्रहति $\circ \beta$ <d मातताद्विशती $a \beta$

Chapter IX

IX,1. In the Sūryasiddhānta, if the ahargana is multiplied by 800 , if 442 is subtracted (from the product), and if (the remainder) is divided by 292207 in order, (the result) is (the mean longitude of) the Sun at noon at Avanti.
IX,2. (If the ahargana) is multiplied by 900000 , if (the product) is diminished by 670217 , and if (the remainder) is divided by 24589506 , (the result is the mean longitude of) the Moon.
IX,3. (If the ahargana) is multiplied by 900, (if) one adds (to the product) 2260356 , and if (the sum) is divided by 2908 789, (the result) is the apogee of the Moon.
IX,4. Multiply the revolutions of the Moon by 51 and divide (the product) by 3120 ; (the result, in seconds,) is negative. In the case of its apogee, multiply (the revolutions) by 10 and divide (the product) by 297; (the result), in seconds, is positive.
IX,5. (If the ahargana) is multiplied by 2700, if 6313219 is added (to the product), and if (the sum) is divided by 18345822 in order, (the result determines the position of) the ascending node.
IX,6. This subtracted from a circle (i.e., 360°) is the (longitude of the) ascending node, and that increased by 6 signs is the "planet" called the descending node. The minutes of (the Moon's) distance from its node (determines its latitude; the maximum) latitude is 270 minutes.

अंशाशीत्या हीनो s क: केन्द्रं स्वोघवर्जित सन्द्र: /
तज्यार्कस्य मनुछ्नी रूपाग्निगुणा राशाङस्य //9 //
क्योमरसानलयके नधाय किस्थिनं राशाझ्ररवौ।
प्रथमे चक्रस्यार्दे नयख्यय: पधिमे आगे \|C/
सौर्यं स्थापितचापं नद्रुक्तिघं कर्बाषियमयक्तम् /
प्रथमबटके कार्यं चन्द्रे च टिवाकरवरोन //e/l
पंचाशता त्रिथिस्त्रंशसंयुतैयोजैैै नाड्येका /
समपूर्वपनिमस्थैर्नित्य रोध्या च टेखा च $/ / 70 / 1$
नवति: ससयतीन्दो: सचतुस्त्रंशद्ध लिसिका सुक्ति: /
षधिर्ट्येका विकलाएंक च मध्या सहस्तांरो: //११//
ससकला विन्यंयाधन्द्रोचस्येन्टु नुत्तिरनयोना।
केन्द्रस्य परिश्रेया स्फुट नुकिधानया कार्या //92//
$7 a$ अंशाशीत्यो a, अ(प्र F) शायत्यो (न्बो B) β, cor. T.-D. द्वि (हिC) नो $a \beta$, cor.
T.-D. $7 b$ कें (केंक C) द्रच्व: $a \beta$, com. T.-D. $7<$ तड्यार्कस्य $a \beta$, cor. T.-D.

Td. गुणि (ण D) ताa $8 b$ राशाड्रवश्यात् $a \beta \quad 8<$ मधमे om. $\beta \quad a b$ ससाधिa
(धिन $C E$)यम्लकं $a \beta$, corr. T.-D. 10α पंचा (चां a $B F$) शतास्त्रिथि ${ }^{\circ} a \beta$, com. T.-D. $\| a$ चब (चa) नु $a \beta$, com. T.-D. समस्स (स्स am. C) तींटो: $a \beta$, com. T.-D.
$11 b$ सु नुक्ति: $\beta \quad 12 a$ विाच (वि C) त्यं (उic $)$ शा० $\beta \quad 12 b$ बरतयोना a
12d स्फुट वक्ति ${ }^{\circ}(क C) \beta$ च्वान (न् BEF)या a β, cor. T.-D.

IX,7. Diminish (the mean longitude of) the Sun by 80°, (that of) the Moon by its apogee; the results are their arguments. The Sine of this for the Sun is multiplied by 14 , that for the Moon by 31.
IX,8. Divide (the products) by 360 ; put the arcs (corresponding to) these (Sines) down in two places. They are subtractive for (the mean longitudes of) the Sun and Moon in the first half of the circle, additive in the latter part.

IX,9. Multiply the arc determined for the Sun by its velocity (bhukti) and divide (the product) by 21600 ; this is to be applied to the Sun as was done previously. (Operate) for the Moon according to (the rule for) the Sun.

IX,10. One nāḍī is always to be subtracted or to be added for every $53^{1} / 3$ yojanas to the east or west of the prime meridian.
$\mathbf{I X}, 11$. The mean velocity (bhukti) of the Moon is 790 (minutes) and 34 seconds; (that) of the Sun is 59 (minutes) and 8 seconds;

IX,12. (that) of the Moon's apogee is 7 minutes diminished by ${ }^{1 / 3}\left(=0 ; 6,40^{\circ}\right)$; the (mean) velocity of the Moon diminished by that (same amount) is to be known as the (mean) velocity of the anomaly. These are to be made into the true velocities.

केन्द्रान्तरज्यागुणिता तिथिबर्गेणोद्धृता च परिणाम्य/ तत्कार्मुक तयचयौ चुर्कौ मृगकरटल्येष $/ / 93 / /$ तत्काल नुकिरेषा त्रेयाहोरात्रिकी शयिबिऐोषात् । व्यासाहहता चुक्ति: स्फुट्नुकिहृता स्फुट: कर्पः //१४ // मुनिकृतगुणेन्दियद्नः स्कुटकर्ण: स्वकृत्याजितो 5 र्क्स / कच्चेति चन्द्रकर्गो टिएघ: कत्वा राशाझस्य //qu//
सबसुखसुनीन्टुविबया चानो: वकृतर्तु《बसुगुण राशिन: /
 मध्याहलम्बिततिथेरत्त<<<<ास्सुद्यमै: प्रतीपांशा: / प्राक्समलिसाहानि: क्रमेण पखाट्सं कार्यम् //१9// तन्मध्यविलग्नास्यं तस्माझापक्रमांशका: क्रमशः / तैरबविसुतसुक्षैर्या ज्या मध्यायिध ताना सा //qर/।

13 b -बर्गेणोद्ध (हटं β) ता $a \beta$, com. T.-D. 13 d चुको β 14b ज्ञेयाहो र्दिकी a चेया होटद्रकी β, cor. T.-D. $14 d^{\circ} \xi$ (फृ $C, 3^{\circ} E$) ता a β, cor. T.-D. $15 b$ स्नद्याजितो a, स्वकृतथाजितो β, com. Kharegat, Shukla 15 c -d घंद्रकरणोंदिय्न: a, चन्द्रकर्गों (र्गें $E F$, रर्णें C) द्रिघ: β, cor. Khareglat, Shukla 16 स्वस्वस्सुत्र $a \beta$, cor. T.-D. ब्युनीन्दविषया a β, cor. Kharegat, Shukla $16 b$ सन्त (नEF, नC)तर्तु० β बससुगुणा: Kharegat, Shukla $17 a$ म्या (घ्य F) के ${ }^{\circ} a \beta \quad 17 a-b-$ तियेरनरास्युद्भै: a, ${ }^{\circ}$ ती (नि F) र्थेरत्तरा-
 न a β, com. T.-D. $18 d$ ज्या कृतिं (कृतिं om β) सव्या (घा E, च्याC) टिध नाना a β corr. T.-D.

IX,13. Multiply (the mean velocity of the anomaly) by the tabular difference between the Sines of the anomaly and divide (the product) by the square of 15 (=225); reduce (the result) and take that arc. (The latter) is subtractive or additive to the velocity as it is in Capricorn and so on, or in Cancer and so on.
IX,14. The progress during a nychthemeron for the (given) time is to be known by means of the difference between (two true longitudes of) the Moon. Multiply the (mean) velocity by the radius and divide (the product) by the true velocity; (the result is) the true hypotenuse.
IX,15. Multiply the true hypotenuse of the Sun by 5347 and divide (the product) by 40 ; (the result) is called the orbital radius (kakṣā). The hypotenuse of the Moon multiplied by 10 is the orbital radius of the Moon.
IX,16. One should divide separately by their true orbital radii 517080 for the Sun and 38640 for the Moon in order to obtain the measures (of their diameters) at any given time.
$\mathbf{I X}, \mathbf{1 7}$. The degrees (on the ecliptic) corresponding to the rising-times of the zodiacal signs (at sphaera recta) between the depressed (end of the) tithi (i.e., the time of the conjunction) and noon are subtracted from the longitude of the conjunction (samalipta) if it is in the east, but added in the west.

IX,18. That (result) is called the madhyavilagna; (take) the degrees of its declination and add to or subtract from them the terrestrial latitude; the Sine of the result is called the madhyā (jyā).

तिथ्यन्तबिलग्नज्या काषान्तज्याहता स्वनम्बहृता /
मध्यज्याघी व्यासाध्र्याजिता वर्गता सा च//१e/।
मध्यज्याकृतिविशेषिता पृथक्स्थाप्या मूलमेकस्या: ।
सबितुर्ट्टकृेपास्यं संस्मृत्यर्थं पृथक्साप्यम् //20//
टृक्तेपकृतिं जह्यात् त्रिज्यावर्गात्ततो sस्य यन्मूलम् /

रङ्कञुलास्यविंरातियतकृत्योरन्तरेण वियोषि<तोत् /
स्थिनबर्गान्मूलं हिनवकाहनं नट्वि जज्य कन्जाम् ॥/22॥
थागविरोषात्तिधिबनिध्यन्तो sनः पुनः पुनस्तन् स्यात् /
एवं मृग्य: कालम्नूत्मनो याबटविरोष: //23//
अविरोषाह्वक्तेपं वस्बेकघं विलज्य कनाय्याम् /
लबहान्तरचापांशा मध्यज्याटिग्वरोन नति : //2४//
$19 a{ }^{\circ}$ विलग्ना ज्या $a \beta$, com. T.-D. $19 b$ स्बलम्बहु (हC) ता β
$20 a$ मध्यज्यान्त (नC) ति ${ }^{\circ} \beta$ बििस्सेषि (ब β) तां $a \beta \quad 20<\circ$ है (है β) चेपास्यं $a \beta$

तो (त्तोEF) a β, com.T.-D. स्प वत्मूलं a $21 c^{\circ}$ बिनेर (बरे C) β
21d त्रिज्योद्ध (द्ध C, घृEF) नं a β, cor. T.-D. $22 a$ राकंगुलास्यं β

22 c स्थिति बर्गा० a β, com. T.-D. 22 d सदियाज्यु a β, cor. T.-D. कत्प्या थ्यां a
$23 a a^{\circ}$ विरोषास्ति (स्नि a) थि $a \beta \quad 23 b$ निध्या
$23 d^{\circ}$ स्नूत्पन्नो a, स्तत्पन्नो β, com. T.-D. $24 a^{\circ} \varepsilon_{~(~ ट ट ~} C$) चेपं $a \beta$, cor. T.-D.
$24 b$ चस्वेकघं β

IX,19. Multiply the Sine of the (madhya)vilagna at the end of the tithi by the Sine of the maximum declination (of the Sun) and divide (the product) by the Sine of terrestrial colatitude. Multiply (the result) by the madhyajyā and divide (the product) by the radius; square (the result).
$\mathbf{I X}, \mathbf{2 0}$. Subtract (this) from the square of the madhyajyā, put (the result) down separately (in two places), and (take) the square-root of one (of them); this is called (the Sine of) the zenith distance (dṛkkṣepa) of the Sun. Put it down separately in order to remember it.
$\mathbf{I X}, 21$. One should subtract the square of the dṛkssepa from the square of the radius, and (take) the square-root (of the remainder). Multiply this by the Sine of the difference between (the longitudes of) the ascendant-point and the Sun, and divide (the product) by the radius; (the result is) the Sine of (the Sun's) altitude.
IX,22. Subtract the square which has been put aside (i.e., the square of the dṛkssepa) from the difference between the squares of the so-called sañkvangula (i.e., Sine of the Sun's altitude) and of 120 ; multiply the square-root (of the remainder) by 18 and divide (the product) by the two orbital radii (i.e., by that of the Sun and by that of the Moon).
$\mathbf{I X}, \mathbf{2 3}$. From the difference in the degrees (of these two ares is found) the end of the tithi, in the same way as (is found what has passed, or is to come, of) a tithi; from that (the procedure) is (to be iterated) again and again. The resulting time is to be investigated thus, until there is no remainder.
IX,24. Multiply the dṛkkṣepa (for that time) which has no remainder by 18 and divide (the product) by the two orbital radii; the degrees in the arc between the (two) results is the parallax in latitude, whose direction is that of the madhyajyā.

ज्याविधिना विच्चेपं तत्कालं प्राप्य नेन सहितोना।
स्पषा नतिः प्रभाषै: स्वै: स्वैर्ग्रासं स्थितिंच बटेन्त् //2५//
अवनतिबर्गं जहाद्रवीन्टुपरिमाणयोगटलवर्गात् /
तन्मूलात्तु द्विगुणात्तिधि नुक्रनटाटियेत् कालम् $/ 12 \varepsilon \|$
तिथ्यवनामो ग्रहणाटिना च विस्लेषितः स्थित्या /
गोलानत्बे टेसस्त्वबनामो सौौच्तिकस्पैवम् //29//
इति सूर्यसिट्रान्ते इर्कग्नहणं नवमो इघ्यायः //

25 b प्राथ a 25 c स्पष्टनति : $a \beta$, com. T.-D. $25 d$ स्वैर्ग्रसं a, स्वैर्ग्रामं (मं om. CF) β, com. T.-D. स्थितं $a \beta \quad 26 a-b$ जल्यान्त्र ${ }^{\circ} a \beta$, cor.T.-D. $26 b^{\circ}$ परिपरिमाण० β
$26 c$ तन्मूलात्त a β, com. T.-D. $26 d^{\circ}$ तिधिम्भुक्तिब ${ }^{\circ}$ a β, com. T. -D.

- टाटिके कित्त E) $\beta 7 a$ तिथ्यवनाय $a \beta$, cor. T.-D. $27 b$ स्थित्यां a β, corr.
T.-D. $27 c$ गोलान्य $(न C)$ चे $\beta \quad 27 d^{\circ}$ नामोच्चिकोस्यैबं $a \beta$, com. T.-D. Col. इति om. EF

IX,25. Obtain the latitude (of the Moon) at that time by means of the Sines; the parallax in latitude increased or decreased by this is correct. By means of their proper measurements one should describe the magnitude and the duration (of the eclipse).
$\mathbf{I X}, 26$. One should subtract the square of the avanati from the square of half the sum of the measures (of the diameters) of the Sun and Moon; multiply the squareroot of that (remainder) by 2 . One should predict the time from this as in the case of what has passed of a tithi.
$\mathbf{I X}, 27$. Take the difference between the displacement of the tithi (i.e., the parallax in longitude) and the duration at the beginning of the eclipse; if (the eclipse) is in the other (i.e., western) hemisphere, the displacement is to be added. (Do) likewise for the (time of) release.

Thus the ninth chapter: the Eclipse of the Sun in the Sūryasiddhānta.

रविकचा नवतिगुणा बडसटस्तोद्धू तेन्टुकचाया :
छेट: बट्तिर्रिया लख्रेनोनख बड्वर्ग: //a //
वियटकगुणे राशिकच्तया हृते कार्मुक तमोव्यास:/
घन्द्रनमोव्याससुतिं हाय यां हृत्वा ततो बर्गात् $/ / 2 / /$
निन्चेपवर्गहीनादासन्नपटे वियद्धियन्द्रघे ।
सूर्येटुनुक्तिबिबरोद्धुने स्थिते नाडिका लब्ध $T: / / ३ / /$
प्रग्नहणन्टों कृत्वा विचेपरमोतो sनया स्थितिर्यनति/
एवं थूयो थूय: स्थित्यनिशोष : कृतो यावन्त $/ / 8 / /$
अर्केनु नुकिबिबरं वांशतनाडीहतं तु बहिद्धतम् /
स्थितिलिसास्ता यस्तु नात्कालेन्दोध विनेपात्, $/ / 4 / /$
कृतियोगपंटं रोध्यं राशिराहुकलाधमानयोगटलात् /
यच्छेषं तड्रस्तं शेयं तत्कालम्केन्द्रो: $/ / \varepsilon_{2} \|$
la रबिकन्या $a \quad$ चब (वा C) तीगुणा $\beta \quad 1 b$ ० टस्तोद्ध (हI β) ते० a β, com.T.-D.

- कल्याया : $a \beta$, com. T.-D. $1 \subset$ षड्र्रिघाया a, बद्रि (ड्रि C) घ्राया β, cor. T.-D.

Id लघोनो (ना β) न (न β) \# a β, cor. T.-D. $2 a$ वियटर्वगुणे $\beta \quad 2 a-b^{\circ}$ कद्याया
$a \beta$,com. T.-D. $2 b$ छ (ट्रूC, श्च F) ने β तयोर्यास: (ह्र: β) a β, com. T.-D.
$2 \mathrm{c-d}$ थयतिर्ही यां $a \beta$, com. T-D. $2 d \xi$ (कूC, कुF)त्बा (त्या C, ज्ञा F चा F) $-\beta$,
com. T.-D. 36 वियद्धि a β, cor. T.-D. 3c-d निबरोध्धतने a β, cor. T.-D.
$4 a$ प्रग्रहणन्दु: $a \beta$, cor. T.-D. $4 b$ विन्चेपतो α, com. T.-D. स्थिते र्धबति a β, com.
T.-D. $4 d$ स्थित्य बरोष : $\alpha \beta$, com. T.-D. $5 c-d$ ०स्ता स्यम्ताता (त्ता a) त्काले $a \beta$

Sd विरोषान्त $a \beta$, cor. T.-D. $6 a-b$ om. $C \quad 6 b^{\circ}$ कलाधमा (म β) ण ${ }^{\circ}$ a β, com.
T.-D. σ_{c} यदेषें a β, com. T.-D. 6d •मर्केन्दो: β

Chapter X

X,1. Multiply the orbital radius (kakṣā) of the Sun by 90 and divide (the product) by 286; (the result) is the divisor of the orbital radius of the Moon after it has been multiplied by 36 . Diminish the square of 6 (i.e., 36) by the quotient.
$\mathbf{X , 2}$. Multiply (the remainder) by 120 and divide (the product) by the orbital radius of the Moon; the (corresponding) are is the diameter of the shadow. Divide the sum of the diameters of the Moon and of the shadow by 2 and square the result.
$\mathbf{X , 3}$. Take the approximate square-root (of this square) diminished by the square of the (Moon's) latitude and multiply it by 120 ; divide (the product) by the difference between the velocities (bhuktis) of the Sun and Moon; the quotient is in nādikās.
$\mathbf{X}, 4$. Calculate the latitude of the Moon at the (time of) first contact; then, by this (procedure), there results the (half-) duration (of the eclipse). Thus the (half-) duration is calculated again and again until there is no remainder.
$\mathbf{X , 5}$. Multiply the difference between the velocities of the Sun and Moon by the stated nādīs (of the half-duration) and divide (the product) by 60 ; (the result) is the minutes (of arc) of the (half-) duration. (Take the square) of these (minutes) and of the latitude of the Moon at any given time.
$\mathbf{X , 6}$. Subtract the square-root of the sum of these squares from half the sum of the measures (of the diameters) of the Moon and the shadow taken in minutes (of arc) and so on; whatever is left is to be known as the obscured (portion) of the Sun or the Moon at that time.

अन्त्याययोर्बिरोषाह ज्यतिबिनेपवर्गबिबरपट्म् /
द्विगुणं निधिबत् कृत्बा विर्मरकालो इर्कचन्द्रम्नो: $/ / 9 / /$
चन्दग्नणं दरामो डह्याय: /।
$7 a$ आताधयार्वं० $\beta \quad 7 a-b \cdot र ो ष ा व ब ~(व ~ o m . ~ \beta) ~ न त ि ब ि क ् ष े प ~ ० ~ a ~ \beta ~$
7d soक om. β

X,7. Multiply by 2 the square-root of the difference between the square of half the difference between the diameter of the eclipsed body (antya) and the diameter of the eclipsing body ($\bar{a} d y a$) and the square of the Moon's latitude; compute (with the result) as in the case of a tithi. (The result) is the duration of total obscuration of the Sun or Moon.

The tenth chapter: the Eclipse of the Moon.

यह्या विध्यडुलया वृत्तं परिलिख्य संप्रसार्य टिशः /
अन्त्याधट लैक्येनावमपरमध रेंन घावस्य //9 //
चन्द्रम्बरान्तरांशात् क्रमज्यया ब्यां निहत्य वैषुबतीम् /
सार्कांशानुट्यास्तमयान्तु ग्याम्यतो टघान् $/ / 2 / /$
सत्रिगृहस्य हिमांशोरपक्रमांश्यान् यथाटिरां कुर्यात् /
प्रागपर सिट्लिरेंबं बकावाम्योत्तरे शेये 〈च〉//३//
टिग्यत्ययेन राशिनो विच्चेपस्तहिगन्तकं सूत्रम् /
स्पृरोद्धितीयं वृतं तस्माट-यं <लिऐखेच्यह्यान् $/ \| ४ / /$
नत्संपाते स्पर्शो मोनो sप्येवं विपर्ययात् साध्य:
तात्कालिका स्वकृत्या मोन्वाहिक् संबिध तात्या $/ / u / /$
लिताद्येन हरिजे त्रयेण मेष्रणे इएुलं यबति।
अनुपातो s तरस्तोल्थे कर्तब्यो टृषिसुकार्थम् $/ / \varepsilon_{l} / /$
असुत्रोर्णनमेकाटरो 5 याय: /।
la षष्ट्या a β, corr. T.-D. विधि त्र्यंगालया $a \beta$, corr. T.-D. ib टिशां (शां C) a β, com.
T.-D. k अंताव्य (घट β) टजलैक्योनां $a \beta$, com. T.-D. Id ${ }^{\circ}$ घदपरम ${ }^{\circ}$ a,त्त पटपरम ${ }^{\circ}$ β, com.T.-D. 2aचंद्राबतरां० β 2-b ${ }^{\circ}$ शोत्क्रम ${ }^{\circ} a \beta \quad 2 b^{\circ}$ ज्या (ज्य CF)घा (था F) β विहत्य $\alpha \beta$, com. T.-D. $2 c-d$ म्नार्कांशांशावुटयाटस्नमयोतुटलयाम्यतो क इक्षांशांशांबुरदयास्नमयोटुट्याम्यतो β 3b•मांशाट् (न्CF) β
$3 c$ सिधिरेबं a $3 d$ वकायाम्योनरे $a \quad 4 b$ विबेपां तहिं $a \beta \quad 4 c$ स्थृथ्ध $^{\circ} a$,
 संपाने (नं B) $\beta \quad \mathrm{sb}$ विपर्ययशोध्य: $\beta \quad \mathrm{sc}$ वस्बकृध्या $\mathfrak{\text { ूंस्बकृत (न om. CF) }}$ वृध्या $\beta \quad 5 d$ मोत्वत्वाट्क्र (कू $E F$) a $\beta 6 b$ सेषुरणं a β, com. T.-D.
$6 c$ न्तर: (रCEF) स्थे a β, com. T.-D. col. अवर्णनात्येकाटशो a β

Chapter XI

XI,1. Draw a circle by means of a staff measured in digits with (a radius equal to) the sum of the halves of the diameter of the eclipsed and of the eclipsing body; distinguish the directions. Now (draw) another (circle) with (a radius equal to) half of the diameter of the eclipsing body.

XI,2. Multiply the Sine of terrestrial latitude by the Sine of the degrees between the Moon and midheaven; (take) an 120 th part (of the product). One should apply (the result) to the north or south as (the Moon) is towards its rising or setting.
XI,3. One should compute the degrees of declination of (the longitude of) the Moon increased by 3 zodiacal signs (and use it) in the proper direction; thus is obtained the east and west (points). The north and south (points) are to be known from a fish (-figure).

XI,4. A string - the latitude of the Moon-going in the opposite direction (to the latitude) and ending at that direction (of deflection) should touch the second circle; from the center one should draw another (line to that point on the second circle).

XI,5. At that point of intersection (with the first circle) first contact (takes place); release (i.e., last contact) is thus to be ascertained from the reversal (of this). The direction at any particular time is to be determined by one's calculation from the release.

XI,6. A digit equals two minutes on the horizon, three at midheaven; proportion is to be used (when a body) is in between, in order for (calculation) to coincide with observation.

The eleventh chapter: (Graphical) Description (of a Lunar Eclipse).

रविशाशिनो: पंच युगं बर्षाणि पितामहोपटिषानि /
अधिमासस्त्रिशड्रिर्म सैरबमो द्विबष्याह्ताम् //१//
छूनं राकेन्द्रकालं पंध्यिस्द्धृत्य रोषवर्षाणाम् /
घुगणं माधसिताघं कुर्याट्, घुगणण तटह्युट्यात् $/ / 2 / /$
मैकषड़रो युगणे निधियर्राकें नवाहने ड़्यर्कं: /
टिएनस नक्के: ससीिरूनं राशियं घीनष्ठाधम्य //३॥
प्रागद्ध पर्ब यटा तहोत्तरातो sय्या निधि: पूर्वा।
अर्कझे व्यतिपातो युगणे पंचाम्बरहुतारौ: $\|४\|$

द्विघं शरिरस तंतं हाटराहीनं टिवस्नानम् //u//
इनि पैनामहसिद्यान्तो द्वाट्यो sघ्याय: ॥

1-3 quoted by Utpala on BS 8,22.

- बमास्त्रिषष्ट्यारां (हां F, यं C) β 2बव्यु (वू FUtpala)नं a β Utpala, com.T.-D.
 2d कुर्यायुगणं a, कुर्याझ्तु (न् व्वु F, त् यु C) युग (गु E) वं β, कुर्याय्युगयानि Utpale, com. T.-D. तदट्ये (टुF)ट्यात्- (च्E) β, वह्युट्यात् Utpala उaत्रं (अंCE) रा (शा F)त्वं ($\dot{\text { a }} \beta$) चे $a \beta$, सैकत्रिंरो Utpala $3 b$ नबा (या a)हस्ते (स्ने $a) a \beta$,
 $3 \mathrm{c-d}$ सतथिनूनं a 4bतटोतरात्तो a,तदान्त (नCF) ए (रां C) सो (तो C, स्तो F, बो E^{2}) β, corr. T.-D. $\quad 4 c$ व्यापिपाता β प $\quad 4$ पंचांबरंटु (टू E)तारौ: β $5 a-b$ घृतिरनयायुत्तरयो स्व (सू β) मृणं ग (ग $\mathrm{T}=\mathrm{m} a$) तघमयि च याम्यास्प $a \beta$ 5 c दिननं a β, com. T.-D. col. इति om. a पि (पी F) तामहै β मसिद्रान्ते $\beta \beta$

Chapter XII

XII,1. Five years are taught by Pitāmaha to be a yuga of the Sun and Moon. (There is) an intercalary month (adhimāsa) every 30 months, an omitted tithi (avama) every 62 days.

XII,2. Diminish the time of the Saka king by 2 and divide (the remainder) by 5 . One should calculate the ahargana of the remaining years, beginning with the first half (śuklapakṣa) of (the month) Māgha; this ahargaṇa begins in the day from sunrise.

XII,3. If the ahargana is increased by a 61 st part, (the result) is the tithis; if it is multiplied by 9 (and the product divided) by 122 , (the result) is the naksatra of the Sun; (if the ahargaṇa) is diminished (by itself multiplied) by 7 and divided by 610 , (the result) is the nakșatra of the Moon beginning with Dhanisṭhā.
XII,4. When the last tithi in the first half (of the month) is a syzygy (parvan), after it is the first (tithi) in the other (half of the month). If the ahargana is multiplied by 12 and (the product divided) by 305 , (the result) is the vyatipāta.

XII,5. (When the Sun) is in the northern (ayana), increase the days by 183 times 4 ($=732$); (when it is) in the southern (ayana), increase the future days (by 732). Multiply (the sum) by 2, divide (the product) by 61, and diminish (the quotient) by 12; (the result) is the measure of the day(-light in muhūrtas).

Thus the twelfth chapter: The Paitāmahasiddhānta.

पंचमहारूनम्नस्तारागणपंजरे महीगोन :
से sयस्कान्नान्नस्थो लोE इवावस्थितो नृत्न: //9" तरूनगनगरारामसरित्समुद्राटिएिजित्त: सर्व:/

सलिन्लनटासनानामवाकुसी दृसते यथा शाया/

यद्वटिह मानवानामसुराणां नह्हटेनाध: ॥४॥
मेरो: सममुणार वियत्यन्तो व्योमस्थितो ज्रुतो s हो s य्य:/
तत्र निबड़ो मस्ता प्रवहेण य्राम्यते थगण: //u//
य्रमति थ्रमस्थितेब चितिरित्यमरे बटत्नि नोडुगण:।
यवेवें स्येनाबा न म्बान् पुनः स्वीिलयम्युयु: ॥ह"

1-4 quoted by Utpala on BS 2 (p.S7); 1 quoted by Nilaka_t tha on Golapada 6; 2-3
quoted by Prthodake on BSS 21,3;5 quoted by Utpala on BS $2(p .58)$ and by
Pethodake on BSS 21,4;6-8 quoted by Utpala on BS 2 (pp. 58-59);and bc-d
quoted by Prthodaka on BSS 21,4.
$1 c$ यस्कां (स्का β) तां (तों a)न (तर $E F$)स्थो a β, यस्कान्तान्त :स्थो Utpala, N-lakastha,
T.-D. $2 a$ तसूनगरनन (न om. a) रामर $a \beta \quad 3 a^{\circ}$ तज्ञासं (से C) तानां $a \beta$
$3 c$ तहा (बत D, ग writte- above D^{2}) नि α, नह्र्ध (ंं C)गति β 3d-4d मन्यने to
-सुराणां om. a 3d बिब्बुधानां $\beta \quad 46$ चितमीि om. β, suppl. Utpala $4 c$ तद्धि $\left(\right.$ हि C) ह $\beta \quad s_{a}$ समुप β, समोपरि Prthodaka $5 b$ व्योम्नि स्थितो Prthodaka, Utpala घन्य: (व्य: D) a β 5c निबहो a मतुला a, महता β 5d दाहवे (वहे (F) न β 6a स्थिते च β 6L स्थितिरि० Utpala ०त्पपरे a $b c$ रोनाया $a \beta$

Chapter XIII

XIII,1. The sphere of the earth, which consists of the five elements, stands in the cage of the constellations in the sky like a round piece of iron standing at the end of a loadstone;

XIII,2. it is all covered by trees, mountains, towns, parks, rivers, oceans, and so on. In the middle of it is Sumeru, the abode of the wise (gods); the Daityas stand below.
XIII,3. As the reflection of those who sit on the shore of (a body of) water is seen to be facing downwards, so the motion of the Asuras (appears to the gods); and they (the Asuras) think that the wise (gods) are below.
XIII,4. As here among men the flame of a fire ascends to the sky and something heavy when thrown descends to the earth, so (does it happen) below among the Asuras.
XIII,5. Directly above Meru in the sky is (one) fixed pole, below in the sky is another; bound to these the constellations are turned around by the pravaha wind.

XIII,6. Others say: "The earth, as if situated on a potter's wheel (bhrama), revolves, not the constellations." If that were so, hawks and so on would not come back again to their abodes from the sky.

अन्यम्ब थवेद्नेरहा य्रमरहंस्नह वजाटीनाम् ।
नित्यं पधात् प्रेरणमथान्पगा स्यात् कथं भमति //9//
अर्हत्त्रोके sर्कन्दू हौ द्वावेकान्तरोटयौ किन तौ।
यद्येवमर्कसूत्रात् किं ध्रुबचिहं च्रमत्यहा $\|\mathrm{C}\|$
प्रोघदूविरमराणां च्रमत्यजादों कुवृत्तगः सब्यम् /
उपरिष्ठान्बक यां प्रतिलोमधामरारीणाम् //e//
मिदुनान्ते च कुवृत्ताटशचनुर्बिंशतिं एके $य ो$ है:।
अ्नमति हि रविरमराणां समोपरिषात्तद बनन्त्याम् $/ / 90 / /$
चष्ट्छायाप्येवं छायोटक् तत्त्रथृत्युटक्स्थानाम् /
तहचचिणटेरशाओनां मध्याहे टच्चिणा छाया $/ / 99 / /$
मेषवृषमियुनसंस्ये टिबसो 5 के कर्कटाटिगे रात्रि:/
यैरुत्ता विब्बुध तानां मेरुस्थानां नमस्तेय्य: ॥92॥

9-34 quoted by Utpala on BS 2 (pp.59-61); 9 quoted by Prthodaka on BSS 21,$6 ; 12$ quoted by Pithodaka on BSS 21,7 and by Paramesivara on Golapada 14.

 8d हुबविद्धु (हु (F) हां (हां C) β, घुवसून्रं Utpala चवत्यहा a, चवत्यन्दा (-F) दु (EटE) हा $\beta \quad a b \circ$ त्यजागो $a \beta$ कृवृत्तगः a, बूथू (मू C) चृ (चृ C)तग: β ad oमराराणां $\beta \quad 10 a$ क्रुवृत्ता ${ }^{\circ}$ (चा C, च्चा $E F$) $a \beta \quad 10 b$ घनुर्थिराति a हायोसै: a, हापोथै : $\beta \quad \operatorname{lod}$ समोपष्ठात्त ${ }^{\circ} a \quad$ ॰टावत्यं $\beta \quad 11 b^{\circ}$ टक्यच थृत्युस्थाना
 a, तह्हि चिणगानां Utpala, corr. T.-D. $12 a^{\circ}$ मियुन्न० a $12 b$ टिनं रबौ Utpela, टिनमर्के Parameśvara कर्कटाटिके Prthodake $12 \mathrm{c}-\mathrm{d}$ मेरूस्थितटेवतानामिभित यैरूक्तं नमस्नेयद: Parameśvara

XIII,7. Another thing: if there were (a revolution) of the earth (every) day, bees, geese, flags, and so on would always be driven to the west; if it were moving slowly, how would it revolve (once a day)?

XIII,8. According to what is said by the Arhats, there are two Suns and two Moons which rise one after the other; if this were so, why does a fixed mark from the sūtra of the Sun revolve in a day?
XIII,9. For the gods, the rising Sun at the beginning of Aries, moving on the terrestrial equator, revolves to the right; (for those) at Lankā it revolves overhead; and for the foes of the gods in the opposite direction.

XIII,10. At the end of Gemini the Sun revolves, going up 24° from the terrestrial equator for the gods, (while) it is directly overhead (for those) at Avantī.

XIII,11. Thus the (noon) shadow is destroyed (there); the (noon) shadow is to the north for those dwelling in the north of that (place); for those places which are to the south of it the shadow at noon is southern.

XIII,12. Reverence be to those who say: "For the wise (gods) who dwell on Meru it is day when the Sun is in Aries, Taurus, and Gemini, night when it is in Cancer and so on."

येष्वेबोदझ्धेषावाति स्थानेषु संनिवृत्तो डपि /
तेष्बेब कथं टृश्यः पुन्न ट्र्थ्यद्ध तत्रस्थः //१३॥
टृर्ये चक्रस्यार्े त्रयः वमध्यात्तु राशायम्तें s शा:।
नबतिस्नानि च स्वण्डान्युट्यात् परिकल्पनीयानि $/ / 9$ ४ //
एकैकों डशो नवत्रिर्न व थागोनैख्ध योननै र्शबति ।
समटनिणोत्नराणां प्रत्यने ह्येय : स्वमध्यास्त //१६॥
एवं च नवत्यंरौरषौ टृष्टानि योजनशतानि /
तत्त्रामाणाटेरो मध्याहे दुष्ठरुट्यो य: //१घ॥
उज्जययनी लझाया: संनिहिता योत्तरेण समसूने /
नन्मध याही सुगपहिषमो टिबसो विषुबतो s य: $/ / 99 / 1$
योजनशतानि थूमेः परिमाणं षोड्रा द्विनुणिताशन /
तापयनि मेरूमध वाद्विकुस्थो s के: चितिमेबम् $/ 9 \mathrm{C} /$

14 a quoted by Utpala on BS 2 (p.56)
136 व्यादि $a \beta$ संनिवृत्ते a, सन्चिवृवृरो $\beta \quad 13 d$ टस्यच्च $\beta \quad 14 a$ बक्रस्पा (स्थाC) र्टे
$\beta \quad 141$ स्वमध यात a, र्नमध्यते β राशयस्तेषां Utpala (some menuscripts)
14 c -d रव (ष $B E$) उंगानि उ (Z BE) टयात् ($त C F$, त्त $B E$) a β isaएकैकांशो Utpala
नवतिर्न० a β isbयोजनैर्यात्नि (ति $E F$) $a \beta$ isc स च टच्चिणो० Utpala

- तराय $(\square \beta$) मं $a \beta$ isd प्रत्यन: Utpala ध्ये (ध्ये $B E$)य (प्य β) यं मध्यात् $a \beta$, से डप्ययं मध्यात् Utpala $16 a$ वa, om. β नवृत्यांशौ० a, नववृत्त्यांरौ० β 16 b राषौै दलौ टृष्टानि $\beta \quad 16 \mathrm{c}$ सहितत्त्रमाणटेशो $a \beta$, तत्त्रामाण्याटेरो Utpala 16 द्रस्टरु a 17 аज (नुC)नी (ज्न C, नू F) यि (मिF)नी β 17b सतिहिता β समस्तत्र (त्रो $C F$) $\beta \quad 17 c$ तन्मध्याहे $a \beta \quad 17 d$ टिब(य F) से (मो E) $\alpha \beta$
$18 c$ तायपति a म्यां aCF 18 d को $a \beta$ चितिरेबं $a \beta$, चितिं थैबम् Utpala

XIII,13. In those places in which (the Sun) goes to the north from Aries it also returns (from Cancer); how is it both visible and again not visible while it is there?
XIII,14. In the visible half of the (zodiacal) circle, from midheaven, there are three zodiacal signs, that is 90°; these divisions are also to be reckoned from the rising (-point).

XIII,15. Each 1° equals 9 diminished by a ninth (i.e., $8^{8 / 9}$) yojanas; for those who are to the north and south (of each other) on (the same) meridian it (the distance in yojanas) is to be considered from midheaven (i.e., zenith) in direct perception.

XIII,16. Thus 800 yojanas are seen to equal 90°; whatever is sunrise for (one) observer is at noon in a place (whose distance is) measured by that (amount).

XIII,17. Ujjayinī, which is close to Lan̄ka, is on the line of (the same) meridian to the north; their noons are simultaneous, but their days (i.e., lengths of daylight) other than the equinoctial (days) differ.
XIII,18. The measure (of the circumference) of the earth is 1600 times $2(=3200)$ yojanas; the Sun, at the equinox, thus heats the earth from (a circle) whose center is Meru.

षडशीतिं पंचरातीं त्रिभागहीनं \Rightarrow योजनं गत्बा/

प्रतिविषयमुटक्र तुझो हरिजावाबद्रुबः समध यात्तु /
दिनकृटी नमतन बिषुबति टचिणतम्नावदेबांशौ: $/ 120 \|$
त्रिशतीं त्रिस्सतियुनां गत्बोटइयोजनत्रिथागं च/
उज्जयिनीतो विरमाति पर्यस्तो ड्यं यगणगोल : //29//
षीिं नाडीस्तस्मिन् स्नकृटुटितो दृर्यते टिवसनाथः /
परत: परतो बहुतरमाषण्मासाटिति सुमेरौ $/ 122 / /$
योजनपंचनबांरांस्त्र्यिि कां मचतु:रानीमुटृगवत्त्या: /
गत्बा न घनुर्मकरौ कदाचिटयि दर्शोनं ब्रजन : $/ / 23 / /$
तस्माटेब स्थानाट् छरीतियुकां घतु: खतीं त्याग्य /
नोट्यमिह पान्त्यलिमृंघटचापध तरा: कटनचिटपि \| ४ \|
$19 b$ योजनमित्वा Utpala 19 d लंकायां $a \beta \quad 20 a$ त्रतिविष (यCF) सुटनंगो β

 (नि β) a $\beta 216$ गयोटं β जनवियागं $\alpha \quad 21<$ ऊ (उ β) ज्नयि (यC)नी (नि E)तो $a \beta$ विध्यटति Utpala 21d पर्यासो Utpala $22 a$ षघीनांडितस्मिन् a, बदीं (ही C, बीं F) नाडिं (डी CF) तस्मिन् β, बसिन्नाइ्यस्नस्मिन् Utpale, corr. T.-D.
$22 b$ सस्टुटितो $\beta \quad 22 c$ बद्रतर ${ }^{\circ} a \beta \quad 23 a$ मोनपंच ${ }^{\circ} \beta \quad 23 a^{\circ} b^{\circ}$ नबांशा :
स्त्याधिक्यं सबतु:सतिमुटग (गा D) वंत्या : a, नवांशा: स्त्यदि का स(म्न F)ब (च EF) नु:सतिमुट्गबंत्या: β, नवांशानीि कां च चनु: रातीमुटूग बत्याम् Utpala 23 र गया β चुर्मकरं a, घनुर्मकरा $\beta \quad 24 a-b$ म्थानाधरीति ${ }^{\circ}$ क, स्थानाव्च (ड्य C) गीनि ${ }^{\circ} \beta \quad 24 b$ सागं a, त्या (सा C) गां β, गत्वा Utpala $24 c$ नोटयमु (म a, सु $B E$) ट $a \beta$, टृष्टिपथं नो Utpala, cor. T.-D. यां सलिक्ल $B E$ 24 d कहाचित् Utpala

XIII,19. Going 586 (yojanas) and a yojana diminished by $1 / 3\left(=586^{2} / 3\right)$ north of Avantī (one reaches) the middle of the earth, or 800 yojanas (north) of Lā̄kā.

XIII,20. In any region, as much as the north pole star is raised to the north from the horizon, by so many degrees is the Sun depressed to the south from midheaven when it is at the equinox.

XIII,21. (For one) going $373^{1} / 3$ yojanas north from Ujjayinī this sphere of constellations which is cast about (the earth) ceases (to exist).

XIII,22. In this (place) the Sun, having risen once, is seen for 60 nādīs. (As one proceeds) further and further (to the north, the length of daylight) becomes greater until it is six months at Sumeru.

XIII,23. (For one) going $403^{5} / 9$ yojanas to the north of Avantī Sagittarius and Capricorn never come into sight.
XIII,24. (For one) going 482 (yojanas) from that place Scorpio, Sagittarius, Capricorn, and Aquarius never rise.

षडशीनिं पंयशतीं इ्यंशोनं योजनं च तन एब/
गत्बान्त्यं चक्राह्रं नोटेत्यांचं न यात्यस्तम् // $26 \|$
लङ़ास्था 2 नूलग्नां नलसो मध्यस्थितां च मेरूगता:/
घुवतारामीबन्ते तहत्तराले sत्तरोपगता: /マع.\|
सकृटुटित: षण्मासान् ट्रत्त्यो s को मे सूपृष्ठसंस्थानाम् /
मेषाटिष्य षट्सु चरन् परतो टृत्स्य: स् टैत्यानाम् $/ / 20 / /$
मेबस्तेषां नित्यं लग्ने त्यंराध च्नूमिपुत्रस्य /
त्रिंराद्रागनांराह पूर्थागाध नस्थैब \| $2 \mathrm{C} \|$
विषुबल्वेखाह अस्ताल्लका तस्पां समो यगणगोल :
त्रिंशनाड्यो टिवस्स्त्रंयन्तस्यां च सटा निशा // $2 \mathrm{e} / /$
सलिलेन समं कृत्वा तुं फलंक यथाटिर्शां टृष्ट्वा।
टन्विणकोट्यां शए़ु फलकप्रतिमं व्यबस्थाप्य //३०/।

27 quoted by Prthüdaka on BSS 21,8a-b.
$25 a$ षडशीतां (तीं E) षडशातीं $\alpha \beta 25<$ चक्रार्म (र्त्य CF) β 25dनोत्यायं a, नोसा (त्या $C F) \varepsilon \quad(घ ं C) \beta \quad 26 b$ मध्यां स्थितां च a, मध्याय β
$26 c$ हुबतारामी (2ी CF) चं (- E) ते β 26d तरेप (वC) गता: $a \beta$
 28 b लगो β त्यंश्य $a \beta$ चूमिपुत्र (त्र: E) स्यात् (स्या CF) $\beta \quad 28 \mathrm{~d}$ तस्मैब (च F) $\beta \quad 29 a^{\circ}$ ल्वेसाध न: स्ता${ }^{\circ}$ Utpala 29 c त्रिंशनाइयो $\beta \quad 29 \mathrm{c-d}$ हिबसत्रं० $a \beta$ च महा a, च स (गEF) टा β, सटा य Utpala 30a म्य (मC, यं F) कता (का CF) $\beta \quad 30$ द दचिणकोधां (हां β) a $\beta 30 \mathrm{a}$ वयं (मं F) व्य (am CF) व (चF)स्थाप्य β

XIII,25. (For one) going 586 (yojanas) and a yojana diminished by $1 / 3\left(=586^{2} / 3\right.$) from there the last half of the (zodiacal) circle does not rise and the first (half) does not set.
XIII,26. Those who dwell at Lan̄kā see the north pole star touching the earth, those who go to Meru see it standing in midheaven (i.e., zenith), and those who go between (these two places) see it in between.
XIII,27. For those who dwell on the top of Meru the Sun, having risen once, is visible for 6 months in the six (signs) beginning with Aries; when it proceeds further, it is visible for the Daityas.
XIII,28. For them Aries is always at the ascendant. Its (Aries') (first) third part (i.e., decan), triṃśadbhāga (i.e., fines), navāṃśa, and dvādaśabhāga (i.e., dodecatemorion) belong to Mars.
XIII,29. Lañka is under the (celestial) equator; there the sphere of the constellations is even (sphaera recta). A day is 30 nāḍīs there, and a night always is also 30 (nāḍis).
XIII,30. Having made level with water a raised surface, having seen where the directions are, and having set up at the southern tip a gnomon (whose length) is measured by (the extension of) the (prepared) surface,

ॠनुशङ़ बुक्षविन्यस्तलोचनो नामयेतथा राडुम् /
 पतितेन अवति वेधो लझ्रायूधूगेन तु सुमेरौ। बिनतेन चान्तराले फलके व्यासार्धसूत्रसमे //32 // तत्राबलम्बको य: मो sजज्या नस्य राञुविवरं यत् /
विषुबटवलम्बको sसौ याम्योत्तरटिक्त्रसिड्डिकर : ॥3३॥
स्बप्रत्ययेन सन्तो बिच्चायैबं वट्रीत्त थूम्यम् /
मकलमहीमानं बा रसभिव लवणाम्यसो sल्पेन //३y//
नित्यमधः स्थस्येन्टोर्भाथियानो: सितं यबत्यह्थम्य /
स्बच्शाययान्यटस्तिनं कुम्लस्येबातपस्थस्य //३५//
सलिलमये राशिनि रवेटी़ितयो मूधितास्तमो हैराम् /
बपयन्ति टर्पणोटरनिहिता इव मीचिरस्मान्त : \|३६॥
$35 a$ quoted by Prthodaka on BSS $21,8<-d ; 36$ quoted by Makkibhatta on SŚ 1 .
$31 a$ रूज्ञ० β रांकुबु (कुबुवm.C) च्यं $a \beta \quad 32 b$ लम्बतघार्थां E) β

- मूध्ध (द्य β) गेन a β 32c चांतराल $a \beta \quad 32 \mathrm{~d}$ होयाध ${ }^{\circ} a$, घोध्यर्डं β

सूत्रसमो (मा: E) $\beta \quad 33 a$ नत्रावलंबो को a 33 b सो सज्या $a \beta$ यत्तं (ते C) β 33 c विषुबटबलंडको β 34dरसमि- a, रसमित β लबणास्बसो न्येन $a \beta$

a P, corr.T.-D. 35 स्वछायान्पटसितं aF $36 a$ मलिलमये ब शाशिनि a $36 b$ वर्टी (टी $D)$ यो a, ध (घुC) तयो $\beta \quad 36 d$ इमं ब मं (हं F) हरिस्यांन : β

XIII,31. with his eye directed to the base of this straight gnomon, one should depress the gnomon until the tip of the gnomon is at the middle of one's sight of the north pole star.
XIII,32. At Lan̄kā the observation is with (the gnomon) fallen down, at Sumeru with it upright, and in an intermediary place with it depressed. If the (extension of the) surface is equal to a string representing the radius,

XIII,33. whatever is the perpendicular (from the tip of the gnomon to the horizontal surface) there is the Sine of terrestrial latitude, and whatever is the distance between (the base of the perpendicular and the base of) the gnomon-(a line) which determines the north and south directions-is the Sine of the terrestrial colatitude.
XIII,34. By their own intelligence good men, investigating thus, proclaim what is the center of the earth or the measure (of the diameter) of the whole earth just as (they proclaim) what is taste by means of a little salty water.
XIII,35. One half of the Moon, which is always below (the Sun), is bright because of the Sun's light, the other half is dark because of its own shadow, just like a pot standing in the sunshine.

XIII,36. The rays of the Sun, reflected on the Moon which consists of water, destroy the darkness of the night just as, falling on the surface of a mirror, (they destroy the darkness) within a house.

प्रतिटिवसमेवम्कात् स्थानवियेषेण रौब्यपरिषृद्जि：／
यवति शशिनो डपराहे पधाद्रामे घटस्पेव／／ $39 / /$
अस्तितान सिताध पच्छाटसितं पनाह र्नर्कमीचन्ते／
रशिज्बयाटु सयतो न चान्यया〉 तु रीतकरस्ंस्था：／／३ट／／
चन्दाटूह बें बुह स्थितरनिकुजजीवार्कजास्ततो यानि ।
प्राग्गयस्तुन्यंजा ग्रहास्तु सर्वे स्वम्डलगा：／／३e／／
तैलिकयक्रस्य यथा विबरमराणां चनंं 2 वति ना पाम्／
नेम्यां स्यान्महटेवं स्थितानि रास्यन्तराण्यूहर्वम्／／४०／／
पर्येति रारी रीघंद्रं स्बल्मं ननत्रम्डलाहन：स्थ ：／
ऊर्वस्थस्तुल्यजनो वियरति तरो》 महटर्कसुत：／／४१॥
मासाहि या यथाह वें चन्दात् सौराटह ति होरेशा：
ऊर्वं क्रमेण टिनपाध पंधमा वर्षमा：स्पषा：／／४マ／।
त्रैलोक्यसंस्थानं नाम्न न्रयोटशो s घ्यायः／／

39 quoted by Utpala on BS $2(p .44) ; 40-41$ quoted by Utpala on BS 2（p．44）； 42 quoted by $U+p a l e$ on $B S ~ 2 ~(p .35)$ ．
$37 a$ मेबमर्बा（च्या F）क्（कू F）$\beta \quad 37 b \circ$ विदोषेण रौ（शो C）तय（क्नC，त्म F）β $38 a$ असिता $\beta \quad 38 b^{\circ}$ मी（मि C ）नंते $\beta \quad 38$ c राशित्रयां a ，याशित्रया ${ }^{\circ} \beta$
－टूसयतो म a 38 d यो यत（येन्न C ，but crossed out）a β गे（गेति C ，but crossed

वु（पु E ，बु F ）घस्बि（स्बी C ）त० $\beta \quad 39 c$ म्राग्ग（गा β ）तय（रा β ）स्नु（ $-\beta$ ）न्यजबा （या F）$a \beta \quad 40 b$ बिपर β नाहुयुया $\beta \quad 40<$ मे（म्ये C）म्यं β स्यान् om．Utpala

$\beta \quad 41 b$ ननममंडलमधन：स्थ：a ，नत्रमंडक्लमधय（मंध पमंडल $($ ）स्थ：β 41 c ऊह ${ }^{0} 0$ ，ऊर्टे β पाd डीि संस्थितस्तथा न महटं Utpala बिबरति β
न महटं $a \beta$ ，com．T．－D． $42<$ टिनपा च a ，नि（ब्ल B, टि E, णि F）पा य β पंचमास्पा：$a \beta$ col．नाम om．a

XIII,37. Every day, because of the change in its position from the Sun (since conjunction), there is an increase in the illuminated portion of the Moon just as there is on the western part of the pot in the afternoon;

XIII,38. (this is) from after the krsṣnapakṣa, but the dark (portion increases) from after the śuklapakșa. Those who dwell on the Moon see the Sun for half a pakșa on either side of the disappearance of the Moon; otherwise there is no light.
XIII,39. Above the Moon are Mercury, Venus, the Sun, Mars, Jupiter, Saturn, and then the nakṣatras. All the planets, moving in their own orbits, travel to the east with the same velocity.
XIII,40. As the interstices of the spokes of the wheel of an oil-press are small at the hub but large at the rim, so are the interstices of the zodiacal signs (as one goes) higher.
XIII,41. The Moon, which is (furthest) below the orbit of the nakṣatras, revolves fast about its small (orbit); Saturn, which is high(est), travels with an equal velocity arround its large (orbit).
XIII,42. (Ascending) up from the Moon (each successive planet) is lord of the month, (descending) down from Saturn lord of the hour. (Ascending) up in order (every) fifth (planet) is lord of the day; the lords of the year are clear.

The thirteenth chapter named: the Form (of the Universe) Consisting of the Three Worlds (of Gods, Men, and Demons).

साशीतिकाहुलशां विस्तीर्णवृत्तमविषमं धरित्र्याम्/
समरास्संश्रिचहं परिघौ सापक्रमं कुर्यात् ॥१॥
याम्योटक्समसूत्रादपक्रमांश्याबगाहियि: सूत्रे :
प्रथमबहझं विसं वृत्तन्रयमालिसेन्मध्यात् $\|2\|$
अचे चिसां लेखां प्रकुर्याध्य यगणचिह्दपर्यत्ताम् /
अधोत्तर ले सान्तरमपक्रमांयोत्धमाटाय // ३॥
द्विगणण प्रसार्य वृत्ते स्बे टिक्र तधापांशटलायस्ता: /
प्रथमर्मचरविनाड्यो च्वेया: परिरोषयोर्मिन्रा: // ४//
नाइ्यः बड्ट्यो चागास्तन्न्या व्यासाध्धरोधिता घाया/
माह्यन्टिनीसमेता नाड्यर्थे सा तया हीना $/ / \mathrm{l} / /$
घायाहरिना यन्तर नीवाचापांशषष्ठ तागो य:/
ता नाड्य: प्राग् याता: पर्याच्छेषास्तथा प्राता: // $\varepsilon_{2} / /$
$1<$ ममराइ्यंकं चिहं $a \quad 1$ मापक्रमं a, मायक्रम : β, com. T.-D. $2 a-b$ बसूत्रापटक्रमा
$\beta \quad 2$ प्रथमब $(-\beta)$ टेकाच्चिप्रं $a \beta \quad 2 d$ वृत्तनुत्रयमा० $\beta \quad 3 b$ कुर्याक्य a, प्रक (कुC) र्या (या E, ने B) कर (क C, का F) लंगण० β पर्यंतान् $(न \beta)=\beta$, cor. T.-D. 3d बमांयोच्ह (ह CF) मादाय $a \beta$, com. T.-D. 4a-b प्रसा (स्ताC) र्य (रे C, प EF) वृर्शोन (वCF) वा (बाCF) पांशका टलाय यस्ता: $\beta \quad प_{c}^{\circ}$ बिनाड्ये α, बिनाप्रे β $5 a$ षड्या a, ष (अ्र C) मत्र या β, com. T.-D. $5 a-b$ यागास्तज्या a, मा (साC, चा F) गारु (द्ध .F, स C, but crossed out) β icom. T.-D. $5 b$ द्वा (हा C) सां β
S_{c} माध्यंटिनी a $6 a^{\circ}$ हरिज्या ${ }^{\circ} a$ ०य्यं (थ्यांC) तरजा जीवा β $6 c$ यत्र: a, युता β, com. T.-D. $6 d$ पझा (उवाC) छेषास्त (स्न a)था प्राप्र (म्रो a) $a \beta$

Chapter XIV

XIV,1. One should make on the ground a level circle having a diameter of 180 digits, with marks indicating the prime vertical, the zodiacal signs, and the degrees on the circumference, and with the degrees of the declinations (of the signs) (marked).
XIV,2. From the center (of this circle), with strings which are perpendiculars from the string marking the north-south prime vertical to the (marked) degrees of the declinations (of the signs), one should draw three circles marked as was the first.

XIV,3. One should make a line cast (from the center) towards the terrestrial latitude to the, mark (for it on the circle graded like) the zodiac; take (that chord) in (the circle whose radius depends on) the degrees of declination (of the first sign) which lies between the line of terrestrial latitude and the north(-south) line (where they intersect the circumference);
XIV,4. multiply it by 2 and extend it on its own circle, and multiply half the degrees of the arc corresponding to that (chord) by 10 . (The result) is to be known as the vinādīs of ascensional difference for the first sign; (those) for the other two are composite.
XIV,5. The nādīs (since sunrise) multiplied by 6 are degrees; the Sine of these subtracted from the radius is the shadow (at any time) increased by the noon-shadow; in order to find the nāḍīs it (i.e., the shadow at any time) is diminished by that (i.e., the noon-shadow).
XIV,6. Whatever is the sixth part of the degrees of the arc corresponding to the Sine which lies between (the end of) the shadow (so diminished) and the horizon, these are nādīs; to the east those which have passed are obtained, to the west those that remain.

तिर्यग्रेखा समटद्विणोत्तरापक्रमांशरेखायाम् / तझापांशा टिग्घा राश्युट्यविनाडिका: क्रमरा : //9// मध्याहे प्राक् तथा घायायामच्यतो गते शक्षे।
शक्रग्रयातस्त्राद्विषुनान्तरं यद्रक्राक्तम् INII
बिन्यस्योटक छायां घायाग्राच्हुर्दुरपतः पात्यः /
तत्कर्णस्पमं मध्यात् प्रस्नारयेत् सूत्रमापरिछे: $/ / \mathrm{e} / /$
तद्विषुवान्तरमनो sतो sचायैंबं प्रकल्मयेच्छायाम् /
इसे डहीन ब्रुट्ह वायनमच्वादटि यदूंनं वा $/ / 9 \circ / /$
तज्ज्या निर्यम्रेस्वाविषुणदेखास्पिता प्पृर्शाति यक्मिन् /
नझापांरासमानो क्रेयो s को गोलयागेन //aา//
होव्चार्दयधिष्टिेधाटर्केन्होरत्तरांगकारांगः /
स्फुट्नषतिधिर्त्तेया तस्मात् कार्या तथा चान्या $/ / 92 / /$

Cor. T.-D. 7d क्रमंशा: a, क्रमशा β, com. T.-D. $8 a$ मध्यानां प्रांतथा a,
मध्यान्यां घातपा (याCF) $\beta \quad 8 b$ शायायामस्वतो a, हायाया (या ०.. CF)मन्यतो β
गने नत : शांकौ (को: $a) a \beta \quad 8 c$ ब्या (पा C) तं (त β) त्सू (सू β) त्रा ${ }^{\circ} a \beta$
8 d विषुवांतरयाख्यांदु (टि B, दि, E) टिता: $a \beta$ वa विन्यख्योटक् a,
विष (न्य C, चृF) स्य (2 ये C) श्योट (ट्टEF) क् β, com. T.-D. $9 b$ माता: β
ad.परिद्यौ (घो $E F$) β 10a तहिष्वं (घं BE, षंक C) तर ${ }^{\circ}$ a β, cor. T.-D.
$10 c$ बुहुयायनम ${ }^{\circ} a$, बुध्ययन ${ }^{\circ} \beta \quad 11.2-b$ तिर्य ग्रेस्वाटिषुब ${ }^{\circ} \beta \quad 11 c^{\circ}$ समान $a \beta$,
 रंत्व (त्य C) शरावतकरि : $\beta \quad 12 c^{\circ}$ तिधि त्रेया a

XIV,7. The ecliptic is on a line (running through) the degrees of declination (marked) on parallel north-south lines (beginning at the beginnings of the signs); the degrees of are corresponding to these (segments), when multiplied by 10 , are, in order, the vinādikās of rising of (each of) the signs.
XIV,8. (About the end of) the shadow (obtained) at noon (on the equinoctial day describe a circle); move the gnomon elsewhere, to the east (so that it lies on the eastwest line); whatever is marked on (the circumference of) the circle by a string proceeding (from its center) through the tip of the gnomon is the distance from the equator (i.e., the colatitude).

XIV,9. Lay out the (noon equinoctial) shadow to the north; the gnomon is to be caused to fall to the west from the tip of the shadow. One should extend a string parallel to its hypotenuse from the center of the circumference.
XIV,10. The distance of that from the equator is the terrestrial latitude. In this way one should determine the (noon) shadow from the terrestrial latitude. Knowing on any particular day the declination (of the Sun), which is either greater or less than the terrestrial latitude,

XIV,11. place its Sine (between) the ecliptic and the equator; wherever it touches (both), (the longitude of) the Sun, depending on its portion of the sphere, is to be known as being equal to the degrees of that arc.
XIV,12. By means of an observation with the rod on half of the construction (i.e., a diopter on a semicircle) (find) the degrees between the Sun and Moon (and take) a twelfth part (of them); (the result) is to be known as the true lapsed tithis. From this is to be computed the next (tithi).

दत्वांशकेष तेष्वेव यास्करं देयकेन विच्तातम् /
स यवति तस्मिन् काले निशाकर शेश्चकेनैन //9३//
नाय्यासन्थ ायाग्नमझ्रेत्ट त्रिस्तनो लिसेन्मत्स्यौ /
तन्मत्स्यबटननि:सृत्सूत्रद्वयवातनुन्येन / १४।/
सूत्रेण बिन्टुकत्रयमंस्पर्शोसमेन मण्डलं यत्र स्यात् /
तेन नदाहि खाया रा़ोर्गच्घत्यमुंचन्ती //qu/।
तन्मम्डलमध्या《घोम्पूत्रुतच्ध दव्विणोत्तरं अवति।
तच्शु्रुंविवर मुट्शास्थितं च माध्यच्तिती घाया $/ / 9 \varepsilon_{l} / /$
हरिजमिति गगनमवनौ प्रसक्तमिव यत् प्रटृ्य्यते s नेषे/
समभिति पूर्वापररेसेवं च टच्चिणोत्तरगता //99//
घ्रुवहरिजविबरमन्नो sन्नवतिविबरं च लम्बको sदिहितः /
लग्नोनमिति स्नम्यं वुव्यासो sस्नोटयरचक्रस्म>//१C//
 हो पकेन (नom. C) $\beta \quad 13 \mathrm{c}$ अवति हि तस्मिन् $a \beta$, cor. T.-D. 13d निश्याकरात् घिव्य a, निशाकर - व्यं β, com. T.-D. $14 a$ ना स्यासंनघाधां (या० β) a β 146 ग्रमंकये a, ग्र्य (गंत्र $B E)$ नं (न $B E)$ कपे (वे C) β, com. T.-D. त्रिसुतो β $14 c$ तन्मत्स्य (स्य C) ब -- शिसृत ${ }^{\circ} \beta \quad 14 d$ पातनुल्यन $\beta \quad 15$ a सूर्येण α, स्तार्येण β, com. T.-D. isc निन (नF)तटद्द्रि β 16b घंकु (क $E F$, कC) त: $(\pi \beta)$ ब व a β दव्विणोतरे $\beta \quad 16 \mathrm{c}$ तह्न (जवि C) षविवर ${ }^{\circ} \beta \quad 16 d \cdot$ स्थितच (:य F) β $17 a$ हरियमिति $a \beta$, com. T.-D. गमन ${ }^{\circ} a$, गम (भि C) ते β, com. T.-D. $17 b$ प्रटृस्संते तेषु a) प्र (पूC) टिसंतने (नC) षु (बुC) β, com. T.-D. 17 c -d पूर्बापरनो (ने C) से (से $E F$, यि C) ब (च E) मृण a β टद्विणोत्तरग (ग om C, त F)न (गTF) $\beta 18 a$ घुबहीरेज ${ }^{\circ} \beta$ $18 a-b$ मना : विति (भि β) रबटि (वि β) वि (किं β) वरं a β, com. T.-D. $18 c$ मणो-1० β $18 d$ घुव्यासो β स्तोट्य a, स्तो β

XIV,13. (For one) adding (the longitude of) the Sun which is known by means of the (geometrical) construction to these degrees (of elongation) there results (the longitude of) the Moon at that time by means of just the construction.
XIV,14. One should thrice mark the tip of the shadow near the center (of that construction); from these (three points) one should draw two fish (-figures). (With a center) equal to the intersection of the two strings issuing from the mouths of these fish (-figures),

XIV,15. and with a string (as radius) equal to (the length necessary for) touching the three points (draw) a circle; on that day the shadow of the gnomon moves on this (circle) without leaving it.

XIV,16. The line from the center of that circle to the gnomon is the north-south line; its (the circle's) distance (from the gnomon) to the north is the noon shadow.

XIV,17. That (circle) which seems to join the sky to the earth at their ends is called the horizon; the east-west line and the north-south line are called the prime verticals.
XIV,18. The distance between the north pole star and the horizon is the terrestrial latitude; the difference between 90° and the terrestrial latitude is called the terrestrial colatitude. Midheaven is called the lagnona (nonagesimal); and the diameter of the day (-circle) is that of the circle (which passes through) the setting (-point) and the rising (-point) (of the Sun).

टेव्यवटर्घ्यकपालं सचिह्रमचोचतं सटिक्रचक्रम् /
सुसमावटलिन्यस्नं कुर्याच्छड्डुं सनाथ्यक्ष $/ / १ \mathrm{e} / /$
मूत्रद्वयसंपातर।ेच्शायात्नुक्तांशका रबौ टेया : /
स थबत्युट्ये राशिर्टिनस्य नाड्यध्ध ता याता: $/ / 20 \|$
समयगणाझक्रक्रमध्राडुलबहलमायतं हस्नम् ।
विस्तारमध्ययागे हिंद्र नदामि तिर्यक च //29 //
मध्याहार्कमयूरं प्रवेश्य सूद्येण परिधि विचरणेसन/
मध्यावलम्बिसूत्रातसान्तरांशास्तहस्यान्त : //22/\|
समवृत्तपृष्ठमानं सून्यं गोलं प्रसाध्य दारुमयम् /

याम्योटग्रेखाया सबाजसन्धुययतो यसेद्वेहात् /
अयनांशकाङ तुन्यांस्तिर्यर्गेध त्रकाराकरान् //2४//
 च $\beta \quad 19 C$ सु (स C) य (पC) माबढ ${ }^{\circ}\left(\mathbb{R}^{\circ} C\right) \beta$ 19d कुर्याटिक्क: (घुतु: D, क: β) a β 206° छायामु (मु om. C) का (का C) शका $\alpha \beta$, com. T.-D. $20<$ अबति उटयो $a \beta$ $20 \mathrm{c-d}$ राश्रि (सि $C F$) हिना (ना C) ड्य (व्य C) ख्य β 20d यातः β 2laसमयगणांफकवक्र० $\beta \quad 216$ ०्मध धांगुलबटनम- तहस्ता $\beta \quad$ Ind तड्रामि $a, \cdots-\beta$ निर्यका a β, com. T.-D. $22 a$ मध्याद्रा (गा C) कें β म्मयूषं a, ममसू (सुC) षं β, com. T.-D. $22 b$ विबरेण a, बिचरेण $\beta \quad 22 c-d$ ०सूत्रां तला (ल्मा $B E$, ल्मं F, ल्लं C) तरांशा ${ }^{\circ}$ $a \beta 22$ $^{\circ}$ टस्पन्त: a, टन्यंबं β, com. T.-D. $23 b$ प्रसाध β घातुमयं a $23 c$ स्थगितार्कमंक्रन ${ }^{\circ} a$, स्थगिचावमिंकित $\beta \quad 24 b$ घखा जसंध्या (Eय F) चयतो β $24 b$ ०स्तिर्यग्बैद्य (हेंC) β ०्रकाशकरान् a

XIV,19. One should make a water-basin like the (plane geometrical) construction with the marks (of the degrees) and with the circle of directions, and tilt it by (the amount of) the terrestrial latitude; insert in it a very symmetrical cavity and place a gnomon to mark its center.

XIV,20. The degrees that have been passed by the shadow from the intersection of two lines (i.e., that of the circumference of the basin and the shadow at dawn) (along the day circle) are to be added to (the longitude of) the Sun; the result is the sign at the rising (-point), and (the degrees passed by the shadow, divided by 6) are the lapsed nāḍīs of the day.
XIV,21. (Make) a circle half a digit wide and a hand in diameter and mark it evenly with (the signs of) the zodiac; (make) a hole in the middle of its width. Coming through this obliquely
XIV,22. cause a ray of the Sun at noon to enter (the circle) with a small motion of the circumference. The degrees between (the spot) that is heated (by the Sun's ray) and the string hanging from the middle (of the circle) is its (the Sun's) zenith distance.
XIV,23. Construct a small sphere of wood having the measure of its surface evenly round; on its circumference (i.e., surface?) (draw) two lines (indicating) the passage of time, which are bent where the Sun stops (i.e., at the two solstices).

XIV,24. On either side of the juncture of Pisces and Aries, by means of observation, one should lay off north-south lines (perpendicular to the equator, whose lengths) equal the marks of the degrees of declination (for appropriate zodiacal longitudes); these determine (the positions of) the "illuminators of the oblique observation."

अच्चोत्वितस्योटक तिर्यग्वेह त्रकाराहरिजस्था: /
या नाड्यस्ता याता: षडंशकसमान्वता मध्ये //24//
यट्यूति कालचक्र मृगाटिकमुट्टगेयने युवृद्यि: स्यात्/
व्यत्यासे तद्जानिर्य्यस्याताच्केषमिति 〈ग〉म्यम् //2ع.//
गुणसलन्नपांशुरियर्योजितानि बीजानि सर्वयन्ताणाम् /
तै: फलके कूर्ममानबयथेष्टरूपाणि कार्याणि $/ 129 / 1$
गुरुरचपलाय दथाच्चिष्यायैतान्यवाप्य रिष्यो 5 पि/
पुत्रेणाप्यज्ञात बीजं संयोजयेचन्त्रे $/ / x \subset /$
अयियनटेशाच्चरात् कृतबेछेनोडु<पोपूर्णमाकर्म /
टृष्टिध्टिकोट्यांश तुल्या-्यत्बे बियुतसुक्म \| 2e/l
तिधिवद्विकृत्य लब्नं चरकालेनान्वितं क्रियायेष्/।
जूकाटिष्वपि हीनं विषुवति देशान्तरं स्पष्ट् $/ / 30 / /$
$25 a$ अजोनिसस्योटक् a, उन्ञौ (ज्ञो $C F$) निपूस्यो (ष्यो B, प्यो E, यिनोशकाक्येस्पो C) दक् (व् F) β, cor. T.-D. $25 b$ तिर्यग्बेदः β हैरिजास्था: $a \beta$, cor. T.-D. $25 c$ या याड्यस्ता a
वाता: a $25 c$ नाड्यस्ता to $27 a$ गुण $0 \mathrm{~m} . C \quad 26 a$ सट्पेति $\beta \quad 26 b 2$ सागाटिक a,
याटिक β ० मुट्यातेषु बृद्जि: β, व्युटसते चुवृद्यि: a साa β, com.T.-D.
$26 c$ तद्याति $^{\circ} a \quad 26 d^{\circ}$ मिति - म्यं a, मिति β, cor. T.-D. 27 a गुणं a β, cow. T.-D.
$27 a-b$ ब्योजा (नी F) तानि β 28a गुरूनपालाय a, गुनुव्यप (प- $\overline{\text { गुर्न }}$ - β, com. T.-D.
$28 c^{\circ}$ ज्ञानं a $28 d$ संयोजये - तो (नो BE) $\beta \quad 29 b$ कृतबहोनोडुपूर्णमाकर्म a, चताज (य C) होनीटूप्ररामिकर्मा (म्न F) $\beta \quad 29 \mathrm{c}$ टेष्टि० $\beta \quad 29 \mathrm{c}$-d घटिकोटयांसं टुत्पान्यत्वे a, घटटकोटसांस्ं तुल्यान्यत्वे β 2ad विड्यु (टु $F, F C$) त ${ }^{\circ} \beta$ 30 त तिधि बद्वि $T(2 T \beta)$ ज्य (ज्यं β) a $\beta \quad 30 b$ यकालाटि (द β)नाँ्वितं a β, com.
T.-D. क्रियाह गेषु $\beta \quad 30 c$ जूकाटिषु पतिही (हिC) नं a β, com. T.-D.

XIV,25. Tilt (the sphere) to the north by the amount of the terrestrial latitude (and measure the degrees between) the "illuminator of the oblique observation" (i.e., the point on the ecliptic occupied by the Sun) and (the point where) the horizon (and the day-circle) meet; the lapsed nāḍis correspond to a sixth part (of the degrees) in between.

XIV,26. If, among the time-circles, one of those beginning with (that of) Capricorn rises, (then the Sun is) in the northern ayana and the length of daylight increases; in the reverse situation the length of daylight decreases. The rest is to be approached on the basis of what has already been explained.

XIV,27. The seeds of all magical diagrams are furnished by string, water, and sand; with these the forms as desired, of tortoises or men, are to be made on a surface.

XIV,28. The teacher should give these things only to a steadfast pupil; the pupil, having received the seed which is known not even by his (i.e., the teacher's) son, should use it in a magical diagram.
XIV,29. With an instrument adjusted to the terrestrial latitude of the given locality observe the fulness of the Moon; (the observed longitude) is diminished or increased by another (longitude computed for a time) equal to the ghațikās (after sunset) of the observation (which are computed) by means of the rising-time (of the longitude of the Moon);

XIV,30. convert (the result) as in the case of a tithi (into time). Add the quotient to the time of half of the equation of daylight in (the six signs) beginning with Aries, subtract (the half-equation of daylight) in (the six signs) beginning with Libra; (the result is) the accurate longitudinal distance (of the given locality from the prime meridian) along the equator.

घ्युनिशि विनि：सृतनोयाटिष चिष्ट्रेण कहिथागो य：／
सा चाडी स्वमता वा थास्ताभीति：रांत पुंस्त：$/ / 39 / /$
कुम्भार्थाकारं ताम्रं पार्तं कार्यं मूले घिदंद
स्वच्छे तोये कुण्डे यस्तं तस्मिन् पूर्णो नाडी स्यात्／
मूलापाताहेहो ना षहिर्योज्या चाहा रात्या
वर्णा：बहिर्वक्रा：न्लोको यत्तन् षष्य्या वा सा स्यात् $/ / ३ マ / /$
बुह्वा रशिविन्चें ट्टष्ष्वा ताराशाशाइ विवरं च।
संसाह्येंनं नाच्य：पच्यानारासमायोग：／／३३／／
बहुला：बष्ठांशान्ने साहे हस्तत्रये च यगणोटन／
रोहिण्यसटलान्ते दान्विणत च्धार्धषष्ठषु／／३४／／
हस्ते s巴मे sएमें sरो पुन्बसौ दविणोत्तरे तारे／
उद्धचतुर्षे हस्ते पूष्यस्योटक्र चत्रों sरो／／३に॥

33 quated by Utpala on BS 24，4－5．

$31 c$ स्वमतो a ，स्ब（स C ，ख्न F ）माथो（नो $E) \beta$ आम स्बासाशीतसतं $a \beta$ ，cor． T．－D．घुस：$\beta \quad 32 b$ क्रुडे $\beta \quad 32<$ मूलाल्पत्वाह्टेधो $\alpha \beta$ बहिजोज्या $a \beta$ ， com．T．－D．मरू a, मद्रा β ，com．T．－D． $32 d$ वर्णा（स्प्पा D ）हाष्टिन्त्रा ：a ， वर्णा：षहिथिक्रा ：（म्न्रा：$E F$ ，त्रा：C）β, com．T．－D．म्यात् a साV $33 a$ राशिखिनेयं
 33 कृत्वा Utpala नारां $\beta 33$ स सस्ता（म्न F ）हैयैव β ，संसाध यैव a ， संसाध्य च Utpala，com．T．－D．बक्तब्य：UtpJa $34 a$ बहुला a ，चद्रला β षष्षांशाने（ने F ，नि $C E$ ）$a \beta$ ，com．T－D． $34 b$ यगणोटक（क：E ）β ，corr．TTD． 34 d टन्विणस्तस्बसाध，${ }^{\circ} a \beta$ ，com．T．－D． $35 \mathrm{c}-\mathrm{d}$ हस्नेष पुष्प（ब्यो C）स्योटन्त β

XIV,31. A sixtieth of the water that escapes by means of a particular hole during a nychthemeron is considered to be a nāḍī, or else 180 breaths of a man.
XIV,32. A copper vessel shaped like half a pot (i.e., a hemisphere) is to be made; (pierce) a hole in its bottom and put it in clear water in a basin; when this is full, that is a nādi-or else the observation (is made) by means of (the striking of) the sunken bottom. For a day and a night 60 (of these) are to occur. Or else (a nāḍī is the time it takes to recite) 60 of these verses (each of which consists of 60 long syllables).
XIV,33. Knowing the latitude of the Moon and observing the distance of the Moon from a star, by calculating one should predict its conjunction with the star in the future.
XIV,34. (The yogatārā of) Kṛttikā is at the end of the sixth degree and $3^{1} / 2$ hands to the north of the zodiac; (the yogatārā of) Rohiṇī is at the end of $8^{1 / 2}$ (degrees) and $61 / 2$ (hands) to the south;
XIV,35. the two (yoga-) tārās in Punarvasu are in the eighth degree and at the eighth hand north and south; (the yogatārā) of Puṣya is in the fourth degree and $4 \frac{1}{2}$ hands to the north;

दचिणतारा हस्ते सार्पस्यांरो नथोत्तरा तारा/
पित्र्यस्य स्वन्चेत्रे बहे चांरो समायोग: //३६//
चिन्राह \{ाष्यम नागे दच्चिणनः संस्पिते त्रियिर्सेत्तै: /
बिच्चेपकलान्ताटड़ुलानि मध्याच्शराझस्य // そ9 //
बिलेपात् सासटरापनीय तिधिस्ञुणास्त कृताग्नंयः /
विद्वाटडुणनमांं कालं टिन्नोगविसोरेण //३ट //
विषुबच्धायाध धगुणा पंचकृतिस्तन्कलास्ततस्याप् /
हायात्रिस्तकसुतं टर्शारि नर्गुणिं विनाड्यस्ता: //३e // तारि: कर्कट काधावलल्नण्न नाट्रो सहस्तांशौ।
याम्यातो वनितामुस्वविशेषतिलको मुनिरगस्त्य: $/ / ४ \circ / /$
गणितविषयोपन्ह च्शेच्चकयन्रै: प्रकाशानां याति /
सुस्वयनि मनांकि पुंस्वां टिख्यं कालाश्रयं चानम् //४१ //
इति घेयक्यन्राणि घतुर्टूरो sह्याय: //

39-40 quoted by Utpala on BS 13,21
$36 b$ सार्पस्पांसे a तथोत्तरान्तारा $a \quad 36 c$ स्नहेत्रे a, स्व (स्पC) हेचत्रे β, com.
T.-D. $36 d$ वां (वा β) रो a β, com. T.-D. $37 a$ चित्राह अभ्रमय नागे a,

चित्राहा (द्ये CF) सथागे β, com. T.-D. $37 b$ तिहस्तै: $\beta \quad 37 c \circ$ कलातांट 0 , कलाता (घ्यता C) $ट_{2}^{0}\left(\mathcal{L}^{\circ} F\right) \beta$, cor. T.-D. 37d मह याराध्राकस्य β
$38 a-b$ समटशायनीय $\beta \quad 38 b^{\circ}$ संगुणा $a \beta$, cor. T.-D. जत्चताग्यंश्र: β 38c माणं a
38 टिन्नोगे बि (चि β)रेण $a \beta$, cor. T.-D. $39 a^{\circ}$ हायाद्विगुणा (णणा F) β $39 b$ पंचकृतेस्त $^{\circ} a \beta \quad 39 c$ घायानृस्तपक ${ }^{\circ} a$, घायातृत्तक ${ }^{\circ} \beta$, cor. T.-D.
39d ण रुणिता $a \beta$, com. T.-D. $40 a-b$ कादाय (पC) लग्नं $a \beta$, corr. T.-D. $40 b$ तदरो (तटरो तदूरो C) β सहस्तां (स्तं C) शो (या C) $\beta 40 c$ याम्याता (स्ता a) $a \beta$ वनितास्तु (स्तु a) स्व $a \beta$, com. T.-D. $40 d^{\circ}$ विषतिलको β मुनिणस्त्य : a $41 b$ प्रकार्राता β यातं $a \beta$, corr. T.-D. $41 \mathrm{cर}(2 F, 0 \mathrm{~m} . E)$ घसुस्बयति β col. इति om. a

XIV,36. the southern (yoga-) tārā of Āśleṣā is in the (first) degree and a hand (to the south), the northern (yoga-) tārā is also (in the first degree and a hand to the north); the conjunction (with the yogatārā) of Maghā (takes place) in the sixth degree in its own field (i.e., in Maghā);
XIV,37. (the yogatārā of) Citrā is at $8^{1} / 2$ degrees and 3 hands to the south. The digits (are counted) from the center of the Moon where the minutes of latitude end.

XIV,38. Subtract 17 from the latitude (of the yogatārā with respect to the Moon), multiply (the remainder) by 15, and (take) a thirty-fourth (of the product); one should know (that this is) the measure of the digits. (Compute) the time (of the conjunction) by means of the difference in the daily progresses (of the Moon).

XIV,39. Multiply half the (noon) equinoctial shadow by 5^{2} ($=25$); the result is in minutes. Add 21 times (half of) the shadow to the arc from this and multiply (the sum) by 10 ; the result is vinādis.

XIV,40. By means of these (compute) the ascendant from the beginning of Cancer; when the Sun stands there, to the south the sage Agastya, (like) a forehead-mark distinguishing the face of a lady,
XIV,41. shines forth because of the magical diagrams on the (graphical) constructions which are understood by means of the principles of mathematics. The divine knowledge which pertains to time delights the minds of men.

Thus the fourteenth chapter: the Magical Diagrams of the (Graphical) Constructions.

सूर्येन्दु नगणधात्रीसंस्थानविदो sfि तृत्य कसयायि/
ग्नहणं सटैब थानो: स्पानविरोषात् कचिद्वर्यम् //१//
अविटितसंस्थानानां बोहो डपि हि जायते यथा घयानात्/
घीरं राखोपहितं दरानविनारान्यमं यबति //2//
संच्चेपसूत्राविरोषेण नीर्यते टिबाकरो येषाम् /
तेबां सूर्यग्रहणं स्व च टेरा : प्रतिदिनं कापि //३//
सकृटेव रविं ग्रस्नं पर्ं पश्यान्त शत्रिगता: पितरः/
अग्रस्तमपि च पबं ग्रहमध्यं पौर्णमास्यां तु /॥ ॥/।
न कटाथिटपि ग्नहणं मेरुगता मेरूसंनिकृष्टा वा /
पश्यन्ति तिग्मरश्मेरनुच्यावाद विधियांबो: $/ / \mathrm{c} / /$
अर्केन्दुटृषिटे वेध ना नेरूगा: कटाथिटपि पार्षस्था: /
ने 〈सर्वे सलु〉 विवरं पस्यत्त सटेब सूर्येन्हो: $/ / \mathrm{E} / /$
$1 a^{\circ}$ थगणाहात्रींa 1 J ग्नहाणां a $1 d$ बविरो (शोC) बान (न E, om.C)-(-om.C)
β कचिट्टर्स्य a, घु (धुC, क E) चिट्टर्यं β, com. T.-D. $2 a$ आआविटितसस्तानानां $\beta \quad 2 b$ वेय्यो (घौ C) $\beta \quad$ आान्यां a, घ्यान्यां (नां C) $\beta \quad$ 2d द्यान (न वm. C) न ($=\mathrm{am.a} \cdot \mathrm{CF}$) विनाशं $a \beta$, com. T.-D. $3 a$ संचेपसूत्राव (वं β) शा (शाया E) शिना $a \beta$ $3 b$ त्रियने $a \beta \quad 3 c$ तेषां $0 \mathrm{~m} . \beta \quad 3 \mathrm{~d}$ सबटेशा: $a \quad 4 c$ अग्रस्थमापि a, अग्रस्तमवि β, com. T.-D. पd ग्रस्तं मध्या β Sd रतुच्चयादविधिमांशों: (त्रो: F) β
$6 a^{\circ}$ वेधो $a \beta \quad 6 c$ स्ते विबरं β, corr. T.-D. $6 d$ सूर्येंटो: β

Chapter XV

XV,1. Placing those who know the relative positions of the Sun, Moon, zodiac and earth ahead I speak. There is always an eclipse of the Sun; somewhere it is visible because of the difference of localities.
$\mathbf{X V}, 2$. For those who are ignorant of the relative positions, understanding arises from meditation just as milk deposited in a conch-shell is able to withstand the destruction caused by teeth.
$\mathbf{X V}, 3$. For those for whom the Sun is crossed by an identity of all (the requisite) lines there is an eclipse of the Sun; this locality is somewhere every day.

XV,4. The Pitrs on the Moon see the Sun eclipsed once for (a whole) half-month (pakṣa), and not eclipsed for (a whole) half-month; the middle of the eclipse is on the full-moon tithi.

XV,5. Those who live on Meru or near to Meru never see an eclipse of the Sun since the Sun and the Moon are not high (enough) up (above their horizon).

XV,6. Those on Meru (and) on its side, never make an observation of the Sun and Moon (together); they always see a distance between the Sun and Moon.

यद्धप्युटये sस्ने वा नीचस्थो sस्माकमंशुमान् यवति/
चन्द्रोपरर्सेमबस्थो चनखोद्रानो रेबनि हेतु: $1 / 911$
यस्माकसुट्यसमये येषामन्मास्तगो टिवसनाथ:/
मध्याह्रो बा सेबां तेषामपि न युगपड्रहणम् //ट/।
तटनीतमुट्यगानां चणहयेनैष्यटस्तटेशानाम् /
मध याह्हटेशागानामनवरतं बर्तमानेन //e//
उनं च संधितायां मया प्रपंचे डस्म राहुयाराटौ।
ग्नहणस्य यचिमिन्निं विनेब राहुं रविद्धिमांचो: $/ 190 / /$
मेरोर्न टिम्निभागो यस्मात् प्राची $=$ यास्करान्तस्मिन् /
उटयनि याबहिनप: पर्येति वसुन्धुरीं तावन् $/ / १ 9 / /$ अणुमात्रदर्शानात् प्राग्विय्याग इति चेत् समार्धमित्वा तु/ तस्मिनेवास्नमये किं बा प्राची 2वेत् त्वपरा //92//

ख्यय्न (वंच $a C$, वु F) युट्ये $a \beta$ वा om. β 7b गिचस्थो β मंशुमा a 7d घनद्रानों a, घनहा (घ्या C, हा F)नो (तो $B E$) β, com. T. - D.
7d बनि हेतु: to 23d स: inserted after खर 33 a बुह्या β 8bटिबनाथ: β 8d तेबां मे (मे om. B) यिनमुग्नापतग्रहणां $\beta 9_{a}$ त (रत C) टानी (नी F, नी C) तसु-यंश्रंगानां β ab घणटूयेनेष्पटं a, घणहीने (मे C) स्यं० β, com. T.-D. - स्नटोषापां (नां EF) a β, cor. T.-D. $a_{c}{ }^{\circ}$ टेरो गानांa a_{d}° मनप (गC)रत β वर्तमान $\beta \quad 10 a$ न (रन C) नं β संताया $\beta \quad 10 b$ मवा β प्रपंयो $a \beta$ स्म a 100 यनिमिनं β lod निनैराहु β पर (रिC) यिधिमांख (यच्घ E) β $11 b$ यास्करामस्मिन् $\beta \quad\|c=न ट ् य त ि ~ \beta \quad\| a-d$ यावहि (टि D, टि C) वं (वं om. β) पर्येती $a \beta$, com. T.-D. I1d वस्ंटंटी $a \beta \quad 12$ अ अनुमात्र ${ }^{\circ}$ a β, comr. T.-D. $12 b$ मिया चु a, मित्बान्तु β, com. T.-D. $12 c$ तस्मिबास्तमये β

XV,7. For us, even if the Sun is low down (towards the horizon) at sunrise or sunset, the Sun's being under the Moon as (under) a cloud is the cause (of the eclipse).
$\mathbf{X V}, 8$. (If) for us there is an eclipse at the time of sunrise, there is not one simultaneously for those for whom the Sun is almost set or for those for whom it is noon.

XV,9. It is past for those at (a place where it is) sunrise (and) in the future by (as much as) two kṣaṇas for those at a place (where it is) sunset (when it is) incessantly with the present for those at a place (where it is) noon.
$\mathbf{X V , 1 0}$. I have in detail discussed in the (Bṛhat-)samhitā, at the beginning of (the chapter on) the motion of the ascending node, what is the cause of an eclipse of the Sun and Moon aside from the ascending node.
$\mathbf{X V}, 11$. Because there is no distinction of directions on Meru, the eastern (direction) is not (indicated) by the (rising) Sun; as long as the Sun is risen, so long does it revolve about the earth.
$\mathbf{X V}, \mathbf{1 2}$. If (it is said): "The eastern (direction) is distinguished by the visibility (of the Sun) when it is the size of an atom', (it may be answered that) after it has travelled for half of the (ecliptic) great circle it sets at just that (point); what then is east or what west?

तेषामपक्रमवाहिवसो न स्नलु थमाधथास्माकम् /
षहिथ्नांड्यो डस्मांक बर्षमहोरात्रममराणाम् //१३//
बर्षे वर्षे सुनिर्यां सुटासुराणां विपर्ययेणाह: /
मासं तु तस्मितृणां मनुजानां चाडिकाषघि: //१४//
यन्भात्रं चूवृत्तात् चणद्येनोन्वतिं ब्रजत्यर्क : /
तन्मान्रान्तरजारिणममरा: पर्स्तन्ति नोध्वम्मध्य: //qu//
होराधिपतिटिने यरपरम्परा न स्यात्तु यथास्माकम् /
षाष्टर्नाड्यस्तस्मिन्नाहोरात्रो थवति यस्मात् //१घ॥
टिनबारप्रतिपन्तिने समा सर्वन्र कारणं कधितम् /
चेहापि चवति यस्माद्विप्रवटन्ते S
युगणाहिनबारासिर्युगणो डपि हि टेशकालसम्बन्ध: /

15 quated by Utpala on BS 17,4-5; 17-20 quoted by Makk,bhatta on SŚS 2,10;
18-29 quoted by Utpala on BS 2 (pp. 32-33).
 (शां F) $\beta \quad 14 \mathrm{c}$ तस्पितृणां a β, com. T.-D. 15 a 2्रमव (व om. CF) ता (ता CF) β $15 b$ नण्दा (वृ EF) येनोचति $\beta \quad 15 c^{\circ}$ त्रांतरवारिण ${ }^{\circ} a$, ${ }^{\circ}$ त्रांत (स CE) रचारि० β $15 d$ नोध (घं β) मध: (घ: CF) a β 16b नव्यत्ते a, नट (TC) ने β $16 d^{\circ}$ नहोरात्रो $\beta \quad 17 a-b$ •्र्रनियनित $=a \beta \quad 17 b$ कारणे कशिता Makkibhatta 18 L द्विणुणो a β डपिच Makk,bhatta ॰संब्धा a 18 cलाजां a, लातां β $18 d$ वास्तगे a, यास्तगे β, चास्तगे Makk,bhaHa, Dikshit
$\mathbf{X V}, 13$. For them (i.e., those on Meru) the day (is determined) by (the Sun's) declination, not, as for us, by its motion; our year is a nychthemeron (consisting of) 60 nādīs for the Gods.

XV,14. Every year is a day and a night for the Gods and Demons, with a reversal (of the position) of the day; (a day and a night) is a month for the Pitṛs, 60 nādīs for men.
$\mathbf{X V}, 15$. To whatever elevation from the horizon the Sun moves in two kṣanas, at that distance do the Gods see him moving, neither higher nor lower.
$\mathbf{X V}, 16$. The succession of lords of the hour and of lords of the day is not the same as ours because the nychthemeron there is not 60 nāḍis.

XV,17. The (means of) ascertaining the week-days is not the same everywhere; since no cause is spoken of in this matter, the astrologers disagree about it.
$\mathbf{X V , 1 8}$. The week-day is obtained from the ahargaṇa; but the ahargaṇa is a combination of time and place. It is said by Lāțācārya (to begin) when the Sun is half-set at Yavanapura;

रव्युट्ये लक्यां सिंहाधार्येण दिनगणो डदिहित:/ यवनानां निरि दर्यारिर्गतैर्मुहूर्तै तड़ुस्णा // าe // लइ़ रेरात्रस्सये टिनप्रवृत्ति जगाट चार्ययट:।
2 गूय: स एव सूर्योट्यात् प्नयृत्याह लक्याम्य $/ 20 / /$
टेशान्तरसुद्युं कृत्बा चेन्न घटते तथा तस्मिन्/
कालस्पास्मिन् साम्यं तैरेवोंक यधारास्त्रम् //र9॥
मध्याहं यद्रासेष्वस्तमयं कुरूष्ष केतुमालानाम् /
कुरूते इर्थरात्रमुचन् 2 आरतर्षर्ष युगपटर्क: /| $22 \|$
उटयो यो लक्षयां सो sस्तमय: सवितुरेब सिद्यरे।
मध्याती यम्योट्यां रोमकविषये डहरित्र: स्न: //23//
यदिमासकोनरात्रग्नह टिनतिधिटिबसमेषचन्द्राके: /
अयनर्न्मृंजगतनिया : समं प्रवृत्ता युगस्याटौ $/ / 2 ४ / /$

20 quoted by Nilakantha on Kzlakriyä 16
19 c यनानां शिचिशियि० β, यवना निशीह टर्याय Makkibhatta
190° सुहुर्ते $a B C \quad 200^{\circ}$ समयाट् Nilakaبtha $20 b$ चार्ययह: a
$20 \mathrm{c-d}$ चार्कोट्यात् Utpala, Makkibhatta, Nilakautha $21 b$ क्रो (तं $C, त ् त E$, त्व F)
चन्च (नC) $\beta \quad 21 c$ कालस्यात् (न्वm.C) साम्यं (म्यां C) $\beta \quad$ 21d 能वोंक a $21 d$ यथाशास्त्रं to $22 b$ व्बस्तमयं om. $\beta 22 b$ कुरूषूत्तरेषु केतुमालानां a, तरेषु काले तुलानां $\beta \quad 22 c$ मुचट्य $a, 0$ मुलन् $\beta \quad 23$ वटनग्नो β यो om. a 23 c यमकोट्यां मध्याहं Utpala यमकोटां (जांC) a β
$23 d$ रोकवि (च्नि B) ये β डहर्दात्र च Utpala $24 \alpha^{\circ}$ कोनरात्रिβ $24 b^{\circ}$ टिबसमयूषथंद करा: (क्रा: C) $\beta \quad 24 \mathrm{c}$ अयन - हैं a, अयनत्वर्ब० β 24 य युगस्पाटौ a

XV,19. the ahargaṇa is said by Siṃhācārya (to begin) at sunrise at Lan̄kā; for the Yavanas (it is said) by their guru (to begin) at night when 10 muhūrtas have passed;

XV,20. Āryabhaṭa has said that the day begins at midnight at Lan̄kā; moreover he has said that it begins at sunrise at Lankā.
$\mathbf{X V}, 21$. If, after one has made the correction for longitudinal difference, no agreement concerning the time arises in this, it is said by them in agreement with the sasstras :

XV,22. The Sun rising in Bhāratavarṣa simultaneously causes noon among the Bhadrāśvas, sunset among the Kurus, and midnight for the Ketumālas.

XV,23. Sunrise at Lank \bar{a} is sunset at Siddhapura, noon at Yamakoṭi, and midnight in the territory of the Romakas.
XV,24. The intercalary months, omitted tithis, (mean longitudes of) the planets, the days, tithis, (lords of) the days, Aries, the Moon, the Sun, the ayanas, rtus, motions of the constellations, and the nights begin equally at the beginning of the yuga.

अयद्रोमक विषयाहेशान्तरमचटेव यबनपुरात् /
लकार्धरात्रसमयाटचन्त सूर्योटयाचैब \|マu\|
सूर्यस्याध जस्तम्यात् प्रतिटिवसं यटि टिनाहियं ब्रूम:/
तत्रापि नात्तवाक्यं न च सुक्ति: काचिट्यास्ति //रह//
सन्या क्रचिन्त क्रचिटहः कचिन्निशा टिवस्थेतने : कचिन् कचिन्र।
स्बन्मे स्बन्मे स्थाने व्याकुलमेव टिनपतित्बम्य //20//
होराबार्ताप्येवं यस्माद्जोरा टिनाधियस्माधा /
तस्यापरिनिषाने होराधि वपति: करं भवति ॥रट॥
अवियार्यैबं प्रायो टिनवारे जनपट: प्रवृत्तो sयम् /
स्फुटतिधिबिच्छेटसमं युक्तमिटं प्राहुराचार्या: /lze//
ज्योतिषोपनिषत् पंचटइ्शो SE मायः //

29c-d quoted by Nilakenthe on Kälakriya 16.

टिनाधि प (ष B) त्यं $\beta \quad 26 c$ नासं वास्यं $\beta \quad 26 d$ नवयुत्ति: a काचिटप्पस्ति
Utpala $27 b$ टिनपति: $a \beta \quad 27 c$ स्था (प्रस्था C) नं $a \beta \quad 27 d$ व्याकुलमेबं a β
$28 a$ होराबन्तापेनं $a \quad 28 b$ टिनाहि पसाधा: (दया: B) $\beta \quad 28 c^{\circ}$ निष्वाने a
$29 a$ आविटित्बैबं UtpJa (some manuscr.pts) $29 b$ टिनबारौ a, टिनवार (रौC) β
$29 c$ स्फुरतिथि- β col. पंचटरामो β
$\mathbf{X V}, 25$. There is one longitudinal difference from the territory of the Romakas, another from Yavanapura; there is one (time) from midnight at Lan̄k \bar{a}, (another) from sunrise.

XV,26. If we say (what is) the lord of the day (by counting) every day from the setting of half the Sun, there is no accepted statement in this nor any other reasoning at all.

XV,27. Because of the Sun's being in various places, it is twilight in one place, daylight in another, and night in another; at every little (shift in) locality the lordship of the day is confused.
$\mathbf{X V}, 28$. Thus also is the information about the hours since the first hour belongs to the lord of the day; since that is not completely fixed, how is the lord of the hour?
XV,29. The common people for the most part deal with the (accepted) week-day without reflection; the ācāryas say that that is right which coincides with the accurate divisions between tithis.

The fifteenth chapter: the Upaniṣad of Astronomy.

एब नियाध्रे s बत्त्यां नाराग्रह निर्णसो〉 5 किद्यान्ते/
तन्रे-्टुपुन्रशुक्रौ तुन्यगतौ मध्यमार्केण //a //
जीबस्य राता यस्तं ह्वित्रियमाग्नित्रिसागरैर्बियनेत्,
युगणं कुजस्य चन्द्राहनं तु समाषष ड्ष क्म $/ / 2 / /$
सौरस्य सहस्नगुणमृतुरस्सर्यर्तुषट्रमुनखै कै : /
यक्बन्धं ते 2 लगणा: रोषा मध्या ग्रहा: क्रमेमेव //३//
दरा दरा यगणे $2 ग ण े ~ स ं श ् र ो ध ~ य ा स ् त त ् प र ा: ~ स ु र े ज ् य स ् य ~ / ~$
मनवः कुजस्य देया: रानेध बाणा विशोध्यास्तु //४//
राशिचतुष्टयमंशह्वयं कलाबिंशतिर्बसुस्ममेता /
नववेटा निलिसा: शन्रे रंनं मध्यमस्पैव //u//
अषौटौ यागा लिनार्तव : सपन्गो गुरोर्विलिताय /
च्चेप: कुनस्य यमतिधिपंचत्रंशाच्च रास्याया: \|E \|
$1 a$ बत्यां $a \beta$, cor. T.-D. $1 b$ बग्नहनिर्णो a, ग्नहण β, com. T.-D. कस्पिद्यांते β
$1 d$ महमार्केण a, म (कौ म C) घमारे ((E, 命 CF)सा β, cor.T.-D. 2aनिबस्य β 2d समाष्द्रकं a 3a सौम्यस्य सताल्यस्तंहि-त्रियमागित्रिसागरे (from 2a-b) सहस्न${ }^{\circ} \beta \quad 3 a-b^{\circ}$ गुणाCततुरस्स $^{\circ} a$, गुणारु (EF,om.C) तुरस्म० $\beta \quad 3 b^{\circ}$ सून्यै $^{\circ} a$ - मुनिखेकै: β पद दरांश्रागमे β चगणे om. $\beta \quad \mathrm{L}_{\mathrm{c}}$ नबम: β कुकुनु (जC) β पd वियोध यास्त्रु a, विशोध या: (ह्यF) स्यु: β, com. T.-D. Sa राशिचतुष्यमंरां β S_{c} नबटेवाश्च (सEF) β Sd रानेघ Gने a, यने β, c.or. T.-D. मध्यमास्थेव a, मध्यमम्त्वेयं β, com.T.-D. $6 a$ आत्वा $a \quad$ लिसर्लबः a,लिसतब: (कC) β $6 b$ रमजब a, शेषसौ β गुरौ a, गुरु $\beta \quad b c$ ने (च C) व: (य: c) β जमतिधिं a, यमतितिथि० β, com. T.-D. 6d ${ }^{\circ}$ त्रि (निं E) याध्य β

Chapter XVI

XVI,1. This is the determination of the star-planets in the Arkasiddhānta for midnight at Avantī; in this Mercury and Venus have a (mean) motion equal to that of the mean Sun.

XVI,2. For Jupiter multiply the ahargaṇa by 100 and divide (the product) by 433232 ; for Mars multiply it by 1 and divide by 687;

XVI,3. for Saturn multiply it by 1000 and divide by 10766066 . The quotients are revolutions, the remainders the mean (longitudes of the) planets in order.

XVI,4. For every revolution of Jupiter $0 ; 0,0,10^{\circ}$ are to be subtracted; of Mars $0 ; 0,0,14^{\circ}$ are to be added; of Saturn $0 ; 0,0,5^{\circ}$ are to be subtracted.

XVI,5. To the mean (longitude of) Saturn is added 4 signs and $2 ; 28,49^{\circ}(=122$; $28,49^{\circ}$);
XVI,6. to Jupiter $8 ; 6,20^{\circ}$; to Mars the kṣepa is 2,15 , and 35 in signs and so on ($=75 ; 35^{\circ}$).

रतगुणिने बुछ तीघं स्वरनवसमाष्थाजिते क्रमशः /
अत्रार्धपंचमास्तत्परास यगणाहता: नेप्या: //ァ//
सितरीघंनं टरागुणिते युगणे यके स्बरार्णवाखियमे : /
अः्रैकाटरा टेया विलितिका यगणसडुणुता: //C/I
सिंहस्य बसुयमांश्या: स्वरेन्वो लिसिका च्रशीचत्रधम् /
रो<ध्याः) सितस्य विकला: राशिरसनवपन्तगुटहना: //e//
नेप्या: स्वरेन्दुविकला: त्रतिवर्षं मध्यमत्वितिजे /
दरा टरा गुरोर्वियोध या: शनैच्धरे सार्ध्रसस युता: $/ / 90 / /$
पंचाब्ह यो वियोध्याः सिते बुछे साखिचन्द्रयुता: /
ससबेटेन्दुबिकलिका: रोध्या: सुरपूजितस्य मध्यात् स्यु: //9१// सूर्यसिद्यून्ने मध्यगति: //
शीघ्रास्यो इको इस्येषां थौमादीनां तु यन्दोपरिध्यय: <स्यु:〉।

Ta रानगुणितं $\beta \quad$ 7c-d ${ }^{\circ}$ पंचमो म्नस(न्प E)राज $\beta \quad$ नd॰ हत: चेपः a, हतन्विपा β, com. T.-D. $8 b$ द्विगुणे (णो F) a β, con.T.-D. स्वरार्णबाचियमे : a $8 c$ अर्केकाट्या a हिन्लिसा a $9 a$ सिंदस्प $a \quad 9 b$ स्बरोटबोa विलिसिका β 9c शो $a \beta$, com. T.-D. ad पघागुणाटहना: (ता: a) $a \beta$, com. T.-D. 10 रारेद्धुं β
D.kshut 10 b प्रतिवर्षमाध यमचितिजो a β, com. T.-D. lod युका: β $11 a$ पंचाहयो a पंचद्धयो β, पंचद्धया D.kshit, com. T.- D. Hb स्ताशिचन्द्रं a
ब्युक्ता: β IC सखबेटेन्हुविकाल्लिकाः a, ससवेटबिकलिका : β, ट०ल.T.-D. 11d मध्या: β स्यरानि: β 12a र्को $\beta \quad 12 c^{\circ}$ त्रियत्सनवो a 12 d सुरास्त्रिश्रा: $\alpha \beta$

XVI,7. (If the ahargana) is multiplied by 100 and divided by 8797 in order, (the result is) the conjunction of Mercury; to this $0 ; 0,0,4,30^{\circ}$ multiplied by (the number of) revolutions is to be added.
XVI,8. If the ahargana is multiplied by 10 and (the product) divided by 2247, (the result is) the conjunction of Venus; to this $0 ; 0,10,30^{\circ}$ multiplied by (the number of) revolutions are to be added.
XVI,9. Of Leo 28° and 17 minutes ($=148 ; 17^{\circ}$) are added to the conjunction of Mercury; 332961 seconds $\left(=92 ; 29,21^{\circ}\right)$ are to be subtracted (from that) of Venus.
XVI,10. Every year 17 seconds are to be added to mean Mars, 10 (seconds) are to be subtracted from (mean) Jupiter, and $6^{1 / 2}$ (seconds) are added to (mean) Saturn;
XVI,11. for (the mean conjunction of) Venus 45 (seconds) are to be subtracted, and for (the mean conjunction of) Mercury 120 (seconds) are added. From the mean (longitude) of Jupiter 1400 seconds $\left(=0 ; 23,20^{\circ}\right)$ are to be subtracted.

Mean motion in the Sūryasiddhānta.
XVI,12. The Sun is called the conjunction of the other (planets). The manda-circumferences of Mars and so on are $35,14,16,7$, and 30 multiplied by 2 (i.e., Mars 70°, Mercury 28°, Jupiter 32°, Venus 14°, and Saturn 60°).

रस्नववस्तविटाका विंशतिगीजना: कुजस्य दराकोना:
मन्टगतीनां 2ागा: कुजबुध गुस्तुक्तौराणाम्य //9३ //
रीः्रपरिध ताबधांशा: कतगुणपता द्विद्धिशीतकरा: ।
पबस्बरा: सथड्यमा: ककता: स्यु: कुजाटीनाक्य / व४// रीश्नान्मध्यहीनाद्रारिश्रितये गतैक्यंश्ये।
थुज्नकोटी तत्तरत पड़्य: पतिते स्न एव विधिन्त://था//

कोटिफलं व्यास्ताह मृगक्र्याटा चयापचयक्य $/ / \mathrm{F} / /$

स्फुटयित्वें म्नस्य मह्याध विरोध यं तस्य 2 नुज्य

15-16 quoted by Utpala on BS 2 (p.46)
$13 a$ रसमंबत्सुवेचार्को $\beta \quad 13 b$ कुजस्य a टयकोणा: a, टराकोणस्पणा: (टणा: C) β,

$14 c$ पचस्बरा: om. β स्व(सं a) प्य(ट्य (F) या a, β, com.T.-D. $14 d$ स्यु: om. β

गतैष्यंटराज्या Utpala, com.T.-D. $15 c$ चुजको (कC) टि β जि ज्यतते a β
$16 b$ रव्तुगुपौर्वियने तभ a, सर्तुगु विसुगतझ्ध β, सर्तुगुम्ति बिपरिणने तध्ष Utpala
$16 d$ चयापथया: a β, चयापचय: Utpala,com. T.-D. $17 a^{\circ}$ कृति $0 \mathrm{~cm} \beta$
$1 \neg b \circ 2$ ना (था β) जयेन्न (त्रa) नथन (चु D, दु D^{2}) जस्सर्य (यC) घंब (घ: $C F$, द्र: E) $a \beta$ $17 c$ तज्वापा (या β) $\frac{\text { 信 } \alpha \beta, \text { cow. T.-D. } 17 d \text { रीद्नं केंद्रवरा (शा E) तात् } \beta}{\beta}$
$18 a$ स्फुटत्ववं मंटं $\beta \quad 18 b$ तस्य जुचुजां β 18d चनहानी a, चनहानि: β, β जन. T.-D. after $18 d, 17 d^{9}$ नं to $18 d$ नचहानि: repeated β

XVI,13. The degrees of the slowest motion (i.e., the mandoccas) of Mars, Mercury, Jupiter, Venus, and Saturn are 6, 11, 8, 4, and 12 multiplied by 20 ; (that) of Mars is diminished by 10 (i.e., Mars 110°, Mercury 220°, Jupiter 160°, Venus 80°, Saturn 240°).
XVI,14. In the siighra-circumferences of Mars and so on are $234^{\circ}, 132^{\circ}, 72^{\circ}, 260^{\circ}$, and 40°.

XVI,15. If (the remainder from) the conjunction (i.e., the longitude of the Sun) diminished by the mean (longitude of the planet) is within three signs, then the Sines of the traversed and untraversed degrees are the bhuja and koṭi (respectively); if it is more than that, then it is subtracted from six (signs) and the same rule (applies).
XVI,16. Multiply (the bhuja and koṭi) by their (proper) circumferences and divide (the products) by 360 ; thereby are they reduced (to the bhujaphala and the koṭiphala). The koṭiphala is added to the radius in Capricorn and so on, subtracted from it in Cancer and so on.

XVI,17. Then one should multiply the bhuja(phala) by 120 and divide (the product) by the square-root of the sum of the squares of that (i.e., $\mathrm{R} \pm$ kotiphala) and of the bhuja(phala). Depending on the anomaly of the conjunction, half of the corresponding arc is to be subtracted from or added to (the longitude of) the apogee.

XVI,18. Having corrected the apogee thus, subtract (it) from the mean (longitude of the planet); reduce its bhuja (to the bhujaphala). Half (of the corresponding arc) is added to, or subtracted from, just that (corrected longitude of the) apogee.

मध यात् पुनर्बर्बोध यस्तस्माद्धाहु नतस्य यहापम् /
तन्यध्यमे बसधनं कर्तब्यं मन्टकेन्द्रवशात् /ne//
एवं स्फुटमध्यास्थं रीघात् संशोध्यं पूर्णविधि नैैव /
आटिवटासं चापं स्कुटमध्यास्ये चयापचयम् $\|20\|$
सरे स्कुटा: स्युरेवं श्रेड्येष्ष शीध्राद्विहाय रबिमन्ट्् ।
रविपरिधिनतं बाहु बुछे <कोबरीे चयह नंं कुर्यात् $/ / 29 / /$
शुक्रस्य ससषषिट्लिता: रोध्या: स्कुटीकृतस्यैब /
वक्रानुवक्रकालो सुक्ति ििरोषेण बिश्चेय: $/ / 22 \|$
स्फुटटिनकरान्तरांगसन्द्राटीनां च दर्शोने सेया: /
बंशतितूना बसुश्यिस्वमुनिनबरुदेन्दियै: क्रमशा: //23//
मन्टगहान्तरज्या स्वाष्टारायुतार्कनीवशुक्राणाम् /
सोम्यारयोः पहोना विबेपो इयक्ष शीश्रविध्तो ॥ 2४॥
$19 a$ मध्या β पुरो विरोध्यं a, सुरो बिशोध्यं β, com. T.-D. $20 a^{\circ}$ मधधास्यां a 20 c आदिबटासे ($\Rightarrow \overrightarrow{\text { a }} C$) $a \beta$, com. T.-D. 20 d ब्मध्यास्योप (प om. β) ययापचय: $a \beta$, com. T.-D. $21 a$ स्फुटाः स्तु (स्पु A)रेवं a, कारेबं (वं om. C) β, com. T.-D.
 $22 a$ सात्रव्यष्टि $a \beta$, com. T.-D. $22 b$ लिता $\beta \quad$ स्फुटिकृतस्पैब a, स्कुटितन्त (च्त०m.B) स्यैब β, com. T.-D. 22 वक्तानुवक्र० $a \quad 23 \mathrm{a}-\mathrm{b}$ om.C 23 a स्फुरटिन० β - करांतरां (सं β) तरां (रा BE, सं F) शा॰ a β, com. T.-D. $23 b$ व β टर्शानी a,
 यिस्नि $0 ~ \beta$, com. Shutela $23 d^{\circ}$ नबर्ट्रेद्रि (टिa) यै: (मे: β) a β 246 स्बा (स्ब B) एांशसुर्कजी नरुक्राणां $\beta \quad 24 c$ सौम्याच्य (स्प a) यो : $a \beta$ पटोनां a, पदनां β 24d पक्ष a

XVI,19. Again (the second corrected apogee) is to be subtracted from the mean (longitude of the planet); (find) the bāhu from that. The arc corresponding to this after it has been reduced (to the bhujaphala) is to be subtracted from, or added to, the mean (longitude of the planet) depending on the argument of the apogee.

XVI,20. Subtract the mean (longitude of the planet) thus corrected from the conjunction (i.e., the longitude of the Sun) according to the previous rule; the arc that is obtained as was the first (sighra correction) is to be added to, or subtracted from, the corrected mean (longitude of the planet).

XVI,21. All (the planets) thus are corrected. But in the case of Mercury and Venus subtract the Sun's apogee from the conjunction (i.e., the Sun's longitude); reduce the bāhu to the circumference of (the epicycle of) the Sun and subtract (the corresponding arc) from, or add (it) to, (the corrected longitude of) Mercury or Venus.

XVI,22. From Venus, after it has been corrected, 67 minutes are to be subtracted. The time of the first station or of the second station is to be known by means of the difference between velocities.

XVI,23. The degrees of distance between the true (planet) and the Sun (required) for the visibility of the Moon and so on are to be known as 20 diminished in order by $8,3,7,9,11$, and 5 (i.e., Moon 12°, Mars 17°, Mercury 13°, Jupiter 11°, Venus 9°, and Saturn 15°).

XVI,24. For Saturn, Jupiter, and Venus add an eighth to the Sine of the interval between the apogee and the planet; for Mercury and Mars subtract a fourth. There is another latitude in the rule of the conjunction:

गुक्टूननयास्फुज्ञितां पाटोना स्तययोस्तु सालांश्रा /
न्रिज्याध्री कर्णाता वियोगयोग : स् बिन्वेप: // 2u//
ताराग्नहस्फुटीकरणं षोडशो डह्यायः /।
$25 a$ गुहु (रु F) चूनत ($\because C$)या: β 25b पटोना β ज्रयमययोमुखांषांशा: a, खय (पF) मयोसुष्यं (घ्यं C, ष्टनं F) शां β 25d नियोगयो (यो om. E) श a β

XVI,25. for Jupiter, Mars, and Venus subtract a fourth, and for Mercury and Saturn add an eighth. Multiply (the result) by the radius and divide (the product) by the hypotenuse; the latitude is the difference or sum (of the apogee and conjunction latitudes?).

The sixteenth chapter: the Correction of the Star-planets.

हित्ना मुनिजलयन्द्र｜स्त् युगणाद्वेटाएनून्ध्रनलबधा：／
शुक्रोटया गुणांश्रा ：सार्धा：पंचालिनो 2 ोगा ：$/ / 9 / /$
कन्यांशा：षड़्वंशतिमित्बा शुक्रो s वरेण यात्युटयम्／
उटयैकाटशयागं दिनेषु टन्बा नतधार：$/ / 2 / /$
बहित्रयेण बेटाग्नियमयुतामंशसमतिं चुंके／
अद्धाष्टकविंरात्या बिंशत्यंरशका〉स्त्रिभ्य：सपाटांशम्य／／る／।
बक्रमतस्तिधियि दहौं पंचभिरेबं तनो डपरास्तमित ：／
दशाथि ：प्रागुटितः स्यान्नसैख जलघ ीन् सितो गत्वा $/ / 8 / /$
असुबक्री परिगत्बा बिपरीतं चास्तमेत्यैन्द्राम्／
षष्यांशमंचससतिमित्वापरतो 2चृगुर्ट्ट्य ：／／k／／
वासिष्टिद्युन्ने गुक्र：／／
बिचतुस्त्रिशट् युगणं चाडीटिस्तावतीर तरपि च गुरो：।
हत्वा नवनवटहनैरूट्या लब्ध ता：स्थिरता〉 टिबमा：／／ह／／
$1 a$ सुनिजला $^{\circ} \beta$ घचन्द्रा $a \beta$ ，com．T．－D． $1 b^{\circ}$ नूतहन ${ }^{\circ} \beta \quad 1$ गुक्रेटया a

\bullet थागान् $a \beta$ ，com．T．－D．2dतनक्नारा：a $3 a-b$ सेमाग्नियम्य β
$3 c$ यद्राष्टके किन a ）विंशातां（निं a, ति：E ）$a \beta$ 3d बिश्त्यैस्त्रियि：$a \beta$
$4 a$ बक्रमतंस्तितियि ${ }^{\circ} \beta$ पd मिता $a \beta$ गता $\beta \quad 5$ and कासिष्निद्रून्ते $a \beta$
5b विपरीनमस्तमत्यैड्यां（ड्यं D）a $6 a$ विबनुस्त्रिंश ट्विगणुं a β ，corr．T．－D．
$6 b$ गुरु：$a \beta$ ，com．T．－D． $6 \subset \xi(\xi, C)$ त्वा $a \beta$ ，cor．T．－D． $6 c-7 c$－बनबटहन to
वििने om．$\beta \quad 6 c^{\circ}$ तुटुया लब

Chapter XVII

XVII,1. Subtract 147 from the ahargana and divide (the remainder) by 584 ; the quotient is the (number of) risings of Venus. Its progress in longitude (during that time) is $5^{1} / 2$ and $1 / 3$ (degrees) of Scorpio $\left(=215 ; 50^{\circ}\right)$.
XVII, 2. When Venus has travelled to 26° of Virgo it rises in the west. Add $1 / 11^{1}$ th (of a day for every) rising to the days; from this (compute) its motion.
XVII,3. In three (periods), of sixty (days) it travels 70° increased by 4 , 3 , and 2 (i.e., $74^{\circ}, 73^{\circ}$, and 72° respectively); in $27^{1 / 2}$ (days) 20°; and in 3 (days) $1^{1 / 4}{ }^{\circ}$.

XVII,4. Then it retrogrades 2 (degrees) in 15 (days); then it sets in the west in 5 (days) and rises in the east in 10 (days); Venus goes 4 (degrees) in 20 (days).
XVII,5. Proceeding in direct motion, it travels in the opposite direction to setting in the east; proceeding 75° in 60 (days) Venus is (again) visible in the west.

Venus in the Vāsișṭhasiddhānta.
XVII,6. For Jupiter subtract from the ahargaṇa 34 (days) and as many nāḍīs and divide (the remainder) by 399 ; the quotient is (the number of) its risings. The (remaining) days are put down.

उट्यनवांगान् दत्बा टिनेषु बड्वर्गसड़ुणे हुट्ये।
एकनवाग्निहिने पटमिति साष्टाटरां रोषम //9/\|
ट्वि-रहित:〉 क्रमशो मध्यः स्फुटन्ध सण्डस्तयोष विक्सेषात्र/
क्फुटहानो व्युष्ठु टवान्तस्मोध्यसम्डे s यथा हानि: //c// रसविषयकृतराशाइए: न्मस्बण्डे संटृतयः पटं यावन्य/
बिबयरसेना वृद्धौं नीव: स्यात् पंचनवतिरातात् $/ / \mathrm{l} / /$
बद्वसुमनबो हानौ नृत्तीयसम्डे गुकुस्तु बोडाके /
पंचगुणिते न्वस्याजिते कला: पूर्बतो 5 युट्टिति $/ / \circ \circ /$
नब सार्दा: कन्यांया: प्रथमे स्वण्डे हितीयस्बप्डे स्यु:/
चक्राहदं द्विनुणांशा दया सटला टेबपूड्पस्प //99//
टिनषष्टयांशा द्वाटरा खकृतै बेटा: कृताचिरि द्धौौन।
समाष्टकेन वक्री बड्रागा: षशितः बट् च $/ / \neg 2 / /$
$7 a$ उट्यरवांश a, com. T.-D. $7 b$ संगुणैरुट्य : a, com.T.-D. 7d बटनिति (ति: β) a,

-स्तथोध्ध a विश्रोषात् $a \beta$, com. T.-D. $8 c-d$ टधानघ्य (ध्य om. β)त्सौरे $a \beta$
aa रसाविषयं $\alpha \beta$, com. T.-D श्राशांका: a $a b-10 b$ सहुतय : to तृतीयसम्डे om. β
ab बिद्धुतिय: a, com. T.-D. $9 c$ विषयरसोना a, com. T.-D. 10 c-d न्यम (अ E) एक नाजिते $a \beta$ 10dय्युटितेa 116 स्फु: a पद्यक्रार्थ β वगुणांशा: a, च गुणांशा: β 11d दश शकला a $\beta \quad 12$ दिनषष्टंशा $a \beta$, cor. T.-D. $12 d$ बड्वर्गा: a β, cor. T.-D.
बहि β बड् च a, षद्वा(घ्वC) β, com. T. -D.

XVII,7. Add to (these) days ${ }^{1} / 9$ th (of a day for every) rising. Multiply the (number of) risings by $6^{2}(=36)$ and divide (the product) by 391 ; (the remainder) is called the pada. Add 18 to the remainder.
XVII,8. Put down the mean and the true segments, in order, in two places. (Decide) from the difference between them. If the true is less, one should add it to the days; otherwise, if the mean segment (is less), subtract it.

XVII,9. Until the pada (equals) 180, (Jupiter) is in the negative segment 1456 ; until (it increases by) 195, Jupiter is in the positive (segment) 1265 (or $1456-65=$ 1391);

XVII,10. for 16 Jupiter is in the third, negative segment 1486. Multiply by 5 and divide by 8 (or 83); it rises to the east in so many minutes (of arc).

XVII,11. In the first segment of Jupiter they are $9^{1} /{ }^{\circ}$ of Virgo $\left(=159 ; 30^{\circ}\right)$; in the second segment half a circle $\left(=180^{\circ}\right)$; (and in the third) $20^{1} /_{2}^{\circ}$.

XVII,12. In 60 days (Jupiter) traverses 12°, in 40 (days) 4 (degrees), and in 24 (days) 2 (degrees); (it moves) retrograde 6° in 56 (days) and 6 (degrees) in 60 (days);

स्थित्बर्सोमेकमासं स्कुटोटयो प्वन्त्ये मास्तस्म //१३ //
बृह स्पति: //
अध्यर्ध्यत्रातं स्नच्यंश्रमपन्येत् सूर्यजस्य टिवसेथ्य:/
बसुमुनिणुण द्धे ये यः स्थिता दिनावासम सुटयात् //१४ //
जहाटुट्यद्यांरां व्यु यो नवसझुषान् यजेट्ट्यान् /
षड्ड़षययमै: रोषं पटं युतुं नन्नबाशीत्या //१u//
षड्रूपवेटपना बृद्जिस्त्रंशत् पटानि मौरस्य /
नबरूपविवययम्नला हास: स्बरमास्करपटार्यः //१ह //
प्रचयः स्बराग्निकयमा नवनबतिस्त्रिघन लागलितानाम् /
न्वयवृद्यिर्टिगणन्टन半क गुणध: रानेरूट्य: ॥99॥
षोडरा वृष-स्यांया नवर्लासावर्जिता: प्रथमखण्डे /
विषयास्त्रिघनसस्त्रंश्चतुर्युता मध्यमे खण्डे $/ / 9 \mathrm{C} / /$
$13 a$ अा(य $B E$, प्र F) तुवक्री $a \beta$, com. T.-D. यीत्यक्का (क्ता $E F$) $a \beta$, com. T.-D.
136 दी (हीa)नार्धमनेन $a \beta \quad 13 c$ स्थित्वा सैंकं मासं $a \beta$ 13d स्कुटोट्याषाटा (सं C) त (न्न a, ता $B E$) रं मास (सं a) मी (मी om. $a) a \beta 14 a-b$ रात्र्यंशामयन्नयेत्त a, गमपानये β, com. T.-D. $14 \times{ }^{\circ}$ गुणोध्यृते स्य : $a \beta$, com. T.-D. 14d स्थिनं $a \beta$, com. T.-D. दिलाद्यास्तम ${ }^{\circ}$ $a \beta \quad 15 a$ जहायुटयं $a \beta$, com. T.-D ०दहांरां β 15b न(नं β) बसंगुणाद्रने० $a \beta$
 पवेद. $\beta \quad 16 a-b$ पनाद्ध (ह $F, ट C$, वृ D) द्डि ${ }^{\circ} a \beta \quad 16 c^{\circ}$ यमलो $\beta \quad 17 b$ नबननवतस्त्रि
 17d रानैमैद्य : α, शाने रूट्य : β, cor. T.-D. 18α वृष (शा C) थांशा β $18 b$ प्रथमसंड्रा : $a \beta$, com. T.-D. $18 \mathrm{c}-d$ स्त्रिंश चतुर्युता a $C F$

XVII,13. in direct motion (it goes) 12 (degrees) in 80 (days); 9 (degrees) in 50 days; then it sets; staying (set it travels) 7 (degrees) in one month (i.e., 30 days); its accurate rising is on the last day of the month (i.e., on the 29th).

Jupiter.
XVII,14. One should subtract $150^{1 / 3}$ from the days of Saturn (and) divide (the remainder) by 378 ; put down the days and so on; the quotient is its (number of) risings (i.e., synodic periods).

XVII,15. One should subtract ${ }^{1} / 10$ th (of a day for every) rising from the days. Multiply the (number) of risings by 9 and divide (the product) by 256 ; the remainder is the pada. Add to it $89(?)$.
XVII,16. Saturn's (first) 30 padas are positive 2416 ; 127 padas are negative 2519;
XVII,17. (and) 99 (padas) are positive 2037. There is a subtraction or addition of 12 degrees and minutes (i.e., $12 ; 12^{\circ}$). Multiply by 31 and divide (the product) by 32 (or: by 32 padas); (the result is) Saturn's rising.
XVII,18. In the first segment are 16° of Taurus diminished by 9 minutes $\left(=45 ; 51^{\circ}\right)$; in the middle segment are 5 (signs) 27 (degrees) and 34 (minutes) ($=177 ; 34^{\circ}$);

परिहीना: स्त्रीमांशा मनुी षोडशमिधारीतनं कृतोनषस्या हिगुणपनान् /lae// कक्री विन्यूतष्यक्या त्रींश्यान् वहितः कृनान् सौरः / अनुगो s करनेनाहों बट्कृत्या चास्तगो टहनम् $/ / 20 / /$
रानैैधर: //
युगणान् ष्रैक्रमयान् विद्धाय पंयाषंक च नाडीनाम् /
गगनाएमुनिी रुट्या ल पन्ते प्राझहीनस्य $/ / 29 / /$
उट्यगुणिता विनाड्यः स्बरतिधयो sद्ध्यव्यिता टिनचेप:/

पंचारीनिं कृत्वा सत्रिशारिं मध्यम: क्रमशः /
राशिम्रमाणतो डस्य स्कुटिताचारं क्रमरात््〉 कुर्यात्त//2る//
स्फुटमध्यमविक्ष्शेषांशकान् जिपेन्मध यमे व्युय्य:/
मध्यमानौं जझाडूतितो डप्याचारमीधास्ये //2४//
$19 a$ षट् (ड्C, डEF) ξ (ESC)नाएत्रीणांशान् $a \beta 19 b$ मनुथिलिमाच्तुर्गुणा: $a \beta$ 19 d कृतोनघन्वात् (शा D, com. to न् D^{2}) a, कृतोनपच्बा (वाom. C) च β, com. T.- D.
$20 a$ विम्युत $* \beta$ 20b त्रिनं $(=\beta$) यान्त β कृतात् a, कृतन् β, com. T.- D. $20 c$ रुनु (तु F, लु $B E$) गो β करतनैना (ना β) हौं (हों β) $\beta=301$ षद्र (द्य E) त्या (साE)
β चास्तगे a, वास्नमे β, com. T.-D. 21a द्युगुणे $a \beta$, com. T.-D. षद्बंबयमान् a β 216 नाडी (डि $B E$)त्वं β 21d प्राक् महीजस्य $\beta \quad 22 b$ बहान्विता a, ब्टाीच्वता β,
 त्वा $a \beta$, com. T.-D. स्मा : a β, com. T.-D. $23 b$ प्रतिराइयं a β मध्यतः β 23 c स a β, com. T.-D. $23 d^{\circ} \circ$ चारक्रमं a, चारक्र (क्रुF) $\beta \quad 24 a-b \circ$ विन्चेपांश का

XVII,19. (and in the last segment) 0° of Virgo diminished by 14 (degrees) (plus) 7 times 5 minutes $\left(=136 ; 35^{\circ}\right.$). In 16 (days Saturn traverses) 80 (minutes); in 60 minus $4(=56)$ (days) 232 (minutes);
XVII,20. Saturn (moves) retrograde 3° in 60 minus $5(=55)$ (days) and 4 (degrees) in 60 (days); in direct motion (it proceeds) 8 (degrees) in 112 (days); (and, having gone) 3 (degrees) in $6^{2}(=36)$ (days), it sets.

Saturn.
XVII,21. Subtract 216 (days) and 40 nādīs from the ahargaṇa (and divide the remainder) by 780 ; the risings of Mars in the east are obtained.

XVII, 22. Add to the days 157 plus $4(=161)$ vinādīs for every rising (i.e., synodic period). Multiply the (number of) risings by 18 and divide (the product) by 133 ; put down (the remainder) from that.

XVII,23. Calculate 85 (degrees) plus three zodiacal signs ($=175^{\circ}$); (this is), in order, the mean (longitude of Mars); one should compute in order its true motion by means of the measures of the signs (?).

XVII,24. If the mean (is greater), one should add the degrees of difference between the true and mean (segments) to the days; if the mean is less, one should subtract them from the gati. I will describe its motion.

प्रागुटूये षट्का हैकमष्टाटशा वक्रगस्तनो वक्र：／
गत्यधंं च तनः रीघ्नात्त्रिघ्वषषिं ततो डस्तमिनः／／2५／／ समतीत्य ट्या त्रिधतास－7）निरंशगस्त्रिंशनिं व्यतीत्य कुजः／
उट्यमुपयाति बन्ये गतिचारटिनास़〉 क्रम＜च्य〉 चात ：／／2घ ह／।
चत्वारिंशरात्ध्यमषयमान्वितं विपन्गांशम्／
प्रधमगतौ कुर्याधिबसास्＞मीनाद्राशिाह्यसमान् $/ / 2 / \|$
विषयस्वरसत्तस्वृॅतुपंयकास्〉 दरागुणान् द्वियतीयगतौ।
सहिता：स्नैरैकपवर्तुयन्द्र्यीतांशुरि：क्रमशः ：\｜2 ट\｜
झषवृध्यिकाजचापे वक्रे षट्ससकेन बड्नागासन－\rangle／
हिक्रृतेन टिगतिबक्रे टिनषष्ट्या षोडशानुगति：／／ze／／
गोमिधुनतौलिकन्यासु दरारहतनै ：समुडैद：स्वरानंशान्／
सकृतैर्टरा तित्रबष्या समटरा यथाक्रमं वक्री $/ / 30 / /$
$25 a b$ षट्य（द．$E F$, द्व C ）सस्तेकमष्टादरा $a \beta \quad 25 b$ मस्तगस्तनो $a \beta$ व（च β ）क्रं $a \beta$ 25 c अत्यह कं $a \beta \quad 25 \mathrm{c}-\mathrm{d}$ शीघ्नाद्युना ${ }^{\circ} \alpha$ ，रीघ्राधना० $\beta \quad 25 d$－वहिस्तनो $\alpha \beta$ $26 a$ समर्नत्य $\beta \quad 26 a-b$ त्रियुता निरंशतो विंशतिं $a \beta \quad 26 d$ गतिया（च F ）रा० β －टिनाक्रमं a $\beta \quad 27 a$ चत्वारिंशाशिनमह्यं a ，पत्वारिशाशिनम ${ }^{\circ} \beta$
 27d मीनदो（दा $B, द_{T} C$ ） रि $^{\circ} \beta$ समाना：$a \beta \quad 28 a-b ॰$ सातर्तुपंथकाटशगुणान्
 जपा（या C ）चे（ ने B ，वे C ）कु बक्रेषु $\beta \quad 296$ बट्य（ड्स A द्रु C ，द्न B ）स（क D ） केन $a \beta$ ，com．T．－D．बबलागं a ，नवसागा β ，com．T．－D． 29 c विकृतेन $a \beta$ ，com． T．－D．दिनगतिवक्री $a \beta \quad 30 a-b-$ क（के β ）न्यानुबा（बC）सैनै：$a \beta$ 30b स्त（सC） रानांशान् $a \beta$ ，com．T．－D． $30 c$ म्नकृते ट्रा β त्रिषषी $a \beta$ ，com．T．－D．
$30 d$ बक्राशा a, चक्रान् β

XVII,25. At rising in the east Mars (traverses) 186 (degrees); then (having traversed) 18 (degrees) in retrogression (it has travelled) half of its course since conjunction; then (traversing) 60 times $3(=180)$ (degrees), it sets;
XVII,26. traversing 10 times $3(=30)$ (degrees) Mars is in conjunction (with the Sun) ; traversing 30 (degrees) it rises. Now I shall tell the days for the motion of (Mars') gatis in order.
XVII,27. In the first gati 240 plus 28 minus ${ }^{1 / 2}\left(=267^{1} / 2\right)$ (days). One should calculate days for every two signs from Pisces:
XVII,28. in the second gati 5, 7, 7, 6, 6, and 5 , multiplied by 10 and increased by $7,1,2,6,1$, and 1 in order (i.e., $57,71,72,66,61$, and 51 respectively).
XVII,29. In retrogression $(\Phi \rightarrow \Theta)$ in Pisces, Scorpio, Aries, and Sagittarius (Mars goes) 6 degrees in 6 times $7(=42)$ (days), and in extreme retrogression $(\Theta \rightarrow \Psi) 10$ (degrees) in 42 (days). It goes 16 (degrees) in 60 days.
XVII,30. In Taurus, Gemini, Libra, and Virgo (it goes) 7 degrees in 4 times 10 $(=40)$ (days), and 10 (degrees) in 40 (days). It is retrograde in order 17 (degrees) in 63 (days).

कर्कटसिंधयोर्बेट्सागरै: सम चवान् बार्णवैच /
टिवसै : बट्वष्ट्राएटट्या च क्रमात् कुजो वक्रसर्वे तु //३१//

मुनिविषयै: पंचटशांशकांच तर्हुत्रि त्रये sप्यार: //३2॥
वक्रे टिनत्रि आागैर्न बांशयुतैस्तुन्यजिहै र्जुक्ते :/
अनिबक्रे विपरीनं बक्रमतिबक्र सत्र्यंशम् //३३//
एकेन्द्रियक्नुिबमनु बतत्रिबर्ग नुपन्तंयुकम् /
रीघ्रगतौ पंच षशिमूनं च शशाङ कृत बेंेे: //३४//
षहिसिल्ध संयुका जनिलाहार्कतन्रिबर्गगुणून्या: /
दिबसा: सस्नगत्यां चारो यस्तहुटषस्याम् //३फ//
यौस: //
टघान् ससथतुक्यान् युगुणे त्रंशां च बसुगुणो आत्वः /
मुनियमनबकैरणि रोचिता: स्यु: योध्यो टिनाषांशः //३घ//

316 अवान] समन $\alpha \beta$ 31cटिबसान् $a \beta$ षट्बा (वा D) स्या ${ }^{\circ} a$, बड्षष््या 0β 31d क्रमा a, क्रमान (न् $E, \mp C$) β वक्रपू ($F C E$) र्वासु (स्सु $E F$) $\alpha \beta 32 b$ चागानबव(वृ β)
 व्युतनुन्यनिहे (है $C)$ रुके β 33c अतियक्रे β 33d वक्रमनुबक्रगस्त्यंयं a, बक्रु

 $36 a$ द्या a मतनु (नु C) कान् β 36b यु (यद्यEF)गणो β न्य (ग्र्यंF) शब a β वसुगुणा (ण- B, ण E) β आाग: $a \beta$ 36c-d रोचितस्य मेथा दिनाषांशा: $a \beta$

XVII,31. In Cancer and Leo (it goes) 7 (degrees) in 44 (days), and 11 (degrees) in 40 (days). Mars in all its retrogression in order (goes) 18 (degrees) in 66 days.
XVII,32. In Aquarius and Capricorn (it goes) 6 degrees in 32 (days), and 9 (degrees) in 39 (days). (It goes) 15 degrees in 57 (days). So Mars is in three (sections).

XVII, 33. In retrogression (it goes) for ${ }^{1 / 3}$ with $1 / 9(=4 / 9)$ of the days, with the even and odd traversed (?); in extreme retrogression the reverse. The retrogression with $1 / 3$ (i.e., ${ }^{4} / 3$) is the extreme retrogression.

XVII,34. In the fast gati 5 times $60(=300)$ increased by $1,5,8,11,14,11,3^{2}(=9)$, 6 , and 2 , and diminished by 1,4 , and 4 (i.e., $301,305,308,311,314,311,309,306$, 302, 299, 296, and 296 days respectively for the 12 zodiacal signs).
XVII, 35. In the seventh gati there are 60 increased by $2,9,12,9,3$, and 0 (i.e., 62 , $69,72,69,63$, and 60) days; there is the same motion in the eighth (gati).

Mars.
XVII,36. One should add 7 times 4 and $1 / 3(=28 ; 20)$ to the ahargaṇa; multiply (the sum) by 8 and divide (the product) by 927 ; (the quotient is the number of) the first visibilities (synodic periods) (of Mercury). Subtract an eighth part of a day (for every synodic period);

हत्वा चतुर्थर रूट्यान् नाड्य：रोध्या बुधुस्य टिबसेथ्य：／
《》द्रिटशयमधानुटूयान् पाण्डबवर्जितै र्रिधन्चात् $/ / ३ ッ / /$

पंचयुनैस्त्रिराद्रिस्त्रिंा्ड्रुके स्फुटानंथान－／／३ट／／
चवकृत्या बहिं वसुयुतयाचीत्या शतं स ती ्णांशुम्／
राँ्वैस्त्रियि यदि कैस्त्रियद्रिस्त्रिश देवांशान्／／३ए／／
चनुरुिकेन रातेन त्रिथिसंन रातमतो डर्थसंयुतया।
बड्ड्वंरान्या च्यधिकां विंशतिमेबं स्फुट：सौम्य：／／४०／／
अनयोलिक्ष्नेषांशास्）टिबस्तथ：शोध येन् स्फुटा यदि के／
अधिके तु मध्यमें डर्यान् टलाधारः स्फुटब्धु ताछ／／प१／／
मेषे टिनबट्कृत्या स्नलस्बरससहीनया 2 ागान्／

$37 a$ कृत्बा $a \beta$ ，cow．T．－D． $37 b$ टुघस्म a ，बुहु त्मा β ，com．T．－D． $37 c$ त्रिद्ट（ट．am．C）
रायम $a \beta 37$ • यान् रामार्णबं $^{\circ} a$ ，थारूदयां（शां B ）रामाणबं β ॰्रर्जितां
घिंचान्त $a \beta \quad 38 \alpha b$ नवबसुयममध्यमध्यो：साक्रमांनुद्टौन्ष a ，नववसुमध ययम－
 com．T．－D． $39 a$ नब（व am．C）कृत्यात् $a \beta$ ，com．T．－D．षहिर्बस्नु a β ，corr．T．－D． $39 b{ }^{\circ}$ युताबशीत्या $a \beta$ ，com．T．－D．तीन्यांशों ：β $39 c$ सैर्बैस्त्रिय ${ }^{\circ} a \beta$ ，com．
T．－D．ररूकििकै० a $39 d^{\circ}$ टेवार्का（氖ा C，र्का F）त्（न् E）a β ，com．T．－D． $40 a$ घनुरहिकेन् a $40 b$ निरिथिसंनं a β ，com．T．－D．हसंयुतया a β ，corr．T．－D． $40 c$ बड्त्रिंात्या a यधिकां $a B E$ पा a विर्बलेशांशा $a \beta$ ，cor．T．－D．पाb योधिये a after $41 b$ repeat 40 a－d $a \beta \quad 41 \mathrm{c-d}$ मध्यमे स्याटहाझार a β ，com．T．－D．
$42 a-b$ षट्रृ（ड्कृ a, 茨 B, ट्र E ）त्यां（सा B ）रां भवस्बर ${ }^{\circ} a \beta \quad 42 b$ चागा：$a \beta$ ，com．
T．－D． 42 c पंचत्रिं a, β ，com．T．－D． 42 d षड्व（ड्ब्य D ）ौै बगणित a ，षद्व（ ड्ब F）ब（य B ） गणित β

XVII,37. divide the (number of) risings by 4 and subtract (so many) nāḍis from the days of Mercury (i.e., 15 vinādīs for every synodic period). Multiply the risings by 217 and divide (the product)

XVII,38. by 689 diminished by $5(=684)$; (the result concerns) the mean Mercury. (It) travels in order: 8° in 2 plus $5(=7)$ days, 30 accurate degrees in 30 ,

XVII,39. 60 (degrees) in $9^{2}(=81), 100$ (degrees) in 80 plus $8(=88), 12$ (degrees) in $14,30^{\circ}$ in 30 plus $3(=33)$,

XVII,40. 100 minus $3(=97)$ (degrees) in 100 plus $4(=104)$, and 20 plus $3(=23)$ (degrees) in 26 plus 5 ($=31$); thus (travels) true Mercury.

XVII,41. One should subtract from the days the degrees of difference between these two (i.e., mean and true segments) if the true is greater; but if the mean is greater, one should add the degrees. The motion is known from true Mercury.
XVII,42. In Aries, in $6^{2}(=36)$ days diminished by $0,11,7$, and 7 (i.e., 36, 25, 29, and 29) (Mercury travels) 35, 22, 3 times $7(=21)$, and 6 times $9(=54)$ degrees.

गवि वेटयमद्विकृतैर्टिए यैवैर्वषयाग्निणुणनाय सीि कै: /
विरसं रानाह र्ममरैरूडूनं च सत्ततिं क्येकाम् ॥ ४३॥
द्विटरां सपंचवर्गं सरसत्रिधनान्वितं च मिधुने च/
आगार्दरनं छूनं मनवस्त्रिघनं च पंचसस्त//४४ //
कर्करणि टिगयै : कृतशशिगुणनेटे: सहिकाषशून्यस्सै:/
सैकान् टलितान् सेन्टून् पंयकवर्गान्वितांसांशन् //४и/।
संते गुणेन्दुरामार्णबैरित हैै स्तथा सार्णबर्नुयमबिषयै : /
तुल्यां समविहीनां सट्रूशामि कां विषयकृत्या //४६॥
कन्यायासुत्कृत्याष<टरात्रि〉न्रंशान्त्रकृतैने चूय: /
त्रिधननबपंचससकमष्टानार्दं च रवियुक्त् //४ $9 / /$
शंशतिरेकेन युता जूके सशून्यतिथिर्धिस क्रुण /
अंशास्त्रवसुविहीना होकत्रंशयुतुचिब $\|\triangleleft \subset\|$
$43 a$ गाव a, माव β, com. T.-D. वेदे a ह्विकृतो a, द्वितनो β, com. T.-D. 43 हिघैं० $a \beta$, com. T.-D. वर्वषयग्निं a गणण $a \beta$, corr. T.-D. 43 c राताह र्मम ($7, \beta$) लो a β $43 d$ रुद्राबय (य C) सम्तथिर्येकां (क a) $a \beta$ $44 b$ मिधुनं $\alpha \beta$, cor. T.-D. 44 c हून a 44d प (प am. C) च (व a CF) सुतु (नच्च om. β) a β 45a-47c कर्किण to त्रिघननवपंय $0 \mathrm{om} . \beta$ प5a कर्कीन a, com. T.-D. टिमेः: a, cor.T.-D. $45 b^{\circ}$ सून्यरसे:
क, com. T.-D. $45<$ सेकां टनितिां सेंटु a, com. T.-D. $46 b$ बिबसया: a, com. T.-D.
$46 c$ तुल्या a, com. T.-D. $47 a-b$ मुकृत्याष्टत्रंश्तया तया न चूया: a
$47 \mathrm{c}-\mathrm{d}$ ०साताष्टकट्य (श C) तार्र (हरa) a β 47d च om. $\beta \quad 48$ a रेकेण a β, com. T.-D. 48 b व्यन सांसांतिधिर्दि (डि αC) सं (स β) गुणेध $a \beta \quad 48 \mathrm{~d}$ चेके a, य (व्य $C F)$ क β, com.T.-D. वस्त्रिशादु (फ C) ना चैब β

XVII,43. In Taurus, in 10 multiplied by 4, 2, 2, and 4 and increased by 5, 3, 3, and 9 (i.e., 45, 23, 23, and 49) (days it travels) 50 diminished by 6,33 , and 27 (i.e., 44, 17 , and 23) (degrees) and 70 diminished by $1(=69)$.

XVII,44. In Gemini, in 20, increased by $5^{2}(=25), 0,6$, and $3^{3}(=27)$ (i.e., 45,20 , 26 , and 47) (days it travels) 50 diminished by $2(=48), 14,3^{3}(=27)$, and 75 degrees.
XVII,45. In Cancer, in 10 multiplied by 4, 1, 3, and 4 and increased by $2,8,0$, and 6 (i.e., $42,18,30$, and 46) (days it travels these numbers of) degrees increased by 1 , halved, and increased by 1 and $5^{2}(=25)$ (i.e., $43,9,31$, and 71).
XVII,46. In Leo, in 10 multiplied by $3,1,3$, and 4 and increased by $4,6,2$, and 5 (i.e., $34,16,32$, and 45) (days it travels) an equal (number of degrees), diminished by 7 , the same, and increased by 25 (i.e., $34,9,32$, and 70).
XVII,47. In Virgo, in $26,18,33$, and 43 (days) - no more-(it travels) 3^{3} (= 27), 9,5 times $7(=35)$, and 58 increased by $12(=70)$ (degrees).
XVII,48. In Libra, (in) 20 increased by 1,0 , and 15 , and multiplied by 2 (i.e., $21,20,35$, and 40) (days it travels these numbers of) degrees diminished by 3 and 8 and increased by 1 and 30 (i.e., $18,12,36$, and 70).

अलिनि दराघ्वा: रारिरहि>कृतदहना: षट्रारार्णवाष्टनुता:
तें डश्या यमसुनीरोना बड्वंशान्या समेताल //षe/
घन्विनि टिबसानांँ षट्कृतिं षट्ससकं दरोनं च/
ने स्यु: शशिविषयोना: सैकास्त्रिशाश्विता यागा: //40//
मकरे द्विटरां सयुतं मुनियुंन धृतिट्वाकाकरायधि कम्प /
अंशा सूपेणोना: सैकैकाधोन्टृतियुतास //ட9//
कुम्ने डह्नां त्रिकृत्या युतया हुतयुग्टिशेशिननाथै:।
द्वाविंशतिरंशा: पंचवर्गं सुराधि वा: षधि: //५ス/।
मीने त्र्यक्टकहां रश्रिविषययुतं हुतारासंयुक्तम् /
त्रष्टककृतविंरात्या: राताह र्ममेकोनमंया: स्पु: $/$ «३ $/$
अथोट्यान्तरांशा बुध्यस्य कालांशकास्त्रगतीनाम् /
टिवसासतुर्थगत्या अनुवक्रमजमीनयोर्मन्टम् $\|$ ey $/$
$49 a$ दराघी a $49 a-b$ राशिकृत (न am. β) टहना: a β 4ab बड्वस्वरार्ण बाएं ${ }^{\circ} a$,
बट्स्वरार्णवाएं $\beta \quad 49 c$ तेशा a, तेशां (घों C) β, cow.T.-D. $49 d$ समेता (ना $a B F$)
च (व a) a β, com. T.-D. ड0a टिचसाथा (या β) हौ $a \beta$ s०b षोडरा (स a) $a \beta$

सैका त्रिशा ${ }^{\circ} \beta$ sाa चुसरां $a \beta$, cor. T.-D. sib मुनिहीनं $a \beta$ डा आराय (बाप)
β रूपेणोना: $a \beta$, cour. T.-D. $51 d$ वोत्क्रु (कुC) ति β 52a हा a त्रिशत्या a β
526 दा (गC) नलुग्टि (PिC) वेटटिननाथै: $\alpha \beta \quad 520^{\circ}$ वर्गमथाधि का $\alpha \beta$
$53 a^{\text {अष्टक }} \beta \quad 53 b$ द्रतारासरांर a, हुतारास्न (स om. BE) रीरं β, com. T.-D.
$53 c$ त्रषष्टककृति a, अष्टकक्तु (क्रE)तिं β $53 d^{\circ}$ मेकोनमष्यां a β, com. T.-D. ड4a अष्टोटयां० β तरांशान् a $54 b$ कलांशकां० $a \beta$ वस्त्रगन्युनात् a, वस्त्रिन्यूनान् $\beta \quad 54 c$ टिबसा चतुर्थ० $\beta \quad 54 d^{\circ}$ मीनयोंटं a

XVII,49. In Scorpio, (in) 10 multiplied by 1, 2, 4, and 3 and increased by 6, 5, 4, and 8 (i.e., $16,25,44$, and 38) (days it travels these numbers of) degrees diminished by 2,7 , and 1 and increased by 26 (i.e., $14,18,43$, and 64).
XVII,50. In Sagittarius, in 16, 26, 6 times 7 ($=42$), and (this) diminished by 10 (=32) days (it travels these numbers of) degrees diminished by 1 and 5 and increased by 1 and 30 (i.e., $15,21,43$, and 62).
XVII,51. In Capricorn, in 20 increased by $0,7,18$, and 12 (i.e., 20, 27, 38, and 32) (days it travels these numbers of) degrees diminished by 1 and increased by 1,1 , and 26 (i.e., 19, 28, 39, and 58).
XVII,52. In Aquarius, in 23 increased by 3,12 , and 12 (i.e., $23,26,35$, and 35) days (it travels) $22,5^{2}(=25), 33$ and 60 degrees.
XVII,53. In Pisces, in 3 times $8(=24)$ increased by 1, 5 , and 3 (i.e., 24, 25, 29, and 27) days (it travels) 3 times $8(=24), 24,\langle 24\rangle$, and 50 diminished by $1(=49)$ degrees.

XVII,54. For the (first) three gatis of Mercury the time-degrees are degrees of ascensional differences (?); for the fourth (gati) days (?). In Aries and Pisces the direct motion is slow.

गतिबिस्लेष कृतियैरें रौर्गत बर्ग ताजितैलेक ।म् /
हित्वा रारिय यो सुकं प्रथमगतो वक्रपझ्घात् \|u५॥
बक्रगतौ पूर्बाहे तृतीयगत्याय यातकृतिगुणितै: /
आगैर्गत कृति यके : फलमनुपाताधतुर्धगतौ // ५ $\varepsilon_{e} / /$
ज्याविधि विन्चेपधाझरकालाटम्बराष्बेटांराम् /
जहात् न्विपेछ याम्योत्तरे ग्रहे स्बं यथा कन्यम्//u9//
एबं कृते गहाकीन्तरांराकैरस्तटर्चॉनं तेषाम् /
चन्द्राटीनां हाटशमनुरवितिध्यक्टतिभिसंत्रै : // टर//
त्रिशानबिनाडीगुणितैरूट्य<वि〉नाडीप्रमाणहृते: /
लबांशकप्रमाणाटुट्यो sस्तं वा स्फुटं बाच्यम् //ue//
च्तसितारेज्यार्क्स्ना: राशिन: प्रत्युन्तरं रब्यंश्राच्च /
चत्वैवं बिन्चेपाटाटेशामनागतं कुर्यात् // ह० //
$s 5 c-d$ सुकं β ssd प्रथमगातौ $a \quad$ वक्रषध्धाय्या a, वक्रपझाञा $\beta \quad 5 a_{a}$ वर्गैक्रगतो a,
चक्रगतौ $\beta \quad 56 b^{\circ}$ गत्या च $a \beta$ यात्कृतं a, याच(चom. CF) तच्चत β
$56 c$ यागैर्गति $a \beta$, com. T.-D. ${ }^{\circ}$ कुतिथृत्यै $\beta \quad 56 d^{\circ}$ मातायतुर्थय आगागनौ a,

- पान्य घतुर्थय ागग (ग $\operatorname{sm} . C$) तो β, cor. T.-D. $57 a-b$ विनेपया चर ${ }^{\circ} a \beta$, com.
T.-D. $57 b$-काला (ला om. BE) टियराष्ट* β 57c जहा a $57 c-d$ यान्योत्तरं a, याम्यों (2्यों C) तरे β, com. T. - D. 57d यथा कबं a $58 d$ •रतिति (नियि C) हतिधिसंश्चै : β saa त्रिंशान ${ }^{\circ} \alpha$, त्रिशाति ${ }^{\circ} \beta$, com. T.-D. saa-b बगुणितैय (cor. to क D^{2}) टरानाडी ${ }^{\circ} a$, "गुणनैसैघ दरानाडी०० β, com. T.-D. $591 \circ$ प्रमाणहते: a β, com. T.-D.
$60 a^{\circ}$ ज्यार्कोना: a, ज्यार्को (रो C) ना $\beta \quad 60 b$ स्वरांगोना $a \beta$
601° मनागमन (बत C) त्कुर्यात् β

XVII,55. Multiply the degrees by the square of the difference between the gatis and divide (the product) by the square of what has passed; subtract the quotient from the zodiacal signs; the result is what has been traversed after the first station in the first gati.
XVII,56. In the retrograde gati, in the first half, multiply the degrees by the square of what has passed of the third gati and divide (the product) by the square of what has passed; the result is, by proportion, (what has been traversed) in the fourth gati.
XVII,57. Multiply the time of the ascensional difference by the latitude (of the planet) in the form of a Sine; take a 480th part (of the product); one should subtract or add (the result) according to its orbit as the planet is south or north (of the east-point).
XVII,58. Having done thus, the visibility at setting of the Moon and so on is with $12,14,12,15,8$, and 15 degrees between the planet and the Sun (i.e., Moon 12°, Mars 14°, Mercury 12°, Jupiter 15°, Venus 8°, and Saturn 15°).
XVII,59. Multiply (these degrees) by 300 vināḍis and divide (the product) by the measure of rising in vinādis; from the measure of the obtained degrees the accurate rising or setting (of the planet) is to be declared.
XVII,60. The degrees of the Sun are to be diminished by (the longitude of) Mercury, Venus, Mars, Jupiter, and Saturn; the opposite in the case of the Moon. Thus knowing (the elongation necessary for first visibility) from the latitude, one should compute the future prediction.

आवन्त्यक: समासाच्चिष्यहितार्यं वियद्रस्फुटांशम् /
चक्रे बराहमिहिरस्ताराग्नहकारिकातन्र्म् //Eq//
प्रय्नुम्नूमितनये जीवे सौरे इयना विजयनच्टिकृते /
बुध्तो यग्न: स्फुटमिटं करणं चजति टृष्टं बराहमिहिरेण \|हर॥
प्रस्तावे S यि $=$ टोषास्त जानन्रयि वक्ति य: परोतस्य/
प्रथयति गुणांध नस्मै सुजनाय नम: परहिताय // $\}$ //
अष्टर्शाथिर्बान्यत्ताराग्नहतन्त्रमेतटार्यायि: /
वरमिति बराहमिहिरो दटाति निर्भत्मर: करणम् ॥घУ//
आकरणाद्रवियागा टिवसाधारांशका रबौ कार्या: /
अधि का यटा टिनेथ्यो यागा स्रेयास्तटा चक्रान्त $\|\varepsilon \Leftarrow\|$
नवयमगुणर्तुहीने कृताहते विषयससखाग्निहृते /
चूयो हृते चतु द्रिर्निराशिबसा महीजस्थ \|ह, \|/

6la आयंतक: β bla-b समासशिष्य a, समसा: शिसंष्यं β, com. T.-D.

$62 b$ जी (जि C) वै (वे C) $a \beta$, com. T.-D. शौर a बीजयनंटिं a क्रुतो β
$62 c$ बुधेवे a, हुधे (घC) च β नग्ना $a, 2$ चन्ना - β 62d चजतां β
बरा (रC) हमिहरेण a β, com. T.-D. after this verse add सुम्बप्रबोध $-(\xi i \pi \beta)$
$a \beta 63 a$ दोषा $a \beta$, com. T.-D. $63 b$ ज्ञानच्रायि न a, ज्ञानाना (न C) पि न β,
com. T.-D. पटोचस्य a 63 प्रथयाति β गुणाख a, गुणा β, com.T.-D.
बस्तस्मै $\beta 63 \mathrm{~d}$ सु (स्तु F, स्त C) जनया α, , com. T.-D. नम a, तमः β, com. T.-D. पर (रि C) हिताया $\beta \quad 64 a-b^{\circ}$ ट्यार्वर्बड्जन्यातारा ${ }^{\circ} a$, ${ }^{\circ}$ ट्याथि बर्ब (ब $C F$) घान्यातारा ${ }^{\circ} \beta \quad 64 c$ बराहमिध (हर E) $\alpha \beta$, com. T:-D. बराहमिहरो $\beta \quad 64 \mathrm{~d}$ निमत्स(स्मC), र: β 65bटिबसा (मा D_{1} com. to सा D^{2}) स्रारांशका a, टिबसाश्धांश (सC) का β, com.
 - यमगुणार्तं β, com. T.-D. 66 कृ (क्ण β) ताहते a β, cor. T.-D. "स्नि्निते β bceहतोa

XVII,61. In order to benefit his pupils, Varāhamihira of Avantī has made concisely this tantra of kārikās concerning the star-planets which (gives) the degree of true longitude of the planets.
XVII,62. The wise man who is disturbed at Pradyumna's Mars or at Jupiter or Saturn as computed by Vijayanandin resorts to this accurate karaṇa which has been "seen" by Varāhamihira.

XVII,63. He who, though knowing the faults of one who is absent, does not tell them even when the occasion (presents itself), but recites his good qualities - to that noble benefactor of others, reverence!
XVII,64. Varāhamihira, being free from jealousy, gives this other tantra for the star-planets in 18 āryā (-verses) (thinking): "This is the best karaṇa."
XVII,65. (Take) the degrees of (the longitude of) the Sun at the (last) calculation; convert the days (since then) into degrees of motion for the Sun. When (the degrees) are added to the days, then the degrees (of the Sun's longitude) within the circle (of the zodiac) are to be known.
XVII,66. Diminish (the aharganaa) by 6329 ; multiply (the remainder) by 4 , divide (the product) by 3075 , and divide (the remainder) again by 4 ; (the result) is the days of conjunction (with the Sun) of Mars.

षट्तिंत्रैस्तिय्यंश टृष्टो बसुध नृतिस्रोंशका: बसि:।
अष्रातेन च वहि: सतत्या बहि क्या नखति: // $\supset / /$
बह्याष्यक्तया रानटलं च माधि तद्विकै: स्बरा टिगघ्ना: /
अस्नयितो इन : स्ताष्टकेन तिधयो निरंयगति: //Ec//
कुन : /I
विशशिाबसुरसेन्तो चवयमगुणिते डर्करासोगुणनके।
गुणकारहृते लबान्यहानि शीतांशुपुत्रस्प //Ee//
टराथि है टराहीन : प्रागुटितो मनुत्थिर्विषयाधांया :
घृतितिर्मनवो s स्तमितस्त्रिशाद्रिरूटेनि स रसांया: $/ / 90 / /$
आषादरायि सीनव: षोडरायि लाष्यवर्जितो इस्तमित : /
पस्धाद्वसुियर्नवरर्जितो निरंशां बुद्धो डीि याति //99 //
बुधः: //
$67 a$ षड्रिंत्सबैस्तिश्युनो a, पड्डिबेस्तिध्यतो $\beta \quad 67 b$ टुहो β वृृतिरंयका ष

 टिघा: $a \beta$, com. T.-D. $68 \mathrm{c}-\mathrm{d}$ साष्टकेन $\beta \quad 68 d$ निरंगरानि: (fन β) a β, com. T.-D. $69 a$ बिंशारि a रसेंदे (दा EF) $a \beta \quad 69 a-b$ नबनबगुणने $a \beta$, corr.T.-D. 69 L करागुणय तने (के: CF) a β, com. T.-D. 69 c हैते a, हते $\beta \quad 49 \mathrm{c}-\mathrm{d}$ लब्हा (बा ुु C) च- (ना र्रित. C) तांशुपुत्रस्य β 70थट्यायिय हा० a ०्याहीना: a β, com.T.-D. $70 b$ मनियी ून सक्षांश्या : a, मननालीरूनत (यB) यांया: $\beta \quad 700^{\circ}$ यनवो a, नबो (बीर) β म्तमित: त्रं (क्रिंF) रा $a \beta$, com.T.-D. $70 d$ स रसाध्व: a, स (स هm.C) रसाखा : β नाa अष्टाटरि: a, यषाट्यायि: $\beta \quad 71 b$ षोडरिज्ञाष्ट० $a \quad 71 c$ पधात् वसु० a β, corr. T.-D. 7Id निरंस (सa) a β, corr. T.-D. पि (fिom. D, "here a प" ion marg. D^{2}) याति a, याति β

XVII,67. In 36 (days) (it comes to the Sun) diminished by 15 (degrees) and becomes visible; in 188 (days) (it travels) 60°; in 108 (days) 60 (degrees); in 70 plus 2 (= 72) (days) 90 (degrees);

XVII,68. in 60 plus $8(=68)$ (days) 50 (degrees); in 240 (days) 7 times $10(=70)$ (degrees); then it sets; in 7 times $8(=56)$ (days) 15 (degrees); then it comes into conjunction (with the Sun).

Mars.
XVII,69. Diminish (the ahargaṇa) by 1681 ; multiply (the remainder) by 29 and divide (the product) by 3312 ; divide (the quotient) by the multiplier (29); the result is the days of Mercury.
XVII,70. In 10 (days) it is diminished by 12 (degrees) and rises in the east; in 14 (days) (it is diminished by) 5°; in 18 (days) 14 (degrees); then it sets; in 30 (days) 6° and it rises;
XVII,71. in 18 (days) 14 (degrees); in 16 (days) it is diminished by 8 (degrees) and sets in the west; in 8 (days) Mercury is diminished by 9 (degrees) and comes into conjunction.

Mercury.

रहिने यमशराष्टिभिर्नगाहने टिविषयस्बराशिहृते／
ससहृते टेबगुरोर्थबन्ति टिबसा निरंशगस्प／／アマ／／
सरेवे s कात् संश्रोध्या：बोडराभि हैलयोटिन ：प्राच्यरय्ये।
कृतनिषयै：कृतबेटा ：मतन्या सार्णवा बीि：／／つ३॥
नवटिग्नि：यूय्यार्काषाशीत्या रसस्बरा युर्यि：／

नीव：／／
नयनार्कमहीन्टूने द्विगणे रूपेन्द्रयेखारै क्रके।
येषं यक्तहूलितं चृगतन यनिरंशटिबसा：स्यु：॥フu॥
विबर्नेर्नकविहीन：प्रागुटितस्तिथिदियरेकयमहीन ：।

$72 a$ रहिते एद्वि（ हिC，हिती F ）यम्${ }^{\circ} a \beta \quad 726$ नीागह（fE E）ने a β ，corr．T．－D．

73 कान्त्（FF）a β ，com．T．－D． 73 म्राक्र a ，प्राक β ，com．T．－D．73c कृतनिष्येय ： $0 \mathrm{~m} . \beta$ क्रकेटा：$\beta \quad 74 a$ नबाटिगिन：$\beta \quad 74 c$ गून्यकृतिर्हाiत्रंश a, गू（गुC）यक्रु（क E ） निर्द्ध－त्रिंशा β ，com．T．－D．74d तोतु（रु β ）मस्तगा（गात्त β ）a β ，com．T．－D．वरका（氟Tद घाTF）न्（ ज्：E ）$a \beta$ ，com．T．－D． $75 a$ नयनांके（采 E ，र्घु F）मितिट्रने a β ，com．T．－D． $75 b$ रूपेंद्रियये ：स्बरेन $f(2 T C F)$ के $a \beta$ ，corr．T．－D． $75 \subset$ यन्त（कृ β ）टलितिं a β ，com．T．－D． $76 b^{\circ}$ स्तिधिरेकय（पa）$म^{\circ} a \beta$ ，com．T．－D． $76<$ बसुकृत्पा a तिभ्युन a
$76 d$ कृ（क्तु $E F$, क्र B ）ताष（ET β ）fिr：स a β

XVII,72. Diminish (the ahargana) by 1652 ; multiply (the remainder) by 7 and divide (the product) by 2752 ; divide (the quotient) by 7 ; they are the days of Jupiter coming into conjunction (with the Sun).
XVII,73. All are to be subtracted from the Sun. In 16 (days) (it travels) 12 (degrees) and rises in the east; in 54 (days) 44 (degrees); in 70 (days) 60 plus 4 ($=64$) (degrees); XVII,74. in 109 (days) 120 (degrees); in 88 days 76 (degrees); in 40 (days) 32 (degrees); then it sets; and in 16 (days) 12 (degrees).

Jupiter.
XVII,75. Diminish the ahargana by 11122 ; divide (the remainder) by 1151 ; take half of the remainder; these are the days of Venus' conjunctions (with the Sun).
XVII,76. In 5 (days) it is diminished by 9 (degrees) and rises in the east; in 15 (days) diminished by 21 (degrees); in 208 (days) diminished by 15 (degrees); in 3 times 4 (=12) (days) 5 (degrees) and it sets;

षष्टाष्टकेन स टरा निरंशगो डतो विलोमग: पष्धात् /
उट्यति निरंशकालान्न याति वास्त टिसेनाथगतिः //99 //
शुक्र: //

अश्नवतियिर्न बतिर्टं च मनुयिस्त्रयोटशबिहीन :
गुण्रूड्रै: शून्यारका घनेन रतेन शशिनवकम् //sell

षोडरा साह रान् सौरच्चरति रवे: स्रर्षटा हीनः //ट०//
रानैचरी :/
पौनिशसिद्जान्ने ताराग्नहा: //
इत्याचार्यंबराहमिहिरकृता पंथस्दिद्रान्तिका समाता //
$\rightarrow 7 b$ निरंम्नतो तो a, निरंशा (सCF) तानो β, cor. T.-D. 77 c -d उट्यनि नि(iom.CF)
धिनिरंशकालोन $(2, \beta)$ य (व β) ति $a \beta \quad \neg 7 d$ विनाथगति: $a \beta \quad 78 a^{\circ}$ रसषट्र्वर्क (के β) शयांके $\alpha \beta \quad 78 b \cdot 2$ साजिता (नCF) β निन्न (ििC C) ह (ह A) ते a β 78 c सौरस्प a Eृतियि (a Tom. E) रहा ($\mathbb{C} C$) मि a a β, com.T.-D.
78 साह जाकहानि० $^{\circ} a$ सार्दारे हानि० $\beta \quad 79 a$ अस्नवतिर्या (र्य C) नबति $a \beta$, cor.
T.-D. $7 a b$ च om. β 7ad घुनेन a, घु (घू F) नेन β, corr. T.-D. here ends D
 B) का (ह्का F) रस्ते मे (मे om.C) त्प (सं CF) तो (नो E, तो $C F) \beta \quad 8 b=(य C)$ बतियि भर्व (वि F)रंशां (रांां C) $a \beta \quad 80<$ साह fात् A, स्नाह fा β, cor. T.-D. 80 d रचे: A col. एवमित्मायार्यं β ० वराहमिहरं $A \beta$, cor. T.-D.

XVII,77. in 6 times $8(=48)$ (days) 10 (degrees) and it comes in conjunction (with the Sun); then it goes in the reverse order in the west. After the time of conjunction it rises, it stands still, it sets, and it comes (in conjunction with) the Sun.

Venus.
XVII,78. Diminish (the ahargana) by 16518 ; multiply (the remainder) by 3 and divide (the product) by 1118; divide (the quotient) by 3 ; (the result is the days) of Saturn. In 18 (days) it is diminished from the Sun $16^{1 / 2}$ (degrees) and rises to the east;
XVII,79. in 98 (days) $90^{1 / 2}$ (degrees); in 14 (days) it is diminished by 13 (degrees); in 113 (days) 120 (degrees); in 100 minus 2 ($=98$) (days) 91 (degrees);

XVII,80. in 13 (days) $12^{1} / 2$ (degrees) and it sets; in 19 (days) Saturn travels $16^{1 / 2} 2$ (degrees) to conjunction (with the Sun). It is everywhere subtracted from the Sun. Saturn.
The Star-planets in the Pauliśasiddhānta.
Thus the Pañcasiddhāntikā composed by ācārya Varāhamihira is completed.

4. The Bhūtasan̄khyā System in the Pañcasiddhāntikā

0. ambara, ākāśa, kha, gagana, bindu, viyat, vyoman, śūnya
1. indu, íśa, ku, candra, jagati, bhū, mahī, rūpa, śaśānka, śaśi, śītakara, śītaraśmi, śitāṃśu, himāṃśu
2. akṣi, aśvi, kara, dasra, nayana, pakṣa, yama, yamala
3. agni, anala, guṇa, dahana, rāma, vahni, śikhin, hutabhuj, hutāśa, hutāśana, hotr
4. abdhi, arṇava, kṛta, ghana (= ghanada), caraṇa, jala, jaladhi, yuga, lavaṇoda, veda, samudra, sāgara
5. akṣa, artha, indriya, iṣu, pāṇḍava, bāṇa, bhūta, viṣaya, śara
6. ṛtu, rasa
7. adri, aśva, naga, muni, svara
8. tanu, vasu
9. an̄ka, anilāhva, randhra
10. āśā, diś
11. iśvara, bhava, rudra, śiva, svargeśa
12. arka, ina, tīkṣnāṃ́su, dinanātha, dinapa, divākara, bhāskara, maṇ̣̣ala, ravi
13. atijagati, viśva
14. manu, śarva
15. tithi
16. aști
17. dhṛti
18. kṛti, nakha
19. mūrchanā
20. jina
21. utkrti
22. amara, surādhipa
23. naraka

10 000. ayuta

5. Metrological Units in the Pañcasiddhāntikā

Time:

yuga-period in which integer numbers of revolutions of (a) the Sun and Moon or of (b) all the planets occur.

saura measure:

saura year-period in which the Sun travels 360° (normally measured with respect to the fixed stars, i.e., a sidereal year; but cf. the Romakasiddhānta).
saura month-period in which the mean Sun travels 30°.

[^9]saura day-period in which the mean Sun travels 1°.
lunar measure:
lunar year-twelve mean synodic months.
lunar month - (a) the mean or (b) the true period between two successive conjunctions (or oppositions) of the Sun and Moon.
lunar day $=$ tithi - a thirtieth of a lunar month. Three varieties of tithi are known: (a) the mean period in which
the elongation of the Sun and Moon increases by 12°; (b) the true period in which the elongation of the Sun and Moon increases by 12°; and (c) the sāvana day which begins during a given tithi.
karaṇa-half a tithi.
omitted tithi = avama or ūnarātra-a tithi which does not contain the beginning of a sāvana day.

sāvana measure:

sāvana year-saura year.
sāvana month-true lunar month.
intercalary month $=$ adhimāsa - the accumulation of 30 tithis from the difference between a saura and a lunar year.
sāvana day-ordinarily the period between two successive sunrises (audayaka), but the period between two successive midnights (ārdharātrika) in the Sūryasiddhānta.
muhūrta-a thirtieth of a sāvana day.
24-hour day-the mean period between two successive midnights or two successive noons.
kṣaṇa - an eighth of a 24 -hour day; 3 hours.
nāḍī (nāḍikā) = ghaṭī (ghaṭikā) - a sixtieth of a 24 -hour day.
vināḍī (vināḍikā) - a sixtieth of a nāḍī.

Relations in a yuga:
saura years $=$ saura months: $12=$ saura days: 360 .
lunar years $=$ lunar months: $12=$ tithis: 360.
lunar months $=$ saura months + intercalary months.
tithis $=$ sāvana days + omitted tithis.
ahargaṇa-lapsed sāvana days from a given epoch.

Circle:

cakra $=$ bhagana -360°.
cakrārdha $=$ cakradala -180°.
rāśi (rāśika) $=\mathrm{bha}-30^{\circ}$ arcs laid off consecutively from Aries 0°.
nakṣatra $=\mathrm{bha}-13 ; 20^{\circ}$ arcs laid off consecutively from Aries 0°.
aṃśa $=$ bhāga- 1°.
kalā $=\operatorname{liptā~} \quad(\operatorname{liptika}) \quad($ from $\lambda \varepsilon \pi \tau o ́ v)-$ $0 ; 1^{\circ}$.
vikalā $=$ viliptā $($ viliptikā $)-0 ; 0,1^{\circ}$.
tatpara-0;0,0,1 .

Space:

an̄gula - digit.
hasta-hand; 24 an̄gulas.
krośa-4000 hastas.
yojana-4 krośas.

	Nakṣatras	Beginnings	Nakṣatras		Beginnings
1	Aśvinī	0°	15	Svāti	$186 ; 40^{\circ}$
2	Bharaṇī	13;20	16	Viśākhā	200
3	Kŗttikā	26;40	17	Anurādhā	213;20
4	Rohiṇi	40	18	Jyesṭhā	226;40
5	Mṛgaśiras	53;20	19	Mūla	240
6	Ārdrā	66;40	20	Pūrvāṣādhā	253;20
7	Punarvasu	80	21	Uttarāṣāḍhā	266;40
8	Puşya	93;20	22	Śravaṇa	280
9	Āśleṣā	106;40	23	Dhanișṭhā	293;20
10	Maghā	120	24	Śatabhiṣaj	306;40
11	Pūrvaphālgunī	133;20	25	Pūrvabhādrapadā	320
12	Uttaraphālgunī	146;40	26	Uttarabhādrapadā	333;20
13	Hasta	160	27	Revatī	346;40
14	Citrā	173;20			

Months	Seasons		Months	Seasons
1 Caitra	Vasanta	7	Āśvina	Śarad
2 Vaiśākha		8	Kārttika	
3 Jyaișṭha	Grīsma	9	Mārgaśira	Hemanta
4 Āṣāḍha		10	Pauṣya	
5 Śrāvaṇa	Vārṣa	11	Māgha	Śiśira
6 Bhādrapada		12	Phālguna	

6. Index of Proper Names and Titles

Anala (= Agni) I $24 \quad$ Āryabhaṭa XV 20
Antara I 24
Amara (cf. Vibudha; Sura) XIII 9; 10; XV $13 ; 15$
Amarāri (cf. Asura; Daitya) XIII 9
Arkasiddhānta (cf. Sūryasiddhānta) IX 1; XVI 1
Arhat (= Jaina) XIII 8
Avantī (cf. Ujjayinī) III 13; VIII 5; IX 1 ; XIII $10 ; 19 ; 23 ;$ XVI 1
Asura (cf. Amarāri; Daitya) XIII 3; 4; XV 14

Āvantyaka XVII 61
Indra I 24
Ujjayinī (cf. Avantī) XIII 17; 21
Kamalā (= Lakṣmī) I 24
Kamalodbhava (= Brahman) 124
Kuru XV 22
Ketumāla XV 22
Giri I 25
Guru I 25
Gau I 24
Daitya (cf. Amarāri; Asura) XIII 2; 27

Dhanada (= Kubera) I 25
Dhātrī I 25
Nirṛti I 24
Pañcasiddhāntikā title; col.
Paraḥ Puruṣa (= Viṣṇu) I 25
Pitāmaha (cf. Paitāmaha) XII 1
Pitr I 25 ; III 23; XV 4; 14
Paitāmaha (cf. Pitāmaha) I 3
Paitāmahasiddhānta XII col.
Pauliśa I 3;4;10;11
Pauliśasiddhānta III col.; VII col.; XVII col.
Prajeśa (= Prajāpati) I 24
Pradyumna XVII 62
Baladeva I 25
Bhadrāśva XV 22
Bhava I 25
Bhāratavarṣa XV 22
Maga I 23
Manyu I 24
Meru (cf. Sumeru) XIII 5; 12; 18; 26; 27; XV 5; 6; 11
Yama I 25
Yamakoṭi XV 23
Yavana III 13; XV 19
Yavanapura (= Alexandria) I 8; XV 18; 25
Rāmacancra invoc.
Rudra I 24
Romaka I $3 ; 4 ; 15$; III 35 ; VIII 1
Romakaviṣaya XV 23; 25
Romakasiddhānta I 10; VIII col.
Lan̄kā XIII $9 ; 17 ; 19 ; 26 ; 29 ; 32$; XV 19 ; 20; 23 ;25

Lāṭadeva (cf. Lāṭācārya) I 3
Lātācārya (cf. Lāṭadeva) XV 18
Vayaḥ (= Sūrya) I 24
Varāhamihira title; XVII 61; 62; 64; col.
Varuṇa I 25
Vasiṣṭha (cf. Vāsiṣṭha) I 1
Vasu I 24
Vāk I 25
Vārāṇasī III 13
Vāsiṣṭha (cf. Vasiș̣tha) I 3
Vāsișṭhasamāsasiddhānta II 13
Vāsiṣthasiddhānta after XVII 5
Vijayanandin XVII 62
Vibudha (cf. Amara; Sura) XIII 2; 3; 12
Vedhāḥ (= Brahman) I 25
Śaka (cf. Śakendra) I 8
Śakendra (cf. Śaka) XII 2
Śaśi (=Candra) I 24
Śāstṛ I 24
Śrī I 25
Saṃhitā (= Bṛhatsaṃhitā) XV 10
Samīraṇa (= Vāyu) I 25
Sāvitra (cf. Saura) I 4; 14
Siṃhācārya XV 19
Siddhapura XV 23
Sumeru (cf. Meru) XIII 2; 22; 32
Sura (cf. Amara; Vibudha) XV 14
Sūryasiddhānta (cf. Arkasiddhānta) IX col.; after XVI 11
Saura (cf. Sāvitra) I 3
Svargeśa I 24
Hara I 25
Himādri (= Himālaya) III 12

Index verborum

aṃśa (aṃśaka) I 12 II $4,5,7$ III $1,4,16$, $22,24,28$ IV $1,2,5,16,26,27,32,34,41 \mathrm{~V}$ $4,6,8$ VI 2,5 VII 1,5 VIII $6,9,10,11$ IX $7,10,12,17,18,24$ XI 2,3 XII 3 XIII 10 , $14,15,16,20,23,25$ XIV $1,2,3,4,6,7,11$, $12,13,20,22,24,25,34,35,36,38$ XVI 5,9 ,
$14,15,23,24,25$ XVII $1,2,3,5,7,11,12,14$, $15,18,19,20,24,27,30,32,33,36,38,39$, $41,45,48,49,51,52,53,54,55,57,58,59$, 60,61,65,67,70.
aṃśakendra I 23
aṃśumān XV 7
akṣa III 2,14 IV 21,28,40 V 7 VI 8, VII 2 VIII 12 IX 18 XIII 5 XIV $3,10,18,19$, 25,29
akṣajīvā IV 32
aksajyā I 7 IV 22,28 XIII 33
akṣi XII 3
agata XII 5
agastya XIV 40
agni I 18 III 1,17 IV 12,30 VIII 8 IX 4,7
XIV 38 XVI 2 XVII $3,7,17,22,43,66,78$
agrasta XV 4
agraha I 6
agrā IV 5ॅ2,53,ธ5
an̄k XIV 8,14
an̄ka (an̄kaka) IV 16 VIII 4 XIV 2,19,21, 24 XVII 42
an̄gula IV 48,54 V 6 VIII 17 XI 1,6 XIV 1,21,37,38
acapala XIV 28
aja III 10 IV $7,12,24,30,41,42,47,53$ XIII 9 XIV 24 XVII 29,54
ajña IV 37
ajñāta XIV 28
aṇu XV 12
atikram III 7
aticira I 10
atijagati XVII 80
atidūra III 34
atimahan III 31
ativakra XVII 29,33
atī IV 39
atīta XV 9
ad VI 6
adas IV 18
adri XVII 37
adhas II 3 VI 9 XIII 2,3,4,5,35,41,42 XV 15
adhastāt XIII 29
adhika III $3,6,8,30$ IV 7,25 V 9 VI 4 VIII 12 XIII 23 XIV 10 XVII 40,41,46, 65,67
adhikr XV 1
adhigam III 36
adhimāsa (adhimāsaka) I 9,11,12,13,14, 15,16 XII 1 XV 24
adhyardha IV 4
anala IV 11 IX 8
anavaratam XV 9
anāgata XVII 60
anilāhva XVII 35
anukūla V 2
anuga XVII 20
anugati XVII 29
anucca XV 5
anupāta III 16,31 XI 6 XVII 56
anuvakra XVI 22 XVII 13,54
anuvakrin XVII 5
anuvarṇana XI col.
anta (antaka) III 4,26,27 IV 12,18 VI 2, 9,11 VII 5 VIII 18 IX 19,23 XI 4 XIII
1,10,36 XIV 17,34,37 XV 17
antara III 16 IV 23,55 V 1,5 VI 5, 8,13
VIII 7 IX $17,22,24$ XI 2,6 XIII $8,26,40$
XIV 3,8,10,12,22 XV 15 XVI 23,24
XVII 58
antaraja III 13 IV 10
antarajyā IV 11 IX 13
antarāla XIII 26,32
antarita III 31 IV 55
antya III 6,15 IV 25 X 7 XI 1 XIII 25 XVII 13
anya I 21 III 18 IV 4,56 XI 4 XIII 5,7, 17,35 XIV 12 XV 25,26 XVI 12,24 XVII 64
anyatas IV 8 XIV 8
anyatra III $12,13,31$ IV 46
anyatva IV 55 V 5 IX 27 XIV 29
anyathā VI 4 XIII 38 XVII 8
anyākṣa XIV 22
anvita I 16 VIII 5 XIV 30 XVII 22,27,44, 45,50
apakrama I 7 IV $16,21,24,29,32,51$ VIII 10,11 IX 18 XI 3 XIV 1,2,3, 7 XV 13
apacaya III 11 XVI 16,20
apacāra III 36
apanī XIV 38 XVII 14
apara IV 19 VI 13 XI 1,3 XIII 6 XV 12
XVII 2,4
aparatas XIV 9 XVII 5
aparāhna II 11 XIII 37
apariniṣṭāna XV 28
apahā I 5
apahṛta IV 53
apās I 8 III 1 VII 6
apekṣa III 36
abda I 12,13,16,23 III 34
abdhi XVI 11 XVII 22,68
abhikleśa VI 11
abhidhā XVII 24
abhidhāna IX 18
abhimata IV 4 XIV 29
abhihita VI 14 XIV 18 XV 19
abhyadhika I 23 IV 24 XVII 39,41,43,51
abhyantara XIV 6
abhyasta VIII 5,14,15 XIV 4 XVI 2
abhyudaya XVII 14
abhyudi XVII 10
abhyudyata I 2
amara XVII 43
amuñc XIV 15
ambara I 12 II 12 IV 8 IX 2,3 XI 2 XII 4
XVII 57
ambhas XIII 34
ayana II 10 III $21,22,25$ IV 22 V $1,2,5$
VII 2,4 XIV 10,24 XV 24
ayaskānta XIII 1
ayuta I 14
ayoga IV 3
ara XIII 40
arka I 15,19 II $4,7,10,11,12$ III $1,6,16,20$, 22,35 IV $35,36,37,40,44,52,53,56 \mathrm{~V} 2$, 9,10 VI 1,15 VIII 2, col. IX $1,4,7,9,15$,
21, col. X $2,5,6,7$ XI 2 XII 3,4 XIII 8 , $12,18,27,37,38$ XIV $11,12,22,23$ XV 6,
$15,22,24$ XVI 1,12.13 XVII 13,20,35, $58,69,73,74,78,79,80$
arkaja XIII 39
arkasuta XIII 41
arghyakapāla XIV 19
arṇava I 14 IV 14 IX 1,5 XVI 8 XVII 31, 46,49,73
artha I 12 III 38 VIII 18 IX 16,20 XI 6 XVII 40,61
ardha I 8 II $4,5,7,10$ III $4,6,10,15,19,21$, 26 , IV $3,6,11,30,33,34$ VI 8,15 VII 3 VIII 2,18 IX 8 X 7 XI 1 XII 4 XIII 14, 35,38 XIV 21,32,34,35,37,39 XV 12,26 XVI $7,8,10,17,18$ XVII $1,3,11,14,25,43$, 47,53,56,78,80
ardharātra XV 20,22,23,25
ardhaśata IV $9,11,13,16$ XVII 13,44
ardhāstaga XV 18
ali XIII 24 XVII 1,49
alpa XIII 34
alpaga XIII 7
alpāstaga XV 8
avagāhin XIV 2
avaṭa XIV 19
avatāra I col.
avanati VIII $13,14,16,17,18$ IX 26
avanāma IX 27
avani XIV 17
avama I $11,12,13,16$ XII 1
avalamba (avalambaka) I 7 IV 23,43 XIII 33
avalambin XIV 22
avaśisța III 8
avaśesa I 19 III 23 IV 4,5
avasthita XIII 1
avān̄mukha XIII 3
avāp XIV 28
avāpta IV 28
avikala I 2
avicar XV 29
avidita XV 2
aviśeṣa IX 23,24 X 4 XV 3
aviśodhana IV 42
aviṣama XIV 1
aśva XVII 13
aśvi I 8,18 III 4 IV 16,43,45 VI 5 IX 1,3 XVI 8,11 XVII 12,72
așṭi I 15 III 10 VIII 3,6,8 IX 9 XVI 12 XVII 72,78
asakala VI 6
asatya III 37
asita XIII 35,38
asura VIII 11
asta IV 31,39 V 10 XIII 25 XIV 18 XV 7, 9 XVII $5,58,59,77,80$
astaga VIII 5 XVII 20,74,76
astamaya III 33 IV 51 V 8 VI 10 XI 2 XV 12,22,23,26
astamita I 8 XVII $4,13,25,68,70,71$
asphujit ('A甲poठít η) XVI 25
asphuṭa III 37
asmāka XV 7,8,13,16
ahar III 9,27 XII 1,2 XIII 7,8 XIV 10,15, 32 XV 14,27 XVII $38,52,53,69$
ahargaṇa III 35
aharvyāsa IV 27
ahorātra XV 13,16
ākāra XIV 32
ākāśa I 15
āgamya VI 14
āgāmika VIII 7
ācāra XVII 23,24
ācārya I 2 XV 29
ātapa XIII 35
ātapta XIV 22
ādā XIV 3
ādi I 8 II 8,9 III $11,23,25,26,29,38$ IV 18 , $21,30,33,47,51,53$ VI 9,11 IX 26 XIII $2,7,9,12,27$ XIV 30 XV 24 XVI 12,14, 16,20,23 XVII 14,58
ādika XIV 26
āditya III 35
ādiś VIII 16 IX 26
ādiṣṭa XIV 31
ādeśa XIII 16 XVII 60
ādya I $3,7,8$ II 3 III 11 IV 41,42,46 IX 13 X 6,7 XI 1 XII 2,3 XIII 6,25 XIV 30, 40 XV 28 XVI 6
ānī VIII 10
āpāta XIV 32
āpta VII 2 VIII 11 XV 26 XVI 20,25
XVII 14
āpti XV 18
āyata XIV 21
āyā V 3
āyāmaśakalaka VI 13
āyāmārdha IV 23
āyāmin VI 13
āra ("'Apns) XVI 24 XVII 32,60
ārāma XIII 2
ārka IV 49 XII 3
ārki XVI 24 XVII 60
ārkṣa I 16
ārpita III 20
āryā XVII 64
ālikh VIII 18 XIV 2
ālok I 22
āloka V 3
āśā I 14 VI 7 VIII 4
āśraya XIV 41
āśleṣā III 21
āsanna I 4 X 3 XIII 3 XIV 14
āsthita XIV 16
āhata I 9 II 7 VI 4,5 IX 22 XII 3 XVI 2,7 XVII 66,72
āhāni IX 17
āhorātrika IX 14
i III 31 XV 12 XVII 2,5,80
ina XVII 9
indu I 6,15 II $1,2,7$ III $5,9,16,20,35$ IV 45,50 V $2,3,5$ VI $1,6,7,8,15$ VII 6 VIII 16 IX $4,5,11,12,16,26$ X $1,3,4,5,6$ XIII 8,35 XIV 12 XV 1,6 XVI 9,10,11 XVII $22,45,46,69,75$
induputra XVI 1
indriya I 13,14,15 II 6 III 28 IV 13,14,17
VIII 1 IX 2,15 XVI 23 XVII 34,75
iṣu XVII 19
iṣṭa IV $3,5,21,32,37,39$ XIV 10,27
īkṣ XIII 26,38
ījya XVII 60
ịḍa XVI 21
íśa XVII 49
îśvara IV 13 XVII 75
ukta II 7 III 20 IV 4 XIII 12 XV 10,18,21
ucca VI 9,11 IX 3,4,7,12
uccaiḷ XIII 10
uḍu XVII 43
uḍugaṇa XIII 6
uḍugaṇādhipati V 4
uḍupa XIV 29
utkṛti XVII 47,51
utkrama III 10 IV 30
utkṣipta XIV 25
uttama III 9
uttara I 22 IV 19,32,35 VIII 12 XI 3 XII 4,5 XIII 15,17,33 XIV 3, 7, 16, 17, 35,36 XVII 57
uttha XIV 3
utpanna IX 23
udak III 30 IV 18 V 4,8 VII 3 XI 2 XIII 11,13,19,20,21,23 XIV 2,9,16,24, 25,34,35
udagayana II 10 III 25 VII 3 XIV 26
udaya I 7 III 33 IV $31,32,39,50$ V $3,8,9$, 10 VI 1,10 VIII 10 XI 2 XII 2 XIII 8, $14,16,24$ XIV 7,18,20 XV 7,8,9,19,20, 23,25 XVII $1,2,6,7,13,15,17,21,22,25$, 26,37,59
udayāṃśa XIV 29
udayāntara XVII 54
udi III 27 XIII 25 XIV 26 XV 11,22 XVII 70,77
udita XIII 22,27 XVII 4,70,73,76,78
udgama IX 17
uddhṛ IV 27,49
uddhṛta I 19,20,23 II 2,6 III 14 IV 44, 46,47 VIII 1 IX $1,13,21$ X 1,3 XII 2 XVII 14
udbhava IV 56
udyama IV 29
unnata XIV 19
unnati XV 15
upakaraṇa I 7
upagata XIII 26
upacaya III 3
upacita III 11
upadișta XII 1
upaniṣad XV col.
upayā XVII 26
upara XV 7
upari XIII 5
upariṣṭhāt XIII 9,10
upalabdha XIV 41
upahita XV 2
upe XIII 4,6
upeta III 34 IV 15
ubhayatas XIII 38 XIV 24
uṣṇakiraṇa III 21
uṣṇāṃśu IV 39

[^10]ṛṇ II 4,5 VII 2,3,4 IX 4
ṛtu I $11,13,17,23$ II 1 III $5,18,25$ VII 6 VIII 1,8 IX 2,3,16 XV 24 XVI 3,6,16 XVII 28,34,46,66
ekatva IV 55
ekastha VI 12
eṣya III 27 IV 55 VI 1
eṣyat XV 9 XVI 15
aikya VIII 11 XI 1
aindava I 16
aindrī IV 19 XVII 5
kakṣā IX 15,16,22,24 X 1,2
kakṣya XVII 57
kathaya III 37 XV 1
kathita XV 17
kadācit XIII 23,24 XV 5,6
kanyā III 24 VI 11 XVII 2,11,30,47
kapila VI 9
kara IX 5 XIV 24
karaṇa I col. III $18,19,37$ IV col. VIII 2 XVII 62,64,65
karaṇī IV 2,3,4,5
karkaṭa (karkaṭaka) II 8,9 III 11,25 IX 13 XIII 12 XIV 40 XVII 31
karki (Køркívos) XVI 16 XVII 45
karṇa I 6 IV 53,55 V 4,5,6,7 IX 14,15 XIV 9 XVI 25
kartavya IV 42,56 XI 6 XVI 19
karma III 12 XIV 29
kalā II 3,4 III $2,5,26$ IV 12,26 VI $2,3,5$ VII 5 VIII 3,15 IX 12 X 6 XIV 37,39 XVI 5 XVII 10
kavi XVI 21
kāra I 5 III 37
kāraṇa XV 17
kārikā XVII 61
kārmuka III 24 IX 13 X 2 XVI 18
Hist. Filos.Skr. Dan.Vid. Selsk. 6, no. 1.
kārya I 19 II 12 III 6 IV 19 VI 13 IX 9, 12,17 XIV 12,27,32 XVII 65
kāla I 8,20 III 25,26,34,36 IV 31,32,41, 50 V 9,10 VI 1,3,6 VII 6 VIII 16 IX $14,23,25,26$ X 6,7 XII 2 XIV 13,30,38, 41 XV 18,21 XVI 22 XVII 57,77
kālacakra XIV 26
kālabhoga XIV 23
kālāṃśa XVII 54
kāṣṭā III 22 IV 16,53,56
kāṣṭhānta IV 35 IX 19
kiṃstughna III 19
kila III 21 XIII 8
ku I 11
kuja XIII 39 XVI 2,4,6,13,14 XVII 26, 31,68
kuṇḍa XIV 32
kumbha XIII 35 XIV 32 XVII 52
kuvṛtta XIII 9,10
kūrma XIV 27
kṛ IV $27,33,36,43$ V 10 X 4, 7 XI 3, XII 2 XIII 30 XIV 1,19 XV 21,22 XVI 21 XVII 23,27,60,61
kṛta I 1,15 II 1,6 III 1,37 IV $2,12,14,20$, 38 VI 5 VII 6 VIII 1,3,4,6,7 IX 15,16 X 4 XIV 29,38 XVI 14 XVII 9,12,19, $20,29,30,34,43,45,47,49,53,58,62,66$, 73,74,76
kṛti II 7 III 2,3,7,13,14 IV 2,22,23,27,29, 44,45 V 5 VI 2,3 VII 5 VIII 6 IX 20, 21,22 X 6 XI 5 XIV 39 XVI 17 XVII $20,39,42,46,50,52,55,56,76$
kendra (кغ́vtpov) III 1,2 VIII 2,5,7 IX 7, 12,13 XVI 17,19
koṭi IV 54 V 5,6,7 XIII 30 XVI 15
koṭiphala XVI 16
krama I 18 III $1,10,17$ IV 15,25 VIII 8 IX 1,5,17 XIII 42 XVI 3 XVII 23,26, 30,31,38
kramajyā XI 2
kramaśas I 24 IV 28 VIII 1,2 IX 18 XIV 7 XVI 7,23 XVII 8,23,28
krānti IV 23,26,27,34,39,40,46
kriya (Kpıós) VI 11 XIV 30
kṣaṇa III 37 XV 9,15
kṣama XV 2
kṣaya III 2,6,11,15,18 V 8,10 IX 8,13
XIII 38 XVI 19,21 XVII 9,17
kṣi XIII 36
kṣiti XIII 4,6,18,19
kṣitija XVI 10
kṣitijyā IV 28
kṣip III 28 XVII 24,57
kṣipta XIII 4 XIV 2,3
kṣīra XV 2
kṣetra XIV 36
kṣepa III 22 VII 2 XVI 6 XVII 22
kṣepya VI 4 XVI 7,10
kṣiṇa IV 31
kha I $10,13,15,17$ II 1,2 III $1,2,4,6,14,17$, 18,34 IV $14,27,32,34,40,43,44,45,47$ VI 8 VIII $1,4,5,7,11$ IX $1,4,9,15,16$ XI 2 XIII 1,6 XVI 3,6,11, $14,16,17$ XVII 9 , $12,17,19,30,31,42,44,51,66,68$
khaṇḍa VIII 2 XIII 14 XVII 8,9,10,11, 18
khaṇ̣̣agrahaṇa VI 10
khamadhya XIII 14,15,20 XIV 18
khalu XV 6,13
ga IV 38 VI 11 XII 5 XIII 9,12,39 XV 6,9 gagana XIII 4 XIV 17 XVII 21
gaṇ III 35 IV 37
gaṇita III 37,38 XIV 41
gata IV 18,48 V 7 XIII 26 XIV 8,17 XV 4,5,19 XVI 15 XVII 55,56
gati II $2,4,5$ III $4,6,8$ XIII 3,39 XV 24 XVI 1,11 XVII $24,25,26,27,28,34,35$, 54,55,56
gad XV 20
gam XIII 19,21,23,25 XIV 15 XVII 4
gamya XIV 26
gāmin XIV 21
guṇa I $10,14,18,20,23$ II $1,2,3,6,8,9$ III 17,28 IV $3,5,6,10,11,14,15,17,28,34,35$ VI 3,11 VII 2 VIII 4,5,11,16 IX $3,5,7$, $15,16,26$ X 1,2,7 XIV 4,27,39 XVI 3,9, $12,14,16$ XVII $1,11,14,17,19,28,35,36$, $43,45,46,63,66,69,75,79$
guṇakāra XVII 69
guṇita II 2,3 III 10 IV $22,29,47,52,55,56$ V 1 VII 1 VIII 8,9 IX 2,3,13,21 XIII 18 XIV 39 XVI 7,8,13,16 XVII 10,22,42, 56,59,69
guru I 1 XIII 4 XIV 28 XV 19 XVI 6,10, 13,25 XVII 6,10
gṛha XI 3
gola IV 32,35 IX 27 XIII 1,21,29 XIV 11, 23
gau IV 12,17 XVII 30,43
grasta X 6 XV 4
grah III 35
graha I 5,6 IV 56 VI 15 XIII 39 XV 24 XVI 3,24 XVII 57,58
grahaṇa VI 2,7, col. VII 5, col. VIII col. IX 27, col. X col. XV 1,3,5,8, 10
grahamadhya VI 9 XV 4
grāsa VI 14 VIII 18 IX 25
ghaṭa XIII 24,37 XVII 32
ghaṭata XV 21
ghaṭikā XIV 29
ghana II 2,3 IX 5 XIII 40 XV 7 XVII 17, 18,44,47
ghna I $9,10,11,14,20$ II $4,6,7$ III $1,4,5,14$, 26 IV $24,26,27,29,34,39,40,41,42,43$, $44,45,46,48,49,53$ V 8 VI $1,5,8$ VII 2 VIII 1,4,13 IX 1,4,5,7,9,15,19,24 X 1,3 XII 4,5 XIV 5,7 XVI 17,25 XVII 17, $25,37,43,45,46,49,55,57,68,76$, 78
cakra III 15,20 VI 11 IX 6,8 XIII 14,40 XIV 8,18,19,21 XVII 65
cakrārdha II 11,12 III 22 V 10 VI 1 XIII 25 XVII 11
caturdaśī III 19
catuspada III 19
candra I 7 III $9,16,30,31$ IV $12,16,50$ V 9,10 VI 14, col. VII 4,6 VIII 6,18 IX $2,7,9,12,15$ X 2,3 , col. XI 2 XIII 39,42 XV 7,24 XVI 2,11,23 XVII 1,28, 58
candramas VIII 17 X 7
caya IX 8,13 XVI 16,20
car XIII 27 XVII 80
cara III $10,12,15,19$ IV $31,41,51$ XIV 4 , 30 XVII 57
carakhaṇḍa(ka) IV 26,27
caraṇa VII 2 XII 5
cāndra I 16
cāpa IV 5,21,26,29,32,34,40,47 IX 8,9,24
XIV 4,6,7,11,39 XVI $17,19,20$ XVII 29
cāpadhara XIII 24
cāra XV 10 XVII 2,26,35,41,65
cārin XV 15
cita XIII 2
citrā XIV 37
cint IV 50
cintya IV 51
cihna XIII 8 XIV 1,3,19
caitra I 8 III 35
channa VIII 17
chāyā I 7 II 9,10,11,13 IV 19,22,35,38, $44,45,48,49,50,52,54,55$ VI 15 XIII 3 , 11,35 XIV 5,6,8,9,10,15,16,20,39
chāyāgra XIV 9,14
chid III 5 IV 43 XVII 37
chidra XIV 21,31,32
chindya IV 20,22
chinna IV 48 V 1 XVII 7
cheda II 12 , col. III 32×1
chedya (chedyaka) I 7 III 12 VI 14 XIV $13,19,41$, col.
chedyārdha XIV 12
jagati IV 8,9
jan IV 36 XV 2
janaka I 1
janapada XV 29
jala XVII 1
jaladhi XVII 4
java XIII 39,41
jina II 2 IV 27,34,47 IX 2
jīva (Z\&ús) XIII 39 XVI 2,24 XVII 9,62, 74
jīvā IV 16,24,42,47 XIV 6
jūka (Zuyós) XIV 30 XVII 48
jña XVI 9,21,25 XVII 60
jñā IV 36 XVII 60,63
jñāna XIV 41
jñeya I 23 IX 14 X 6 XI 3 XIV 4,11,12 XVI 23 XVII 65
jyā IV 1,2,4,5,6,10,12,23,26,27,28,29,32, $34,35,39,40,42,46,56$ VII 1 VIII 9,11 , 13,14 IX 7,18,19,25 XI 2 XIV 5,11 XVI 15,24 XVII 57
jyautiṣa XV col.
jhaṣa VIII 8 XIV 24 XVII 29
taṭa XIII 3
tatkālīna VIII 15
tatpara XVI 4,7
tanu I 12
tantra I 5 XVII 61,64
tap XIII 18
tamas VI 2,6 X 2 XIII 36
taru XIII 2
tāḍita III 14
tātkāla (tātkālika) IX 16 X 5 XI 5
tādṛ́s XIV 40
tāmra XIV 32
tārā XIV 33,35,36
tārāgaṇa XIII 1
tārāgraha I 6 XVI 1, col. XVII 61,64, col.
tigmaraśmi XV 5
tithi I 9,12 II 7,8 III $16,18,19,27,32$ IV 6, $15,24,25$ V 4 VI 1,3,9 VII 1 VIII $1,3,9$, 16 IX $13,17,19,23,26,27$ X 7 XII 3,4 XIV 12,30,38 XV 24,29 XVI 6 XVII 4, $22,48,58,67,68,76$
tithipralaya I 14
timira VI 4 IX 6
tiryagrekhā XIV 7,11
tiryagvedhaprakāśa XIV 24,25
tiryañc XIV 21
tilaka XIV 40
tīkṣṇāṃśu XVII 39
tun̄ga V 4 XIII 20,30
tulā III 11,23 IV 18,21,30,33,41, 42, 47,53 VII 4
tulya IV 31 XIII 39,41 XIV 14,24,29 XVI 1 XVII 46
tulyajihma XVII 33
tṛ XV 3
tailaka XIII 40
toya XIV 31,32
taulin XVII 30
tyaj XIII 24
triṃ́adbhāga XIII 28
trijyā IV $3,22,23,52,53,55$ IX 21 XVI 25
trailokya XIII col.
tryaṃśa XIII 28
tryahaḥspṛś III 27
dakṣiṇa III 25 VII 3 VIII 12 XIII 11,15, 30 XIV 7,16,17,35,36
dakṣiṇatas III 30 IV 18 XIII 20 XIV 34, 37
darpaṇodara XIII 36
darśana V col. XIII 23 XV 12 XVI 23 XVII 58
dala II 7 III 8 IV 4,31 VI 6,8,9 VIII 2,16, 17 IX 26 X 6 XI 1 XIV 4,34 XVII 11, 68,79
dalita XVII 45,75
daśana XV 2
dasra X 1 XVII 38
dahana I 17 IX 5 XVI 9 XVII 6,20,32,49
dā I 12 III 8 VIII 8,18 IX 3 XI 2 XIV 13, 28 XVII 2,7,8,36,41,64
dāru XIV 23
diggrahaṇa IV 38,54
dina I 11 III $11,28,33$ IV 20,21,33,34, 37
VII 4 XIV 20,38 XV 20,24 XVII 2,7,
$12,13,14,22,26,29,33,36,42,65$
dinakara I 1 III 38 XVI 23
dinakṛt III 22 IV 33 V 3 XIII 20
dinagaṇa XV 19
dinadala IX 1
dinanātha XVII 52
dinanāthagati XVII 77
dinapa XIII 42 XV 11
dinapatitva XV 27
dinamadhyama VII 1 VIII 9
dinamāna IV 49
dinavāra XV 17,18,29
dinavyāsa IV 23,25
dinasamūha VIII 5
dinādhipa XV 26,28
dineśa I 20 III 1 IV 16 XVII 52
dineśvara XV 16
divasa I 8,11 II 8 III 23 V 10 VIII 7 XIII 12,17,29 XV 13,24 XVII 6, 14, 27, $31,35,37,41,50,54,65,66,72,75$
divasanātha I 21 XIII 22 XV 8
divasapati XV 27
divasamāna XII 5
divā V 9
divākara IX 9 XV 3 XVII 51
divya XIV 41
diś I 6,11,15 IV 19,29 VI 6 VIII $11,14,18$
IX $4,15,24$ XI $1,3,4,5$ XII 3 XIII 30,33 XIV 4, 7, 19 XV 11 XVII 29,43, 45, 46, 68,74
dīdhiti XIII 36
dūra I 4
dṛkkṣepa IX 20,21,24
dṛs VI 14 XIII 3,22,30 XIV 33
dṛśya XIII 13,14,27 XV 1 XVII 5
dṛṣa IV 50 XIII 16 XVII 62,67
dṛṣi XI 6 XIII 31 XIV 29 XV 6
deya I 13 II 5 IV 54 V 2,4,6 IX 10,27
XIV 20 XVI 4,8
devaguru XVII 72
devapūjya XVII 11
deśa III 33 XIII 11 XIV 29 XV 3,9,18
deśāntara I 6 III 15 XIV 30 XV 21,25
doṣa XVII 63
daivajña XV 17
dyu IV 46,50 XII 5 XVII 8,13,15,24,74
dyugaṇa I $10,17,23$ II 2 VIII 1,4 IX 1
XII 2,3,4 XV 18 XVI 2, 8 XVII 1, 6, 21, 36
dyudairghya IV 26,34
dyuniś IV 50 XIV 31 XV 14
dyumāna IV 48
dyuvṛddhi XIV 26
dyuvyāsa IV 29,43,47,51 XIV 18
draṣṭ XIII 16
dvādaśabhāga XIII 28
dviguṇākṣa V 4
dvija III 36,37
dviṣ̣̣ha I 9 IV 41
dvisthita IX 8
dhana II 4,5 III 6,18 VII $2,3,4$ IX 4,17
XVI 5,9,17,18,19,21
dhaniș̣̣̆ā XII 3
dhanus IV 3 XIII 23
dhanvin XVII 50
dharitrī XIV 1
dharma III 38
dhā VI 2 VII 5
dhātrī XV 1
dhūmra VI 10
dhṛti I 14 II 4 IV $6,11,25$ VIII $3,6,13$ IX 5 XII 5 XVII 9,22,51,67,70,78
dhyāna XV 2
dhyeya XIII 15
dhruva III 19 IV 2,4,34,35 XIII 5,8,20 XIV 18
dhruvatārā XIII 26,31
dhruvā IV 4,5
dhvaja XIII 7
nakṣatra II col. III 32,35 XIII 41
nakha XVII 4
naga VIII 7 XIII 2 XVII 72
nagara XIII 2
nata XVI 19,21
nati IX 24,25
nabhas XIII 26
nam XIII 20,31
namas Invoc. XIII 12 XVII 63
nayana XVII 75
naraka III 37 IV 6
navāṃśa XIII 28
naṣṭa XIII 11 XIV 12
nāga III 19
nāḍī (nāḍikā) III $13,14,15,26$ IV 41,47,
$48,49,50,51$ V 3 VI 1 VII 1,2,4 VIII 9 ,
10 IX 10 X 3,5 XIII 22,29 XIV 5,6,20, $25,31,32$ XV $13,14,16$ XVII $6,21,37$
nābhi XIII 40 XIV 14,19
nāma VII 1 VIII 9
nāman V 7
niḥsṛta XIV 14
nitarām VI 9
nitya IX 10 XIII $7,28,35$
nibaddha XIII 5
nimitta XV 10
niraṃśa XVII 66,71,75,77,80
niraṃśaga XVII 26,72,77
niraṃśagati XVII 68
nirantaram I 21
nirgamana IV 19
nirṇaya XVI 1
nirmatsara XVII 64
nilaya XIII 2,6
nivṛtti III 21
niś V 9,10 XV 19
niśa XV 24
niśā XIII 29 XV 27
niśākara XIV 13
niśānātha VI 10
niśārdha XVI 1
nihan XI 2
nihita XIII 36
nīca III 9 VI 11 XV 7
nemi XIII 40
naiśa VIII 7 XIII 36
nyas XIV 24
nyasta XIV 32
pakṣa I 9,15 III 5 IV 12,27,30 IX $1,2,3,5$ XIII 38 XV 4 XVI $6,9,14$ XVII 16,19 , 27,28,34
pañjara XIII 1
patita IX 6 XIII 32 XVI 15
pada II $2,4,5,6$ III $4,5,7,8,9$ IV $1,2,3,4$, $23,44,52$ V 5 VI 5 X $3,6,7$ XVI 17,24 XVII 7,9,15,16
para I 5 VI 8,9 XVII 63
paratas II 4 III 7,8 IV 30,33 VI 9 XIII 22,27 XVI 15
paramparā XV 16
parikalpanīya XIII 14
parikalpita V 6
parigam XVII 5
parijñeya IV 24 IX 12
pariṇam IX 13 XVI 18
paridhi III 12 IV 1 V 7 VI 7,8 XIV 1,9, 22,23 XVI 16,21
parimāṇa VIII 15,16 IX 26 XIII 18
pariladbha VIII 4
parilikh XI 1
parivṛddhi XIII 37
pariśeṣa I 4 XIV 4
pariśodhya III 6
parihīna IV 11 VIII 1 XVII 19
parī XIII 41 XV 11
parokṣa XVII 63
paryanta XIV 3
paryasta XIII 21
parvan VI 7 XII 4
paś III 34 XV 4,5,6,15
paśca VI 15
paścāt II 12 VII 3 IX 17 XIII 7,37 XIV
6,33 XVII 55,71,77
paścima IX 8,10
pāṃśu XIV 27
pāṇ̣̣ava VI 1 XVII 37
pāta III 22 XIV 14
pātya XIV 9
pātra XIV 32
pāda III $10,33,35$ IV 16 VII 6 XVI 25 XVII 3
pārśva VI 13 XV 6
piṇ̣̣a I 16 III 14 IV 4,10
pitrya XIV 36
puccha III 29,30 VII 2,3,4 IX 6
puṇya III 26
putra XIV 28
punarvasu III 21 XIV 35
punas III 6 VIII 2 IX 23 XIII 6,13 XVI 19
pumān XIV 31,41
puṣya XIV 35
pūrṇa XIV 32
pūrṇimā XIV 29
pūrva I 1,2 III 6,10,15 IV 51 VI 13 VII 3
IX 10 XII 4 XVI 20 XVII 56
pūrvatas XVII 10
pūrvasandhyā V 2
pūrvāpararekhā IV 38,39 XIV 17
pṛthak IX 16
pṛthaksthāpya IX 20
prsṭha XIII 27 XIV 23
pṛṣthatas IV 48
paurṇamāsī III 35 XV 4
prakāśatā XIV 41
prakṛ XIV 3
prak!̣ XIV 10
pragraha VI 6
pragrahaṇa VI 15 X 4
pracaya XVII 17
praṇam I 1
praṇīta I 22
pratidinam XV 3
pratidivasam XIII 37 XV 26
pratipatti III 32 XV 17
pratima XIII 30
pratirāśi I 17
pratiloma XIII 9
prativarṣam XVI 10
pratīpa IV 31 IX 17
pratyakṣa XIII 15
pratyaya IV 36 XIII 34
pratyuttaram XVII 60
prathamajīvā IV 45
prathamajyā IV 46
prathaya XVII 63
pradṛ́ XIV 17
prapañca XV 10
prapanna I 18,19
prabhṛti VI 7 VIII 10 XIII 11 XV 20
pramāṇa I 6 IX 25 XIII 16 XVII 23,59
pralaya I 15
pravaha XIII 5
praviś IV 38 XIV 22
pravṛt III 19
pravṛtta XV 24,29
pravṛtti XV 20
praveśa IV 19
prasakta XIV 17
prasādh XIV 23
prasiddhikara XIII 33
prasr XIV 4,9
prastāva XVII 63
prāglagna VIII 10
prāñc II 12 IV 48 V 7 VI $7,8,9,15$ VII 3
IX 17 XI 3 XII 4 XIII 39 XIV 6,8
XV 11,12 XVII 4,21,25,70,73,76,78
prāp IX 25
prāpta XIV 6
prāyaścittin III 36
prāyas XV 29
preraṇa XIII 7
prokta I 4 II 4 VI 13 XIII 8
projjh II 3 III 5,29
prodi XIII 9
phala I 22 II 5 IV 43 V 2 XVII 56
phalaka XIII 30,32 XIV 27
baka XI 3
bahala XIV 21
bahu XIII 22
bahula III 18,19
bahulāḥ XIV 34
bāṇa XVI 4
bāhu IV 54 V 5 XVI 19,21
bindu (binduka) III 7 XIV 15
bimba III 26
bīja I 2 XIV 27,28
budh XIV 10,33
budha XIII 39 XVI $7,11,13,21$ XVII 37, 38,41,54,62,71
budhna XIII 31
bṛhaspati XVII 13
bodha I 1 XV 2
brū XV 26
bha II 3,10 IV 5,29 XII 3 XIII 39
bhakta I $11,17,19,23$ II 3 III 7,28 IV 35 , $39,52,55$ V 8 VIII 5,15 IX $3,5,8,9$ XII 3,5 XVI 2,8 XVII 56,69,75
bhakti I 1
bhagaṇa II 5 III 28,30 IV 37 XIII 5,21, 29 XIV 3,21,34 XV 1 XVI 3,4,7,8
bhagna XVII 62
bhaj II 11 XVI 17 XVII 15,62
bhadra III 32
bhapati X 7
bhava IV 17 VIII 6,8 XVI 13 XVII 31, 34,42
bhavana III 25 V 3 VIII 2
bhā XIII 35,38
bhāga III $13,15,18,20,23,29,31$ IV 1,40 VI 4,6,7,8 IX 8,23 XIII 15,19,21,37

XIV 5,6,11,21,31,37 XVI 6,13 XVII 2, $12,17,29,32,33,42,44,50,56,65$
bhājita IV 47 IX 2,15,19 XVI 7 XVII 10, 55,78
bhājya XVI 16 XVII 36
bhānu I 5,8 III 17,33 IV 50 VI 15 VII 5,6 VIII 13,17 IX 16 XIII 35 XV 1,7
bhāva XV 5
bhāskara IV 32,36 XIV 13 XV 11 XVII 16
bhukta II 9 III 33 VIII 16 IX 26 XIV 20
XVII 33,55
bhukti III 4,9,16,17,26 VIII 7,13,15 IX $9,11,12,13,14$ X 3,5 XVI 22
bhuj IV 37 XVII 3,38
bhuja V 4,6,7 XVI $15,17,18$
bhū VI 15 XIII 26,34
bhūta III 34 IV 10 IX 5 XVII 1,20
bhūtanaya XVI 25
bhūpa IV 10
bhūmi XIII 7,18
bhūmitanaya XVII 62
bhūmiputra XIII 28
bhūyas I 13 X 4 XV 20 XVII 47,66
bhūvṛtta XV 15
bhṛgu XVII 5
bhṛgutanaya XVII 75
bhoga III 18 XIV 38 XVII 1
bhauma I 8 XVI 12 XVII 35
bhram I 5 XIII 5, 6, 7, 8, 9,10
bhrama XIII 6 XV 13
bhramara XIII 7
makara II 8,9 III 25 XIII 23 XVII 51
maṇḍala II 9 IX 4 XIII 39,41 XIV 15,16
mata I 2,11 XIV 31
mati I 5
matsara I 5
matsya XIV 14
madhya III 1 V 7 VIII $4,15,18$ IX 11 XI 4 XIII $2,18,19,26,31,34$ XIV $2,9,16$, $21,22,25,37$ XVI $3,11,18,19,20$ XVII 8
madhyajyā IX $18,19,20,24$
madhyandina II 9
madhyama III 3 VIII $1,13,15$ XVI 1,5 , $10,15,19$ XVII $18,23,24,38,41$
madhyavilagna IX 18
madhyāhna II 10,11,13 IV 49 IX 17 XIII
11,16,17 XIV 8,22 XV 8,9,22,23
man XIII 3
manas XIV 41
manu I 10 II 1,6 IV $9,15,17$ VIII 3,6 IX 7 XVI 4,12 XVII $10,19,34,44,58,70$, 71,79
manuja XV 14
manda XVI 17,18,19,21,24 XVII 54
mandagati XVI 13
mandaparidhi XVI 12
mandira XIII 36
maya XIII 1,36 XIV 23
mayūkha XIV 22
marut XIII 5
mahan XIII 40,41
mahābhūta XIII 1
mahī XIII 1,34 XVII 75
mahīja XVII 21,66
māgha XII 2
mātra XV 12,15
mādhyandina XIV 5,16
mādhyāhna (mādhyāhnika) IV 22,48
māna I 16 II 8 VIII $13,15,17$ IX 16 X 6 XIII 34 XIV 23,38
mānava XIII 4 XIV 27
mārga III 34
māsa I 9,16,19,22 XII 1 XIII 22,27 XV 14 XVII 13
māsādhipa XIII 42
māsādhipati I 19,21
māsīkṛ I 9
mita I 12 III 11 VI 12
mithuna III 24 IV $12,15,18,24$ VIII 2 XIII 10,12 XVII 30,44
miśra XIV 4
mina III 24 XVII $27,53,54$
mukha III 29 VI 11 VII 2 XIV 40
muni I 17,22 II 3 III 4,5 IV $9,12,17,24$, 30,45 VIII 7 IX 15,16 XIV 40 XVI 3,23 XVII 1,14,21,32,36,49,51
munindra I 1
muhūrta II 7 XV 19
mūrchanā VIII 14
mūrchita XIII 36
mūla III 14 IV $20,22,23,27,29,45,54$ V 1 VI 3 VII 6 VIII 16 IX 20,21,22,26 XIV 32
mrga IX 13 XIII 24 XIV 26 XVI 16 XVII 32
mrgya III 20 IX 23
meșa II 8 III 11,23 IV $2,6,13,18,21,46$ VII 4 XIII $12,13,27,28$ XV 24 XVII 42
meṣūraṇa ($\mu \varepsilon \sigma o u p \alpha ́ v \eta \mu \alpha$) XI 6
mokṣa VI 6 XI 5
maukṣika IX 27
maurvī IV 53,56 IX 21
yantra I 7 XIV 27,28,41, col.
yama I 9,13,17 II $1,3,6$ III 5,17 IV 14 VI 11 VII 2 VIII 6,8 IX $1,3,4,5,9$ XVI $2,6,8,9,14,25$ XVII $3,15,17,21,27,32$, $36,37,43,46,49,66,69,72,76$
yamala XVII 16
yava IV 19
yaśas III 38
yaṣṭi XI 1 XIV 12
yā III 30 IV 31,39 V 10 XIII 13,24,25 XIV 41 XVII 2,71,77
yāta I 17 VII 4 VIII 7 XIV $6,8,20,25$ XVII 56
yāmya II 10 IV 19 V 8 VII 3 VIII 12
XI 3 XII 5 XIII 33 XIV 2,24 XVII 57
yāmyatas XI 2
yāmyātas XIV 40
yukta I 17 II 2,8 III 2,7,21 IV 8 IX 18 XI 6 XIII 24 XIV 29 XV 29 XVII 47, 51,68
yukti IV 51 XV 26
yuga I 15,16 XII 1 XV 24
yugapad III 33 XIII 17 XV 8,22
yuta I 9,20 II 1,8 III 7,29 IV $18,21,22,27$,
47,50 V 5 VIII 14 IX 6 XIII 21 XIV 39
XVI $10,11,24$ XVII $3,15,18,33,38,39$,
48,49,51,52,53
yuti VIII 17 X 2
yoga III 20,22,27 IV 45,52 VIII 11,16
IX 26 X 6 XVI 17,25
yojana III 14 IX 10 XIII $15,16,18,19,21$, 23,25
yojita XIV 27
yojya XIV 32
rakta VI 9
randhra IX 4
ravi I 16 II 8,10 III $16,18,22,23,26$ IV 37 V 1,5,8 VI 1,15 VII 6, col. VIII 2,15, $16,17,18$ IX 8,26 X 1 XII 1 XIII 9,10 , 36,39 XIV 20 XV 4,5,10,19 XVI 21 XVII 47,58,60,65,80
rasa I 11,14 II 2,11 III 34 IV $10,12,15,34$ VII 6 VIII 3,5,8,11 IX 3,8 XII 3,5 XIII 34 XVI $3,9,13$ XVII $9,38,43,44,45,69$, 70,74,78
rahasya I 2,5
rahita XVII 72
rātri XIII 12 XIV 32
rāma IV 9 IX 5 XVII 46,69
rāśi (rāśika) I 23 II 3 III 2,28,29 IV 1,2, $10,16,29$ V 9 VII 2 IX 6,17 XIII 14,40 XIV 1,7,20 XVI 5,6,15 XVII 23,27,55
rāhu III 28,29,31 VI 2,4,6,11,12 VII 5 VIII 8,14 IX 5 X 6 XV 10
rudra I 10 XVI 23 XVII 78,79
rūpa I 23 III $1,2,17,28$ IV $17,20,25$ VI 8 VII 6 VIII 4,5,8 IX 7 XIV 27 XVII 16, 51,75
rekhā VI 13 XIV 7,23,24
rocita XVII 36
rohiṇī XIV 34
lagna II 11,12 VIII 11 IX 21 XIII 26,28 XIV 40
lagnona XIV 18
laghu I 2
laghutā III 34
labdha I $9,10,17$ II 13 III 18,28 IV 21,22, $45,47,49,54$ IX 24 X 1,3 XIV 30 XVI 3 XVII 1,6,55,59,69
labh III 38 XVII 21
lamba (lambaka) IV $26,28,34,39,40,45$, $46,52,53,56$ IX 19 XIV 18
lambita IX 17
lavaṇa XIII 34
lavaṇoda II 12
likh XI 4 XIV 14
lipta VI 1
liptā (liptikā) (λ हmтóv) II 5,6,12 III 4, $16,18,28,29,31$ IV $6,8,10,16,17,35,43$, 44 VI 12 VIII 17 IX 6 X 5 XI 6 XVI 6, 9,22 XVII 17,18,19
lupta III 29
lekhā XIV 3
loka III 32 V 3
locana XIII 31
loṣṭarekhā IV 37
loha XIII 1
vaktra III 30 VIII 8 IX 6
vakra XIV 32 XVI 22 XVII 4,25,29,31, 33,55,56
vakraga XVII 25
vakrin XVII 12,20,30
vac I $2,5,22$ III 12,13 VIII 8 XVII 26,63
vad VI 7,10 IX 25 XIII 6,34
vadana III 30 XIV 14
vanitā XIV 40
vara XVII 64
varga IV $1,3,7,13,20,23,27,52,54$ VI 3 VII 6 VIII 16 IX $13,21,22,26$ X 1,2,3,7 XVII $7,34,35,44,45,52,55$
vargita IX 19
varjita I 18 VI 3 VIII 4,6 IX 7 XVII 18, 37,71
varṇa VI 9,10 XIV 32
varttamāna XV 9
varṣa I 14, 15, 16, 17,22 IV 37 XII 1,2 XV 13,14
varṣapa XIII 42
varṣādhipa I 21
varṣādhipati I 18
valana VI 8
vaśa III 25 IX 9,24 XIV 29 XV 13 XVI 17,19
vasu I 14,15 II 1 III $1,4,14$ IV $24,30,43$, 45 VIII 6,7 IX 2,3,5,16,24 XVI 5,9,13, 23 XVII $10,14,34,36,38,39,48,67,69,71$, 76
vasundharī XV 11
vahni XVI 14
vākya XV 26
vācya V 9 VI 6 XIV 33 XVII 59
vāñchita X 5
vāma IV 30 VI 8
vāmatas VII 3,4
vāsa III 37
vārttā XV 28
vāsara III 27
vikalā (vikalikā) IV 9,10,13,24,25 VIII 3
IX 4,11 XVI 9,10,11
vikṛ XIV 30
vikṣipta V 2
vikṣepa III 31 IV 16,51 V 1,5,8 VI 3,7
VIII 11 IX 6,25 X $3,4,5,7$ XI 4 XIV 33, 37,38 XVI 24,25 XVII 57,60
vicar XIII 41
vicaraṇa XIV 22
viccheda XV 29
vijñā VIII 12 XIII 34
vijñāta XIV 13
vijñeya I 20 II 13 XVI 20
vid III $33,37,38$ IV 33 VIII 12 XIV 38 XV 1
vidhāna I 22
vidhi III 36 IV 4,51,56 IX 25 XI 1 XVI 15,20,24 XVII 57
vinata XIII 32
vinā XV 10
vinākṛta IV 44
vināḍī (vināḍikā) III 10,12 IV 26,29,41
VI 4 XIV 4,7,39 XVII 22,59
vināśa XV 2
viniḥsṛta XIV 31
vinipāta III 34
vinivṛt III 32
viniścintya VIII 10
vind VIII 17
vinyas XIV 9
vinyasta XIII 31 XIV 19
vipariṇata XVI 16
viparīta III 22 V 2 VII 4 XVII 5,33
viparyaya XI 5 XV 14
viparyasta V8
viparyāsa VI 7
vipravad XV 17
vibhakta VII 2
vibhaj IV 28,45 VI 3 IX $16,22,24$ XVI 2
vibhāga XV 11,12
vibhājya IV 52
vibhrașṭa I 4
vimarda I 6 VI 5,6,14 X 7
vimala V 3
viyat V 3 X 2,3 XIII 5
viyadga XVII 61
viyukta II 6
viyuj II 1
viyuta III 17 IV 47 IX 18 XIV 29
viyoga XVI 25
viram XIII 21
vilagna IX 19
vilikh VIII 18
viliptā (viliptikā) IX 11 XVI 5,6,8
vilomaga XVII 77
vivara III 14 IV 54 V 1,5 VI 1,2,4,6 VII 5
VIII 11,14 IX 6,21 X 3,5,7 XIII 33,40 XIV $16,18,33,38$ XV 6
vivarjita IV 21
vividha I 1
vivṛddhi IV 34
viśudh II 11 V 10
viśeṣa (viśeṣaka) IV 22 V 2 VI 6,10 IX 14, 23 X 7 XIII 37 XIV 40 XV 1 XVI 22 viśeṣita IX 20,22
viśodhya XVI 4,10,11,18,19
viśleṣa III 9 IV 23,29 XVII $8,24,41,55$
viśleṣita VIII 14 IX 27
viśleṣya IV 46
viśva IV 10
viṣama XIII 17
viṣaya I 15 II $1,4,7$ III 5,34 IV $9,13,15$
VIII 3,4,6 IX 2,3,4,16 XIII 20 XIV 41
XVII $9,15,16,18,28,32,43,46,50,53,66$, 70,72,73,76
viṣuva XIII 18 XIV 8,10
viṣuvacchāyā III 10 IV 20 V 8 XIV 39
viṣuvajjīvā IV 21,52
viṣuvajjyā IV 23,26,46
viṣuvat III 23 IV 20 XIII 17,20 XIV 30
viṣuvadavalambaka XIII 33
viṣuvadrekhā XIV 11
viṣuvallekhā XIII 29
viṣkambha IV 1
viṣṇu III 32
visaṃyojita IV 42
vistāra IV 19,29 XIV 21
vistīrṇa XIV 1
vihā XIII 10 XVI 21 XVII 21
vihīna I 16 IV 40,50,53 VIII 3 XVII 46, 48,76,79
vṛtta I 22 IV 19,38 VI 12 XI 1,4 XIII 1 XIV 1,2,4,23
vṛddhi III 11,15 V 8,10 VIII 3 XVII $9,16,17$
vṛścika III 29 XVII 29
vṛṣa IV 9,24,25 XIII 12
vṛṣabha IV 8 XVII 18
veda I 8 II 4,6 IV $7,11,20,24,44$ IX 1 XVI $5,11,13$ XVII $1,3,12,16,31,34,43$, $45,57,73$
vedha XIII 32 XIV 12,24,29,32 XV 6
velā I 6 III 16,20 IV 36
vaidhṛta III 20
vailomya VIII 14
vaiṣuvata III 12 XI 2
vyatipāta III 20,22 XII 4
vyatī XVII 26
vyatīta VII 1 VIII 9
vyatyaya XI 4
vyatyāsa V 2 VIII 11 XIV 26
vyavasthā XIII 30
vyasta IV 32
vyākula XV 27
vyākhyā VI 14
vyākhyāta I 3 XIV 26
vyāsa IV 26 X 2
vyāsaśakala IV 39
vyāsārdha IV 2,28 IX 14,19 XIII 32 XIV 5 XVI 16
vyoman IX 2,8 XIII 5
vraj XIII 23 XV 15
śakuni III 19
śan̄ku IV 19,35,38,43 IX 21 XIII 30,31, 33 XIV 8,9,15,16,19
śan̄kvagra XIII 31 XIV 8
śan̄kvan̄gula IV 44 IX 22
śan̄kha XV 2
śani XVI 4,5 XVII 17
śanaiścara XVI 10 XVII 20,80
śara I 10,14 IV 7 VI 4 XVII 49,72,78
śarva XVII 39
śarvarī II 8
śaśānka V 1,6,7,9 VI 2 VII 5 VIII 7 IX 3, 7,8,15 XIV 33,37 XVII $9,34,78$
śaśi II $1,2,3,7$ III $6,8,17,22 \mathrm{~V} 7,8,10$, col. VI $1,4,6,8,11,12$ VII 5 VIII $2,5,7,13,17$ IX $4,14,16$ X 2,6 XI 4 XII $1,3,5$ XIII 36,37,38,41 XIV 33 XV 4 XVI 9 XVII $45,49,50,53,60,69,79$
śānkava I 7
śāstra I 1 XV 21
śikhā XIII 4
śikhin III 17 IV 12,14 XIII 4 XVI 23
śiva I 12 IV 6,18 XVII 34
śiśira III 25
śiṣya XIV 28 XVII 61
śīghra XIII 41 XVI $7,8,9,12,15,17,20,21$, 24 XVII 25,34
śīghraparidhi XVI 14
śītakara XIII 38 XVI 14
śītagu III 18
śītaraśmi III 28 IV 44
śītāṃśu VIII 4 XVII 28
śītāṃśuputra XVII 69
śukra XVI 1,13,22,24 XVII 1,2,5,77
śukla I 8
śuddha VIII 12
śudh VIII 2 XVII 41
śūnya I 17 II 12 IV 7,11,12 VIII 5 XVI 3 XVII 35,45,48,74,79
śṛn̄ga V 4
śeṣa I 18,23 II $2,3,5$ IV $3,33,40,48,51$ V10
VII 4 X 6 XII 2 XIV 6,26 XVI 3 XVII 7,15,75
śodhita II 12 XIV 5
śodhya II 9 III 4,8 V 2 VI 1 IX 10 X 6 XVI 9,11,22 XVII 36,37
śauklya V 4,7 XIII 37
śyena XIII 6
śreșṭha I 2
śrauta III 36
śloka XIV 32
śvāsa XIV 31

ṣaḍaśítimukha III 23,24
sampukta II 5 III 13 IV $13,17,46,53$ V 1
VI 11 XVII $34,35,53$
saṃyuj IV 41 XIV 28
samputa II 6 IV $17,25,31,42,55$ IX 10 XVII 40
saṃyoga I 6
saṃlikh VI 12
saṃvidhātavya XI 5
saṃ́uddhi XV 21
saṃśodhya II 10 XVI 4,20 XVII 73
saṃśraya IV 33
saṃsādh XIV 33
saṃstha XI 6 XIII $12,27,38$
samsthāna VI 14 XIII col. XV 1,2
saṃsthita XIV 37
saṃsparśa XIV 15
saṃsmṛti IX 20
sakala IV 34 XIII 34
sakṛt XIII 22,27 XV 4
san̄krānti III 26
san̄kṣepa I 11 XV 3
san̄khyā I 8 II 4
san̄guṇa I 19 VI 8 VII 4 XIV 38 XVII 7, 15,48
san̄guṇita IV 52 V 1 XVI 8
saṃjña (samjñaka) IV 4 XVII 58
saṃjñita IV 2
sadā XIII 29
sadaiva XV 1,6
sadṛśa XVII 46
sandhi XIV 24
sandhyā XV 27
sannikṛṣta XV 5
sannivṛtta XIII 13
sannihita XIII 17
sama II 5 III 2,28 IV 39,54 V 6,10 VI 13
IX 10 XIII $5,10,15,17,29,30,32$ XIV 1 ,
$2,7,9,15,17,19,21,23$ XV $12,17,24,29$
XVII 27
saman̄kita XIV 23
samatī XVII 26
samanvita XIV 25
samamaṇḍala I 7 IV $33,35,38$
samamaṇḍalalekhā IV 36
samamadhyacchāyā IV 20
samaya XV 8,20,25
samarekhā IV 55
samalipta VIII 14 IX 17
samavastha XV 7
samāna III 25 XIV 11
samāyukta II 13
samāyoga XIV 33,36
samāyojya IV 3
samāsatas VI 14
samāsāt XVII 61
samudra IV 14,44 XIII 2 XVII 30
sameta IV 6 VIII 10 XIV 5 XVI 5 XVII 49
sampāta XI 5 XIV 20
samprak!p IV 1
sampraveśa IV 36
samprasṛ XI 1
samprāpta VII 1 VIII 9
sambandha XV 18
sammita VIII 2
samyak IV 36,38
sarit XIII 2
sarva XIII 2,39 XIV 27 XV 6 XVI 21 XVII 31,73
sarvagrāsin VI 10
sarvatra III 33 XV 17
sarvadā XVII 80
salila XIII 3,30,36 XIV 27
saliladābha VI 10
savitṛ V 6 IX 20 XV 23
savya VI 8 XIII 9
sahasrāṃśu IX 11 XIV 40
sahita I 18,19 III 20,37 IV 6,49 VIII 3,6 IX 5,25 XVII 28
sāgara III 12 XVI 2 XVII 31
sādhana I 6 III 13
sādhu III 32
sādhya XI 5
sāmpratam III 21
sāmya VIII 14 XV 21
sārpa XIV 36
sāvana I 16
siṃha XVI 9 XVII 31,46
sita III 18 XII 2 XIII $35,38,39$ XVI 8,9,11 XVII 4,60
siddhānta I 3
siddhi IV 19 XI 3
sukhaya XIV 41
sujana XVII 63
surapūjita XVI 11
surādhipa XVII 52
surejya XVI 4
sūkṣma XIV 22,23
sūtra V 7 VI 12 XI 4 XIII 8,17,32 XIV 2,8,9,14,15,20,22 XV 3
sūrya I 18 III $3,25,27$ IV $38,52,53,55,56$
VIII 1 X 3 XV 1,3,6,18,20,25,26 XVI 17
sūryaja XVII 14
saumya XVI 24 XVII 40
saura I 11 XIII 42 XVI 3,13 XVII 16,20 , 62,78,80
saurya IX 9
strī XVII 19
stha VI 9 IX 10 XII 5 XIII 1,11,12,13, 18,26,31,35,41 XIV 25 XV 6,7
sthagita XIV 23
sthā XVII 13
sthāna XIII 13,24,37 XV 1,27
sthāpita IX 9
sthāpya IV 46
sthita II 7 IV 42,47 IX 22 X 3 XIII 2,5, 6,26,40 XIV 11 XVII 6,14,22
sthiti I 6 VI 3,4,6,9,12,14 VII 6 IX 25,27 X 4,5
sparśa XI 5
sparśana III 27
spașta I 4 III 12 IV 26 IX 25 XIII 42 XIV 30
spṛ́ III 27 VI 15 XI 4 XIV 11
sphuṭa I 2,4 III 3,38 VIII 2,7,13,15 IX 12,14,15,16 XIV 12 XV 29 XVI 20,21, 23 XVII 8,13,24,38,40,41,59,61,62
sphuṭaya XVI 18
sphuṭita XVII 23
sphuṭikaraṇa XVI col.
sphuṭikṛta XVI 22
smārta III 36
svaccha XIV 32
svara I 12,15 II 1 III 4 IV 6,15 IX $1,2,4$ XVI 7,8,9,10,12,14 XVII $16,17,22,28$, 30,42,68,72,74
svargeśa IV 14
svalpa XIII 41 XV 27
haṃsa XIII 7
hata IV 20,53 IX 14,19 X 5 XVII 26,30
han IV 43
harija (ópízov) XI 6 XIII 20 XIV 6,17, 18,25
hasta XIV 21,34,35,36,37
hā III 14,15 IV 41 VIII 11,16 IX 21,26 XVII 1,15,24,55,57
hāni III 8 VI 4 XIV 26 XVI 17,18 XVII 8,10,24,78
hita VIII 3,6 XVII 8,61,63
himāṃśu VIII 15 XI 3 XV 5,10
hīna II 13 III 30 IV 3,9,49 VI 5, 11 VIII 6,17 IX 7 X 3 XII 5 XIII 19 XIV 5,30 XVI 15 XVII 42,66,70,76,80
hutabhuj XVII 52
hutāśa II 11 III 1,18 XII 4 XVII 53
hutāśana III 1 XVII 32
hṛ I 18 III 1 IV 32 VIII 13 X 2 XVII 6, 22,37
hṛta I 20 II 1,3 III 14,26 IV 26,29,34,40, 53,56 VI 7,8 VII 4 VIII 8,14 IX 4,14, 19 X 2,5 XVII $1,17,59,66,69,72,78$
hetu XV 7
heya I 13
hotr VIII 6
horā (ω p α) I 20 XV 28
horātantra I 22
horādhipa I 21
horādhipati XV 16,28
horeśa I 20 XIII 42
hrāsa XVII 16

Det Kongelige Danske Videnskabernes Selskab

Historisk-filologiske Skrifter
Hist. Filol. Skr. Dan. Vid. Selsk.
Bind 1 (kr. 208.-)

1. Sander-Hansen, C. E.: Das Gottesweib des Amun. 1940 44.-
2. Lange, H. O., und Neugebauer, O.: Papyrus Carlsberg No. 1. Ein hieratisch-
demotischer kosmologischer Text. $1940 \ldots . ~ 104 .-~$
3. Sander-Hansen, C. E.: Über die Bildung der Modi im Altägyptischen, 1941 30.-
4. Danstrup, John: Esgruserhaandskriftet, en Adam af Bremen-Afskrift af Otto
Sperling den Yngre. Mit deutscher Zusammenfassung. 1943 30.-

Bind 2 (kr. 120.-)

Bind 3 (kr.67.-)

2. Iversen, Erik: Papyrus Carlsberg Nr. VII. Fragments of a Hieroglyphic Dictio-
nary. 1958... 15.-

Historisk-filosofiske Skrifter Hist. Filos. Skr. Dan. Vid. Selsk.

Bind 4 (kr. 175.-)

1. Erichsen, W.: Die Satzungen einer ägyptischen Kultgenossenschaft aus der Ptole-
mãerzeit. Nach einem demotischen Papyrus in Prag. 1959.................... 15.-

2. MacKenzie, D. N.: The Dialect of Awroman (Hawrāmān-i Luhōn). Grammatical
Sketch, Texts and Vocabulary. 1966... 45 .-

Bind 5(uafsluttet/in preparation)
3. Rirs, P. J.: Sūkās. I. The North-East Sanctuary and the First Settling of Greeks in Syria and Palestine. 1970 100. -
4. Mortensen, Peder: Tell Shimshara. The Hassuna Period. With an Introduction by Harald Ingholt and Contributions by Anne-Tinne and Mogens Lønborg Frits, Colin Renfrew, Henrik Tauber and others. 1970 80.-
Bind 6(uafsluttet/in preparation)
5. Neugebauer, O., and Pingree, D.: The Pañcasiddhāntikā of Varāhamihira. Part I. 1970. 70.-

O. NEUGEBAUER and D. PINGREE

THE PAÑCASIDDHĀNTIKĀ OF VARĀHAMIHIRA

PART II

Det Kongelige Danske Videnskabernes Selskab Historisk-Filosofiske Skrifter 6, 1, Part II

Kommissionær: Munksgaard
København 1971
Det Kongelige Danske Videnskabernes Selskab udgiver følgendepublikationsrækker:
The Royal Danish Academy of Sciences and Letters issues the following series of publications:

Oversigt over Selskabets Virksomhed (8°) (Annual in Danish)

Historisk-filosofiske Meddelelser (8°) Historisk-filosofiske Skrifter (4°) (History, Philology, Philosophy, Archeology, Art History)

Matematisk-fysiske Meddelelser (8°) Matematisk-fysiske Skrifter (4 ${ }^{\circ}$) (Mathematics', Physics, Chemistry, Astronomy, Geology)

Biologiske Meddelelser (8°)
Biologiske Skrifter (4°)
(Botany, Zoology, General Biology)

Bibliographical Abbreviation Overs. Dan. Vid. Selsk.

Hist. Filos. Medd. Dan. Vid. Selsk. Hist. Filos. Skr. Dan. Vid. Selsk.

Mat. Fys. Medd. Dan. Vid. Selsk. Mat. Fys. Skr. Dan. Vid. Selsk.

Biol. Medd. Dan. Vid. Selsk. Biol. Skr. Dan. Vid. Selsk.
Selskabets sekretariat og postadresse: Dantes Plads 5, 1556 København V.
The address of the secretariate of the Academy is:
Det Kongelige Danske Videnskabernes Selskab, Dantes Plads 5, 1556 Köbenhavn V, Denmark.
Selskabets kommissionær: Munksgaard's Forlag, Prags Boulevard 47, 2300 København S.
The publications are sold by the agent of the Academy:
Munksgaard, Publishers, 47 Prags Boulevard, 2300 Köbenhavn S, Denmark.

THE PAÑCASIDDHĀNTIKĀ OF VARĀHAMIHIRA

PART II

Det Kongelige Danske Videnskabernes Selskab
Historisk-Filosofiske Skrifter 6, 1, Part II

Kommissionær: Munksgaard
København 1971

PRINTED IN DENMARK BIANCO LUNOS BOGTRYKKERI A/S

PREFACE

In our commentary to the first sixteen chapters we follow the order of the verses of the text, though often combined to form larger groups according to contents. In Chapter XVII, however, which is concerned with planetary theory based on Babylonian methods, we found it necessary to rearrange the material. The following Table of Contents will show the details.

For a number of technical terms for which no short equivalent exists in western astronomy (e.g., ahargaṇa or tithi) we give an alphabetical index on p. 129. An extensive index verborum will be found in Part I, p. 188 ff . The notation which we generally adopted in formulae is shown in the list on p. 130, arranged according to topics. Since numerical parameters provide one of the most powerful tools in the investigation of the interconnection between different sources, we have compiled a detailed index of parameters (p. 131 ff .).

A discussion of the general historical position of the Pañcasiddhāntikā in Indian astronomy is given in Part I.
O.N., D.P.

PART II

COMMENTARY

BY
O. NEUGEBAUER AND D. PINGREE

TABLE OF CONTENTS TO PART II

1. Commentary: Page
Chapter I, 1 to 25 7
Chapter II, 1 to 13 15
Chapter III, 1 to 38 24
Chapter IV, 1 to 56 36
Chapter V, 1 to 10 48
Chapter VI, 1 to 15 51
Chapter VII, 1 to 6 56
Chapter VIII, 1 to 18 59
Chapter IX, 1 to 27 65
Chapter X, 1 to 7 77
Chapter XI, 1 to 6 79
Chapter XII, 1 to 5 80
Chapter XIII, 1 to 42 83
Chapter XIV, 1 to 41 85
Chapter XV, 1 to 29 93
Chapter XVI, 1 to 25 95
Chapter XVII, 1 to 80 109
XVII, 1 to 60
2. Synodic Periods 110
3. Pattern of Distribution for Phases on the Ecliptic 112
Saturn (XVII, 16 to 19) 112
Jupiter (XVII, 9 to 11) 113
Mars 113
Venus (XVII, 1 and 2) 114
Mercury (XVII, 38 to 40) 114
4. Mean and true Positions 115
Saturn (XVII, 15 to 17) and Jupiter (XVII, 7, 9, and 10) 115
Mercury (XVII, 36 and 37) 116
5. Subdivision of the Synodic Arc 116
Saturn (XVII, 19 and 20) 118
Jupiter (XVII, 12 and 13) 118
Mars (XVII, 25 to 35) 119
Venus (XVII, 3 to 5) 120
Mercury (XVII, 42 to 56) 121
6. Epoch Values 123
7. First Visibility 125
XVII, 64 to 80 126
8. Short Terminological Glossary 129
9. Notation 130
10. Index of Parameters 131
Decimal 131
Sexagesimal 133
11. Subject Index to the Commentary 142
12. Bibliography 152
13. Texts 152
14. Articles and Books 154

Chapter I

I,1. Varāhamihira's invocatory verses normally mention the Sun; cf. e.g. Bṛhatsaṃhitā I,1. This is appropriate because of his position as a Maga Brāhmaṇa. But here the Sun is also representative of the divine authors of siddhāntas (joined in the Pañcasiddhāntikā by Pitāmaha $=$ Brahma), while Vasiș̣tha, who is one of the seven Vedic rrṣis who form the constellation Saptarṣi (Ursa maior), represents the human authors (joined here by Pauliśa and Romaka). Varāhamihira's father, as stated Part I p. 7, was named Ādityadāsa ("Slave of the Sun").

I,2. The term bīja normally is applied only to a correction to a planet's mean longitude. It is not clear what in this verse is ascribed to "former teachers," or what is regarded as secret.

I,3. For the five siddhāntas and Latadeva see Part I pp. 9-15.
$\mathbf{I}, 4$. The ranking in accuracy of the five siddhāntas given in this verse is appropriate: Sūrya, Pauliśa and Romaka, Vāsisṭ̣̣a and Paitāmaha.

In the late seventh or during the eighth century (between 628, the date of the Brāhmasphuṭasiddhānta, and ca. 850 , the date of the Prakaṭārthadīpikā), another verse based on this one became popular. It is quoted by Govindasvāmin in his Prakațārthadīpikā on II,8 of the Uttarabhāga of the Bṛhatpārāśarahorāśāstra:
spașṭo brāhmas tu siddhāntas tasyāsannas tu romakah/
sauraḥ spasṭataro spaș̣au vāsiṣ̣haḥ pauliśaś ca tau//
"The Brāhma (sphuțasiddhānta) is accurate; the Romaka is close to it; the Sūrya (saura) is more accurate; and the Vāsisṭha and Pauliśa are inaccurate."

I,5-7. Varāhamihira here lists the contents of the Pañcasiddhāntikā, though in a fashion that is uncharacteristically unsystematic.
a) solar eclipses: VII; VIII; IX; XV,1-10.
b) lunar eclipses: VI; X; XI
c) conjunctions of stars and planets: XIV,33-38
d) longitudinal differences (of cities): III,13-15; XV,21-23; 25
e) prime vertical: IV,32-33; $36 ; 38$
f) rising of the moon: V
g) magical diagrams: XIV,27-28; 41
h) graphical constructions: XIV,1-18; 41
i) gnomon shadow: II, $9-13$; III, 10 ; IV, $19-22 ; 35 ; 37-38 ; 41-56$; XIII, 11; 30-33; XIV,5; 10; 14-15
j) sine of terrestrial latitude: IV,20-21; IV,27-28; 40; XIV,9-10; 18
k) sine of colatitude: IV,23; 28; 40 ; XIV, $8 ; 18$
l) declination: IV,16-18; 24; XIII,10.

It is curious that this list of contents does not mention the rules for calculating planetary positions as given in XVI and XVII.
$\mathbf{I}, \mathbf{8} \mathbf{- 1 5}$. In these verses Varāhamihira summarizes the rules for computing the ahargaṇa (i.e. the number of days elapsed since epoch) in the three texts associated with Lāṭadeva, i.e., the Romakasiddhānta (I, 8-10 and 15), the Pauliśasiddhānta (I,11-13), and the Sūryasiddhānta ($\mathrm{I}, 14$).

I,8. The epoch of Lātadeva's Romaka is the first tithi after conjunction in the month Caitra at the beginning of the year Śaka 428, i.e., the time of conjunction of Sun and Moon at approximately Aries 0°. This date is A.D. 505 March 22, Tuesday; see Part I p. 8 in the introduction. The time is sunset at Yavanapura (cf. XV,18), i.e., about 6 P.M. of March 21, local time at Yavanapura. According to III, 13 the time difference between Yavanapura and Avantī is $7^{1} / 3$ nāḍis or 2 hours 56 minutes; therefore the local time at Avantī is ca. 8;56 P.M. Cf., however, VIII,5 and XV,18.
$\mathbf{I}, \mathbf{9} \mathbf{- 1 0}$. The purpose of this section is the determination of the number D of days elapsed since epoch at a moment characterized as N completed years of the Śaka era, plus m completed (mean) synodic months, plus τ completed tithis.

This problem is solved by computing first two terms A and B :

$$
\begin{gather*}
A=(12(N-427)+m) \frac{7}{228} \tag{1}\\
B=(A+12(N-427)+m) 30+\tau \tag{2}
\end{gather*}
$$

In these expressions the factor $12(N-427)+m$ represents the number of lunar months completed since epoch (S.E. 428) under the preliminary assumption that only 12 months correspond to each year. According to the "Metonic" 19-year cycle, however, 7 intercalary months must be added to each set of $19 \cdot 12=228$ months. Consequently the term A gives the number of intercalary months since epoch, B the total of tithis since epoch.

It is furthermore assumed that

$$
\begin{equation*}
703^{\tau}=692^{\mathrm{d}}=(703-11)^{\mathrm{d}} \tag{3}
\end{equation*}
$$

The number C of days corresponding to B tithis is therefore

$$
\begin{equation*}
C=B-\frac{11}{703} B \tag{4}
\end{equation*}
$$

From this amount is subtracted a constant

$$
\begin{equation*}
c=\frac{514}{703} \tag{5}
\end{equation*}
$$

which leads to the final result

$$
\begin{equation*}
D=C-c=B-\frac{11 B+514}{703}=B-\frac{11 B+8,34}{11,43} \tag{6}
\end{equation*}
$$

for the number of days since epoch.
Measured in sexagesimal fractions of a day the constant corresponds to

$$
\begin{equation*}
c \approx 0 ; 43,52, \ldots{ }^{\mathrm{d}} \tag{7}
\end{equation*}
$$

Since $C=D+c$ this means that the interval C begins about ${ }^{3} / 4$ of one day before epoch. The latter falling at sunset (cf. I, 8) C begins at the preceding midnight. The time of epoch being the vernal equinox one should expect $c=3 / 4^{d}=0 ; 45^{d}$ exactly instead of (7). This would have been obtained by replacing 514 in the numerator of (5) by 527 . We cannot explain this small discrepancy.

It follows from (3) that

$$
\begin{equation*}
1 \text { tithi }=0 ; 59,3,40,11,56, \ldots \text { days } \tag{8}
\end{equation*}
$$

hence

$$
\begin{equation*}
1 \text { lunar month }=29 ; 31,50,5,58, \ldots \text { days } \tag{9}
\end{equation*}
$$

and from the $19-y e a r$ cycle

$$
\begin{equation*}
1 \text { year }=365 ; 14,48,4, \ldots \text { days } \tag{10}
\end{equation*}
$$

Note that in I,15 a tropical year contains $365 ; 14,48$ days exactly.
I,11-13. The text gives the following rule for the determination of the number m_{a} of intercalary months:

$$
\begin{equation*}
m_{\mathrm{a}}=\frac{10 d_{\mathrm{s}}+698}{9761}+\frac{y}{300 \cdot 107}+\frac{y}{5506} \tag{1}
\end{equation*}
$$

where d_{s} means the number of saura days contained in the interval under consideration, y the number of complete years in the same interval of time. The term 698/9761 = $11,38 / 2,42,41 \approx 0 ; 4,17$ is obviously an epoch correction which must be due to the fact that an integer number of intercalary months plus this fraction had elapsed between the original epoch of the Pauliśasiddhānta and the epoch of Lātadeva.

If we wish to apply (1) for exactly one year we have to substitute $d_{\mathrm{s}}=360$ and $y=1$. Computing sexagesimally this gives

$$
\begin{aligned}
m_{\mathrm{a}}(1) & =\frac{1,0,0}{2,42,41}+\frac{1}{8,55,0}+\frac{1}{1,31,46} \\
& \approx 0 ; 22,7,43,58,7+0 ; 0,0,6,43,44+0 ; 0,0,39,13,48 \\
& \approx 0 ; 22,8,29,54
\end{aligned}
$$

Hence one year contains

$$
\begin{equation*}
1^{\mathrm{y}}=12 ; 22,8,29,54^{\mathrm{m}} \tag{2}
\end{equation*}
$$

synodic months. From III, 1 we know that one sidereal year is exactly defined by

$$
\begin{equation*}
1^{\mathrm{y}}=6,5 ; 15,30^{\mathrm{d}} \tag{3}
\end{equation*}
$$

hence from (2)

$$
\begin{equation*}
1^{\mathrm{m}} \approx 29 ; 31,48,16,37^{\mathrm{d}} \tag{4}
\end{equation*}
$$

For the number u of omitted tithis the text gives the rule

$$
\begin{align*}
u & =\left(\frac{d}{63}+\frac{\tau}{25135}\right)\left(1-\frac{1}{203279}\right) \\
& =\left(\frac{d}{1,3}+\frac{\tau}{6,58,55}\right)\left(1-\frac{1}{56,27,59}\right) \approx\left(\frac{d}{1,3}+\frac{\tau}{6,58,55}\right) \cdot 0 ; 59,59,58,56 \tag{5}
\end{align*}
$$

d being the number of calendar days, τ the number of tithis contained in the interval under consideration. If we again apply this rule to 1 year we must for d use (3) and for τ, because of (2),

$$
\begin{equation*}
1^{\mathrm{y}}=6,11 ; 4,14,57^{\tau} \tag{6}
\end{equation*}
$$

Hence for one year

$$
\begin{aligned}
u & =\left(\frac{6,5 ; 15,30}{1,3}+\frac{6,11 ; 4,14,57}{6,58,55}\right) \cdot 0 ; 59,59,58,56 \\
& \approx(5 ; 47,51,54,17+0 ; 0,53,8,50) \cdot 0 ; 59,59,58,56 \\
& \approx 5 ; 48,44,56,55
\end{aligned}
$$

as the number of omitted tithis.
This result can also be obtained directly from (6) and (3) because

$$
\begin{equation*}
6,11 ; 4,14,57-6,5 ; 15,30=5 ; 48,44,57 \tag{7}
\end{equation*}
$$

again represents the number of omitted tithis.
Also from (2) and (3) can be derived the sidereal mean motion of the moon. One finds $13 ; 10,35,37, \ldots$ o/d.

I,14. Since $180000^{y}=50,0,0^{y}$ contain $66389=18,26,29$ intercalary months, hence $50,0,0 \cdot 12+18,26,29=10,18,26,29$ lunar months, one finds that

$$
\begin{equation*}
1^{\mathrm{y}}=12 ; 22,7,46,48^{\mathrm{m}}=6,11 ; 3,53,24^{\tau} \tag{1}
\end{equation*}
$$

Since $50,0,0^{y}$ contains $1045095=4,50,18,15$ omitted tithis their number per year is $5 ; 48,21,54$ and therefore with (1)

$$
\begin{equation*}
1^{\mathrm{y}}=(6,11 ; 3,53,24-5 ; 48,21,54)^{\mathrm{d}}=6,5 ; 15,31,30^{\mathrm{d}} \tag{2}
\end{equation*}
$$

as the exact length of the sidereal year; cf. also IX,1.
It follows from (1) and (2) that

$$
\begin{equation*}
1^{\mathrm{m}} \approx 29 ; 31,50,6,52,59, \ldots{ }^{\mathrm{d}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{v} \approx 13 ; 10,34,52,6, \ldots{ }^{\mathrm{o} / \mathrm{d}} \tag{4}
\end{equation*}
$$

for the sidereal mean motion of the moon.
Lāțadeva's Sūryasiddhānta, as we know from chapter XVI, employed a Mahāyuga of $4320000=20,0,0,0=24 \cdot 50,0,0$ years. If we multiply the parameters in this verse by 24 we find that there are

$$
\begin{aligned}
53433336 & =4,7,22,35,36 \text { lunar months } \\
1593336 & =7,22,35,36 \text { intercalary months } \\
1603000080 & =2,3,41,17,48,0 \text { tithis } \\
1577917800 & =2,1,45,10,30,0 \text { sāvana days }
\end{aligned}
$$

in one Mahāyuga; these are precisely the parameters of the ārdharātrika (i.e., midnight) system. ${ }^{1}$)

I,15. Here it is assumed that $2850=47,30=2,30 \cdot 19$ years contain $1050=17,30=$ $2,30 \cdot 7$ intercalary months. This is the well known scheme of the "Metonic cycle", consistently used in the Babylonian ephemerides. The number of omitted tithis is $16547=4,35,47$, therefore the number of days in one year

$$
\begin{equation*}
\left(12+\frac{7}{19}\right) 30-\frac{4,35,47}{2,30 \cdot 19}=\frac{4,49,9,13}{19 \cdot 2,30}=\frac{15,13,7}{2,30}=6,5 ; 14,48^{\mathrm{d}} \tag{1}
\end{equation*}
$$

This is exactly the length of the tropical year according to the Hipparchian-Ptolemaic theory (Almagest III, 1 p. 208,12 Heiberg). The same value appears again in VIII, 1.

The relation (1) can also be formulated as

$$
\begin{equation*}
47,30^{\mathrm{y}}=2,30 \cdot 19^{\mathrm{y}}=(47,30 \cdot 12+17,30)^{\mathrm{m}}=9,47,30^{\mathrm{m}}=2,30 \cdot 3,55^{\mathrm{m}} \tag{2a}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
19^{\mathrm{y}}=3,55 \text { synodic months. } \tag{2b}
\end{equation*}
$$

${ }^{1}$) The parameters of the ārdharātrika system are found in Mahābhāskarìya VII,21-35, and in Khaṇdakhādyaka I, II, and VI. Table 1 shows the number N of sidereal revolutions in a Mahāyuga which consists of $4320000=20,0,0,0$ sidereal years $=1577917800=2,1,45,10,30,0$ days. For additional planetary parameters see the commentary on XVI,12-14, Table 22.

Table 1.

	N
Sun	$4320000=20,0,0,0$
Moon	$57753336=4,27,22,35,36$
Lunar apogee	$488219=2,15,36,59$
Lunar nodes	$232226=1,4,30,26$
Saturn.	$146564=\quad 40,42,44$
Jupiter	$364220=1,41,10,20$
Mars	$2296824=10,38,0,24$
Venus, siighra	$7022388=32,30,39,48$
Mercury, sīghra.	$17937000=1,23,2,30,0$

Furthermore

$$
\begin{equation*}
47,30^{\mathrm{y}}=9,47,30^{\mathrm{m}}=4,53,45,0^{\tau}=(4,53,45,0-4,35,47)^{\mathrm{d}}=4,49,9,13^{\mathrm{d}} \tag{3}
\end{equation*}
$$

In VIII, 1 this same number of days is equated to $10,35,0$ sidereal months:

$$
\begin{equation*}
4,49,9,13^{\mathrm{d}}=10,35,0=2,30 \cdot 4,14 \text { sidereal months } \tag{4a}
\end{equation*}
$$

hence with (2a)

$$
\begin{equation*}
19 \mathrm{y}=4,14 \text { sidereal months } \tag{4b}
\end{equation*}
$$

and finally

$$
\begin{equation*}
3,55=235 \text { synodic months }=4,14=254 \text { sidereal months } \tag{5}
\end{equation*}
$$

as basic relation between synodic and sidereal revolutions of the moon, well known in Babylonian astronomy.

Because $7: 19=0 ; 22,6,18,56,50, \ldots$ one finds for the Metonic cycle that

$$
\begin{equation*}
1^{y}=12 ; 22,6,18,56,50, \ldots{ }^{m} \tag{6}
\end{equation*}
$$

and thus with (1)

$$
\begin{equation*}
1^{\mathrm{m}}=29 ; 31,50,5,37, \ldots{ }^{\mathrm{d}} . \tag{7}
\end{equation*}
$$

Finally the mean motion of the moon is

$$
\begin{equation*}
\bar{v}=13 ; 10,34,59,50, \ldots{ }^{\mathrm{o} / \mathrm{d}} . \tag{8}
\end{equation*}
$$

I,16. Summary of the general rules on which the relations are based which were utilized in the preceding verses. For the term "solar measure" cf. pt. I, p. 185.

I,17-21. Let

$$
\begin{equation*}
a^{\prime}=a+2227=a+37,7 \tag{1}
\end{equation*}
$$

be the (augmented) ahargana where a represents the number of days since epoch. Then the following set of rules is given in the text:

Nr. 1

$$
\begin{array}{ll}
a^{\prime}=q \cdot 2520+r & 0 \leqq r<2520=7 \cdot 360=42,0 \\
r=c_{1} \cdot 360+c_{2} & \text { thus } 0 \leqq \mathbf{c}_{1}<7, \tag{3}
\end{array} 0 \leqq c_{2}<360
$$

where c_{1} represents the number of completed years. From it

$$
\begin{equation*}
\left(c_{1}+1\right) \cdot 3-2=c_{3} \cdot 7+c_{4} \quad 0 \leqq c_{4}<7 \tag{4}
\end{equation*}
$$

gives the "lord of the year"' c_{4}. Furthermore

$$
\begin{equation*}
\left(\frac{a^{\prime}}{30}+1\right) \cdot 2=c_{5} \cdot 7+c_{6} \quad 0 \leqq c_{6}<7 \tag{5}
\end{equation*}
$$

where c_{6} is the "lord of the month", counting from Sunday. ${ }^{1}$) Then

$$
\begin{equation*}
a^{\prime}=\mathrm{c}_{7} \cdot 7+\mathrm{c}_{8} \quad 0 \leqq c_{8}<7 \tag{6}
\end{equation*}
$$

gives the "lord of the day" c_{8} and

$$
\begin{equation*}
\left(c_{8} \cdot 3-1+h\right) \cdot 5=c_{9} \cdot 7+c_{10} \quad 0 \leqq c_{10}<7 \tag{7}
\end{equation*}
$$

the "lord of the h-th hour".
Let
A B C D E F G
be the order of days in the week, ruled by the planets
respectively. Then the rule (7) results for the first hour ($h=1$) in

$$
c_{8} \cdot 15=2 c_{8} \cdot 7+c_{8}
$$

hence in

$$
c_{10}=c_{8}
$$

i.e. the lord of the first hour is also the lord of the day.

For $h=25$ one obtains

$$
c_{8} \cdot 15+120=\left(2 c_{8}+17\right) 7+c_{8}+1
$$

i.e. the first hour of the next day has the lord $c_{8}+1$ as it should be. For $h=2$ one has

$$
c_{8} \cdot 15+5=2 c_{8} \cdot 7+c_{8}+5
$$

This means: if we begin for $h=1$ with A then $h=2$ has the lord $\mathrm{F}, h=3$ the lord D , etc. In this way one obtains for consecutive hours the following order of the planets
${ }^{1}$) The rule given in (5) is wrong. The text's ($\mathrm{I}, 19$) "increase the (resulting) months by the current one" should be replaced by "discard the fractional part of the current (month)".
i.e. the Greek order of the planets from which the order (8b) for the days of the week originated.

From (5) it follows that an increase of a^{\prime} (or of a) by 30 increases the lord of the month by 2 , as it should be since $30 \equiv 2$ mod. 7 . Of course "month" means here a fixed interval of 30 days and not a lunar month.

For the first day of the ahargaṇa one has $a^{\prime}=2227+1$ hence from (6)

$$
2228 \equiv 318 \cdot 7+2
$$

hence $c_{6}=2$ i.e. Tuesday.
The rule (4) can also be written as

$$
3 c_{1} \equiv c_{4}-1 \bmod .7
$$

Each unit of c_{1} represents according to (2) a schematic "year" of 360 days. Hence c_{4} increases by 3 if c_{1} increases by 1 as is to be expected since $360 \equiv 3 \bmod$. 7. For $a^{\prime}=1$ one has $c_{1}=0$ thus $c_{4}=1$ i.e. Sunday.

I,22. Varāhamihira explains the astrological influences of the lords of the year, the lords of the month, and the lords of the day in Bṛhatsamhitā XIX.

I,23-25. Varāhamihira here discusses the Persian year of the Maga Brāhmaṇas.
I,23. If we now consider a "year" as containing 365 days, the quotient

$$
a+1 \equiv c_{5} \bmod 365 \quad 0 \leqq c_{5}<365
$$

gives the fraction c_{5} of one year elapsed at the given moment a. Furthermore

$$
c_{5} \equiv c_{6} \bmod .30 \quad 0 \leqq c_{6}<30
$$

refers to the number of days within the current schematic month of 30 days. This last residue c_{6} defines the "lord of the degree".

I,24-25. Here are listed the Sanskrit "equivalents" of the thirty angels who rule the days of a Persian month. Column I below gives their names according to the Bundahishn (cf. A. Christensen, L’Iran sous les Sassanides, 2nd ed. Copenhague 1944 p. 158), and column II Varāhamihira's list.

I

1. $\bar{O} h r m a z d$

2. Vahman $=$ "Good Thought"
3. Urdvahisht $=$ "Best Truth"
4. Shahrēvar $=$ "Desirable Domination"

II

Kamalodbhava $=$ Brahman
Prajeśa $=$ Prajāpati
Svargeśa = "Lord of Heaven"
Śāstṛ = "Ruler"

```
5. Spandarmadh = "Spiritual Purity"" Rudra
```

6. Khvardādh = "Integrity"
7. Amurdādh = "Immortality"
8. Dadhv = "Creator"
9. $\overline{\text { A }}$ dhur $=$ "Fire"
10. Ābhān = "Water"
11. Khvar = "Sun"
12. Māh = "Moon"
13. Tīr = "Mercury"
14. Gōsh = "Bull"
15. Dadhv = "Creator"
16. Mihr $=$ "'Sun'"
17. Srōsh $=$ "Obedience"
18. Rashn $=$ "Truth"
19. Fravardīn $=$ "Genii"
20. Varhrān
21. Rām = "Joy"
22. Vādh = "Wind"
23. Dadhv = "Creator"
24. Dēn = "Religion"
25. Ard $=$ "Retribution"
26. Ashtādh = "Rectitude"
27. Asmān = "Sky"
28. Zāmdādh = "Earth"
29. Mahrspand $=$ "God's Word"
30. Anaghrān = "Infinite Lights"

Rudra
Manyu = "Mind"
Vasu = "Wealth"
Kamalā = Lakșmī
Anala $=$ "Fire"
Antara $=$ "Death"
Vayah = "Sun"
Śaśi $=$ "Moon"
Indra
Go = "Bull"
Nirṛti = "'Destruction"
Hara = Siva
Bhava $=$ "Being"
Guru $=$ "Teacher"
The Pitṛs = "The Fathers"
Varuna
Baladeva
Samīraṇa = "Wind"
Yama $=$ "Death"
Vāk = "Word"
Śrī = "Prosperity"
Dhanada = Kubera
The Giris = "The Mountains"
Dhātrī = "Earth"
Vedhāḥ = "Pious"
Paraḥ Puruṣa = Viṣnu

The angels of lists I and II are reasonably similar for days $1,2,3,4,5(?), 7,9$, $11,12,14,18(?), 19,22,24,28$, and 29 , and perhaps for some others. The variations may be due in part to the fact that Varāhamihira's is a Maga Brāhmaṇa list, the Bundahishn's probably a Zurvanite document.

Chapter II

II,1. The rule of the text implies the use of a julian year since

$$
\begin{equation*}
\frac{a \cdot 4+6}{1461}=\frac{a+1 ; 30}{365 ; 15} \tag{1}
\end{equation*}
$$

The division of the ahargana a by $365 ; 15^{\text {d }}$ will leave a remainder which gives the number of quarter-days after the vernal equinox. The twelve coefficients enumerated at the end of the verse, $126-1=125,126-0=126$, etc., give the number of quarter

Table 2.

	d/4	d	Season	Velocity
γ	125	31;15		0;57,16,48\%/d
γ	126	31;30		0;57, 8,34, . .
II	126	31;30	94;15	0;57, 8,34, ..
(1)	126	31;30		0;57, 8,34, ..
ภ	124	31; 0		0;58, 3,52,...
mp	122	30;30	93; 0	0;59, $0,59, \ldots$
Ω	119	29;45		1; 0,30,15,...
m	117	29;15		1; 1,32,18,..
x^{\star}	117	29;15	88;15	1; 1,32,18, ..
3	118	29;30		1; 1, 1, 1, ..
※	120	30; 0		
)(121	30;15	89;45	0;59,30,14, ..
Total	1461	365;15		

days for the travel of the Sun in the consecutive zodiacal signs. This leads for the solar motion to the pattern shown in Table 2.

The additive constant (ksepa) 6 in the numerator (i.e. ${ }^{6} / 4=1 \frac{1}{4}$ days) indicates that the author supposed the vernal equinox to occur not at the epoch, but $1 \frac{1}{2}$ days earlier.

The graph for the corresponding velocities (cf. Fig. 1) shows that the values for Pisces and Aries cannot be correct. A simple emendation would be 124 for Aries and correspondingly 122 for Pisces. The text, however, does not permit such a correction.

II,2-6. We have here rules for the determination of the longitude of the Moon, rules which are of great historical interest because their Hellenistic, ultimately Babylonian, prototypes are known. ${ }^{1}$)

Let a be the ahargana, then one takes as number of days

$$
\begin{equation*}
n=a+1936=a+32,16 \tag{1}
\end{equation*}
$$

i.e. one introduces a point of departure about $5^{1 / 3}$ years back from the accepted epoch date. We shall return to this modified epoch date later and show that it represents a position of the Moon at its apogee (cf. p. 22).

From n one derives numbers α and β :

$$
\begin{equation*}
n=\alpha \cdot 3031+\beta \quad 0 \leqq \beta<3031 \tag{2}
\end{equation*}
$$

where α (called "ghana") counts the number of periods of $3031=50,31$ days length. This number 3031 represents the length of 110 anomalistic months as we know, e.g., from VIII,5.
${ }^{1}$) Cf., e.g., the Greek papyri P. Lund 35a and P. Ryl. 27 (cf. below p. 152, Bibliography 1,D) and ACT I passim.

With the remainder β one forms

$$
\begin{equation*}
\frac{9 \beta}{248}=m+\frac{9 t}{248} \quad 0 \leqq t<\frac{248}{9} . \tag{3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{248}{9}=27 ; 33,20^{\mathrm{d}} \tag{4}
\end{equation*}
$$

is the length of one anomalistic month, one can replace (3) by

$$
\begin{equation*}
\beta=m \cdot 27 ; 33,20+t \quad 0 \leqq t<27 ; 33,20 \tag{5}
\end{equation*}
$$

where m (called "gatis") gives the number of anomalistic months contained in β. The text counts the residue t in "padas" where (cf. (4))

$$
\begin{equation*}
1 \text { pada }=\frac{1}{248} \text { anomal. month }=\frac{1}{9} \text { day. } \tag{6}
\end{equation*}
$$

Having determined the integers α, m, and t the corresponding increments of longitude $\lambda_{1}, \lambda_{2}, \lambda_{3}$ respectively will be computed.

First, with α from (2):

$$
\begin{equation*}
\alpha=16 u+v \quad 0 \leqq v<16 \tag{7}
\end{equation*}
$$

and from it

$$
\begin{equation*}
\lambda_{1}=69 ; 7,1^{\circ}-\frac{3}{4} v \cdot 30^{\circ}+0 ; 2 \alpha . \tag{8}
\end{equation*}
$$

This means that for $n=0$ the Moon had the longitude

$$
\begin{equation*}
\lambda_{0}=69 ; 7,1^{\circ} . \tag{9}
\end{equation*}
$$

For this parameter cf. below p. 22. Otherwise (7) and (8) are based on the assumption that the longitude of the Moon increases during one ghana by $3371 / 2^{\circ}+0 ; 2^{\circ}=5,37 ; 32^{\circ}$ - corresponding to a mean motion of $13 ; 10,34,52,46, \ldots{ }^{\mathrm{o} / \mathrm{d}}$.

Indeed, since

$$
5,37 ; 30 \equiv-22 ; 30=-\frac{3}{4} 30 \quad \text { mod. } 6,0
$$

Hist. Filos. Skr. Dan.Vid. Selsk. 6, no. 1.
one has for α ghanas, with (7):

$$
-\alpha \frac{3}{4} 30=-(16 u+v) \frac{3}{4} 30=-12 \cdot 30 u-\frac{3}{4} v \cdot 30 \equiv-\frac{3}{4} v \cdot 30 \quad \bmod .6,0
$$

which explains the increment depending on v in (8).
The contribution to the longitude during m gatis is assumed to be

$$
\begin{equation*}
\lambda_{2}=m\left(185-\frac{1}{6}\right) \text { minutes }=m \cdot 3 ; 4,50^{\circ} . \tag{10}
\end{equation*}
$$

That is to say the Moon moves in one anomalistic month 6,$3 ; 4,50^{\circ}$, or, using (4), the Moon's mean velocity is taken to be $13 ; 10,34,43,3, \ldots$ o/d. This is slightly less than the value obtained from (7) and (8). ${ }^{1}$)

The increments λ_{1} and λ_{2} take care of complete anomalistic periods of the Moon. What remains is only the fraction t in (5) of the current anomalistic period. For this last contribution a definite velocity pattern is assumed, beginning with minimum velocity. This implies that the Moon had minimum velocity at $n=0$.

In order to compute the increase in longitude of the Moon during a fraction of an anomalistic month one has to distinguish between the two halves of a month. During the first half the motion is accelerating, during the second half the velocity decreases again toward its minimum. The two halves are characterized in the text by the number of "padas" (cf. (6)) within the month: the first half of 124 padas contributes (according to II,5) $180 ; 4^{\circ}$ of longitudinal progress, the second half should complete the anomalistic period. According to (10) one should expect a total of about 363° in longitudinal gain but for the sake of greater computational convenience the motion during the last part of the month is slightly modified.

In describing the rules of the text we denote the longitudinal increment during the first half of the month by λ^{+}, during the second half by λ^{-}. Reckoning the residue t found in (3) or (5) as p "padas" the rules of the text are

$$
\begin{gather*}
\text { first half: } \lambda^{+}=p^{\circ}+(1094+5(p-1)) \frac{p}{63} \text { minutes } \tag{11}\\
0 \leqq p \leqq 124 \tag{12}\\
\text { second half: } \lambda^{-}=(p-124)^{\circ}+(2414-5(p-124-1)) \frac{p}{63} \\
+\lambda^{+}(124) \text { minutes } 125 \leqq p \leqq 248
\end{gather*}
$$

where $\lambda^{+}(124)$ represents the value obtained from (11) if one substitutes $p=124$, or, as said in the text

$$
\begin{equation*}
\lambda^{+}(124) \approx 180 ; 4^{\circ} . \tag{12a}
\end{equation*}
$$

${ }^{1}$) If one were to emend in (10) the $1 / 6$ to $0 ; 6=1 / 10$ one would have a motion of $3 ; 4,54^{\circ}\left(+360^{\circ}\right)$ in one anomalistic month and hence a mean motion of $13 ; 10,34,52, \ldots \mathrm{o} / \mathrm{d}$, i.e., practically the same value as in (7) and (8). On the other hand, the parameters in P. Ryl. 27 lead to $3 ; 4,49,26, \ldots{ }^{\circ}$ as progress per anomalistic month.

Indeed, for $p=124$ one obtains from (11) the value $124^{\circ}+\left(3363+\frac{47}{63}\right)$ minutes $=$ $180^{\circ}+\left(3+\frac{47}{63}\right)$ minutes $\approx 180 ; 4^{\circ}$.

In order to discuss the astronomical signifcance of these rules it is convenient to reconvert the padas to days t and to write the numbers sexagesimally with degrees as units.

For the accelerating, i.e. first, half of the month one can replace (11) by

$$
\begin{equation*}
\lambda^{+}=11 ; 42 t+\frac{0 ; 45}{7} t(t-1)=m t+\frac{d}{2} t(t-1) \tag{13}
\end{equation*}
$$

The velocity (in degrees per day) which produces such a motion is found by forming the differences

$$
\begin{equation*}
v^{+}=\Delta \lambda^{+}=\lambda^{+}(t+1)-\lambda^{+}(t)=m+d t \tag{14}
\end{equation*}
$$

Hence v^{+}is a linearly increasing function of time with the minimum

$$
\begin{equation*}
m=11 ; 42^{\mathrm{o} / \mathrm{d}} \tag{15a}
\end{equation*}
$$

and the difference

$$
\begin{equation*}
d=\frac{1 ; 30}{7} \tag{15b}
\end{equation*}
$$

For the second half of the month we count the days t^{\prime} beginning with the midpoint $p=124$, i.e. we define

$$
\begin{equation*}
t^{\prime}=\frac{1}{9}(p-124) \tag{16}
\end{equation*}
$$

Then (12) transforms itself into

$$
\begin{equation*}
\lambda^{-}=3,0 ; 3+\frac{0 ; 47}{1,3}+\left(14 ; 39+\frac{1}{7,0}\right) t^{\prime}-\frac{0 ; 45}{7} t^{\prime}\left(t^{\prime}-1\right)=c+M t^{\prime}-\frac{d}{2} t^{\prime}\left(t^{\prime}-1\right) \tag{17}
\end{equation*}
$$

with

$$
\begin{gather*}
c=3,0 ; 3+\frac{0 ; 47}{1,3} \approx 3,0 ; 4^{\circ} \tag{18a}\\
M=14 ; 39+\frac{1}{7,0}=14 ; 39,8,34,17, \ldots . / \mathrm{d} \tag{18b}
\end{gather*}
$$

and $d=\frac{1 ; 30}{7}$ as before in (15b). The velocity in the second half is therefore given by

$$
\begin{equation*}
v^{-}=\Delta \lambda^{-}=M-d t^{\prime} \tag{19}
\end{equation*}
$$

The fact that d has the same value in (14) and (19) shows that the velocity underlying (11) and (12) is a linear zigzag function with extrema given by (15a) and (18b) and difference (15b). Consequently we find for the period of this function

$$
\begin{equation*}
P=\frac{2(M-m)}{d}=\frac{20,40}{7} \cdot \frac{7}{45}=\frac{248}{9}=27 ; 33,20^{\mathrm{d}} \tag{20}
\end{equation*}
$$

as it should be according to (4). For the mean value one finds

$$
\begin{equation*}
\mu=\frac{1}{2}(m+M)=13 ; 10+\frac{4}{7,0} \approx 13 ; 10,34,17, \ldots{ }^{\mathrm{o} / \mathrm{d}} \tag{21}
\end{equation*}
$$

Essentially the same linear zigzag function for the lunar velocity is described in III, 4, the only difference being that the value (18b) for M is rounded to $14 ; 39^{\circ / \mathrm{d}}$ which would mean $\mu=13 ; 10,30^{\mathrm{o} / \mathrm{d}}$ instead of (21).

We must still explain the value (18a) of the constant c in (17). Obviously the longitudinal gain over one complete anomalistic period should be μP. Hence, one should have at the end, i.e. for $t^{\prime}=\frac{P}{2}$ from (17):

$$
\begin{equation*}
\mu P=c+M \cdot \frac{P}{2}-\frac{d}{2} \cdot \frac{P}{2} \cdot\left(\frac{P}{2}-1\right) \tag{22}
\end{equation*}
$$

or

$$
\begin{aligned}
\mu & =\frac{c}{P}+\frac{M}{2}-\frac{d}{4}\left(\frac{P}{2}-1\right) \\
& =\frac{9}{4,8}\left(3,0 ; 3+\frac{47}{1,3}\right)+\frac{1}{2}\left(14,39+\frac{1}{7}\right)-\frac{45}{14} \cdot \frac{1,55}{9}=13,11
\end{aligned}
$$

exactly. This shows that c was computed from the necessary relation (22) by using for the mean motion the rounded value

$$
\begin{equation*}
\mu \approx 13 ; 11^{\mathrm{o} / \mathrm{d}} \tag{23}
\end{equation*}
$$

It is of interest to investigate the lunar equation which results from the pattern of the true longitude λ^{+}, computed according to the above scheme. For this end one has to compute λ^{+}from (13) for $t=1,2, \ldots$ and similarly the corresponding mean positions $\bar{\lambda}$ from day to day, beginning with the apogee, and to form the differences

$$
\begin{equation*}
\theta=\lambda^{+}-\bar{\lambda} \tag{24}
\end{equation*}
$$

Table 3 and its graphical representation in Fig. 2 show the result. From it it is clear that the maximum equation is

$$
\begin{equation*}
\theta_{\max }=5 ; 5^{\circ} \tag{25}
\end{equation*}
$$

which occurs at $t=7$, i.e., as expected, near $t=\frac{P}{4}=6 ; 53,20$.
It should be emphasized that this is a necessary consequence of the velocity function determined by (14) and (19). In other words (25) is not a parameter which can be chosen freely after v has been fixed; cf. below the discussion to III,4 and III,5-8.

The origin of the other parameters can only be reconstructed with a fair degree of plausibility. In the construction of a linear zigzag function the only parameter

Table 3.

t	$\bar{\lambda}$	λ^{+}	$-\theta$	
1	784.14	702.00	$82.1^{\prime}=1 ; 22^{\circ}$	
2	1568.28	1416.86	152.4	$2 ; 32$
3	2352.42	2144.57	207.8	$3 ; 28$
4	3136.57	2885.14	251.4	$4 ; 11$
5	3920.71	3638.57	282.1	$4 ; 42$
6	4704.85	4404.86	300.0	$5 ; 0$
7	5489.00	5184.00	305.0	$5 ; 5$
8	6273.14	5976.00	297.1	$4 ; 57$
9	7057.28	6780.86	276.3	$4 ; 36$
10	7841.42	7598.57	242.8	$4 ; 3$
11	8625.57	8429.14	196.4	$3 ; 16$
12	9409.71	9272.57	137.1	$2 ; 17$
13	10193.85	10128.86	65.0	$1 ; 5$
$13 ; 47$	10803.74	10803.75	0.0	0

which must be strictly preserved is the period P, here represented by the classical Babylonian parameter (20). For the convenience of actual computation it is essential that d be a small number. A crude estimate of the anomalistic lunar motion, $P \approx 28^{d}$, $M-m \approx 3^{\circ}$ would give for d

$$
d=\frac{M-m}{P}=\frac{1 ; 30}{7}
$$

as in (15b). Again a crude estimate for the velocities would be $\mu \approx 13 ; 11$, hence $m \approx 11 ; 41, M \approx 14 ; 41$. Starting with these estimates one must improve μ by coming nearer to the well known mean value $13 ; 10,35$. If one wishes to preserve d which contains the fraction $1 / 7$ it is convenient to take also for μ the nearest approximation with this fraction, i.e. $\mu=13,10+\frac{4}{7}$ which is (21). Finally, one must use the accurate value (20) for P and this, with (21), leads to (15a) and (18b) for the extrema. At any rate, arithmetical considerations more or less following the here described lines

Fig. 2.
must lie at the basis of the rules given in the text and certainly not any detailed observations beyond the well known Babylonia parameters.

As a result of the prescribed operations one has found the contributions to the motion in longitude λ_{1}, λ_{2}, and $\lambda_{3}=\lambda^{+}$or λ^{-}respectively. Hence one obtains for the longitude λ of the Moon at the moment t

$$
\begin{equation*}
\lambda=\lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3} \tag{26}
\end{equation*}
$$

where λ_{0} is the lunar longitude 1936 days before epoch, i.e. before 505 March 22 (cf. above p. 16 (1)), given in II, 3 :

$$
\begin{equation*}
\lambda_{0}=\text { II } 9 ; 7,1 . \tag{27}
\end{equation*}
$$

The correctness of this element can be easily checked with modern tables. Computing for 499 Dec. 3, 5 P.M. (a) for the meridian of Ujjayini (b) for the meridian of Alexandria, one finds ${ }^{1}$)

$$
\begin{array}{rll}
\text { Ujjayinī: } \lambda=69.33=\text { II } 9 ; 20 \quad & \text { anomaly } 186^{\circ} \\
\text { Alexandria: } \lambda=70.82=\text { II } 10 ; 49 & \text { anomaly } 187 ; 30^{\circ}
\end{array}
$$

as compared with $\lambda_{0}=$ II $9 ; 7$ and anomaly 180° assumed in the text. The computed data obviously confirm in principle the data of the text but do not provide a clear enough distinction between Ujjayinī and Alexandria.

It is not clear why just this particular apogee position had been chosen instead of the nearest one to the epoch A.D. 505 of the ahargaṇa, unless the Vasisṭhasiddhānta was revised in 499 as the Romaka, Pauliśa (and Sūrya) were revised by Lāṭadeva in 505 .

II,7. We adopt here the following notation for longitudinal arcs:

$$
\begin{array}{ll}
\text { s. ..sign: } & 1^{\mathrm{s}}=30^{\circ} \\
\text { na } \ldots \text { nakṣatra: } & 1^{\mathrm{na}}=13 ; 20^{\circ}=\frac{4^{\mathrm{s}}}{9} \\
\mu \ldots \text { muhūrta: } & 1^{\mu}=\frac{1^{\mathrm{na}}}{30}=0 ; 26,40^{\circ}=\frac{4^{\circ}}{9} .
\end{array}
$$

This explains the rule of the text:

$$
\lambda^{\circ}=a^{\mathrm{s}}+b^{\circ}=\frac{4}{9} a^{\mathrm{na}}+\frac{4}{9} b^{\mu} .
$$

Let $\Delta \lambda$ be the elongation of the Moon from the Sun. In one lunar month, which, by definition, contains 30 tithis (τ), the elongation increases by 360°, hence 12° per tithi. Consequently for an elongation of 1^{s} is required the time $\frac{30}{12}=\frac{5^{\tau}}{2}$, hence $\frac{5}{2} \Delta \lambda^{\tau}$ for an elongation of $\Delta \lambda^{s}$. Cf. also III, 16 .
${ }^{1}$) Using the tables of P. V. Neugebauer, Tafeln zur astronomischen Chronologie II (1914) and his Chronologie II (1929) Tafel E 1.

II,8. One muhūrta is ${ }^{1} / 30$ of a nychthemeron, i.e. $0 ; 48^{\mathrm{h}}$. When the Sun is at the beginning of Capricorn the length of daylight is assumed to be $9+3=12$ muhūrtas, i.e. $9 ; 36^{\mathrm{h}}$. For each subsequent sign 1 muhūrta is added until Aries. From there on the number of signs has to be added to 15 until Cancer and similarly for the length of night which increases after Cancer. The result is a linear zigzag function for the length of daylight with a ratio $2: 3$ for shortest to longest daylight (cf. Table 4). For this originally Babylonian ratio see Sphujidhvaja's Yavanajātaka 1,68 and 79,31; cf. also Varāhamihira's Bṛhajjātaka I,19, and XII,5 below.

Table 4.

0°	Daylight	0°
3	$12^{\text {muh }}=9 ; 36^{\mathrm{h}}$	6
※	$13 \quad 10 ; 24$	x^{1}
)($14 \quad 11 ; 12$	m
γ	$15 \quad 12$	Ω
γ	$16 \quad 12 ; 48$	IT
II	$17 \quad 13 ; 36$	ठ
(1)	$18 \quad 14 ; 24$	6

II,9-10. Rules for the length s_{n} of the noon shadow of a vertical gnomon at a locality for which the geographical latitude φ equals the obliquity \in of the ecliptic. Consequently $s_{\mathrm{n}}=0$ at the summer solstice, i.e. at a solar longitude $\lambda=3^{\mathrm{s}}$. It is furthermore assumed that s_{n} increases linearly with 2 units per sign:

$$
\begin{aligned}
& s_{\mathrm{n}}=2 a \quad \text { for } \lambda=(3+a)^{\mathrm{s}} \\
& s_{\mathrm{n}}=12-2 a \text { for } \lambda=(9+a)^{\mathrm{s}}
\end{aligned}
$$

Conversely one can find the solar longitude from the length s_{n} of the noon shadow:

$$
\begin{array}{ll}
\lambda=\left(\frac{s_{\mathrm{n}}}{2}+3\right)^{\mathrm{s}} & \text { for } \\
\ddots 0 \leqq \lambda \leqq 70 \\
\lambda=\left(15-\frac{s_{\mathrm{n}}}{2}\right)^{\mathrm{s}} & \boxed{ } 0 \leqq \lambda \leqq 60 .
\end{array}
$$

For the equinoctial noon shadow $(a=3)$ and with $\varphi=\in$ one would have a gnomon

$$
g=6 \cot \in \approx 6 \cdot 2 ; 15=13 ; 30 .
$$

Because of the crudeness of the scheme a gnomon of length 12 is not quite excluded by this estimate.

II, 11-13. Let $\lambda(\mathrm{H})$ be the longitude of the rising point of the ecliptic, λ the longitude of the Sun, s_{n} the noon shadow, s the shadow at any time of the day. Then the text states that

$$
\begin{array}{ll}
\lambda(\mathrm{H})=\lambda+\frac{36}{12+s-s_{\mathrm{n}}} & \text { before noon } \\
\lambda(\mathrm{H})=\lambda+\left(6-\frac{36}{12+s-s_{\mathrm{n}}}\right) & \text { after noon } \tag{1}
\end{array}
$$

and conversely

$$
\begin{array}{ll}
s=s_{\mathrm{n}}-12+\frac{64800}{\lambda(\mathrm{H})-\lambda} & \text { before noon } \\
s=s_{\mathrm{n}}-12+\frac{64800}{10800-(\lambda(\mathrm{H})-\lambda)} & \text { after noon } \tag{2}
\end{array}
$$

where $\lambda(\mathrm{H})-\lambda$ should be reckoned in minutes of arc.
Since (2) results from (1) by solving for s we need only to discuss (1). Substituting in (1) $s=s_{\mathrm{n}}=0$ one obtains $\lambda(\mathrm{H})=\lambda+3$ signs which is correct for $\lambda=\emptyset 0^{\circ}$ under the assumption that the sun is in the zenith as would be the case for $\varphi=\epsilon$ (cf. II, $9-10$). Substituting $s=\infty$ one finds $\lambda=\lambda(\mathrm{H})$ or $\lambda=\lambda(\mathrm{H})+6$ signs as is correct for sunrise or sunset respectively.

If one generally substitutes $s=s_{\mathrm{n}}$ one obtains $\lambda(\mathrm{H})=\lambda+3$ signs which is, however, not generally true because the culminating point of the ecliptic and the nonagesimal need not to coincide.

Chapter III

III,1. The rule that the number of revolutions of the Sun is obtained from the ahargaṇa a by multiplying it by $120 / 43831=2,0 / 12,10,31=1 / 6,5 ; 15,30$ shows that one sidereal year is assumed to be $365 ; 15,30$ days long. This value is well known during the Middle Ages. Battānī, e.g., calls it "Babylonian". ${ }^{1}$)

III,2-3. The equation of center for the Sun is given for 30° sections of anomaly. Since one is directed to add 20° to the longitude of the Sun it is clear that these sections begin at 20° of each sign. Hence the solar apogee is located at $\mathbb{I} 20^{\circ}$, as in the ārdharātrika system.

Fig. 3 shows as a continuous curve the function $1 ; 12 \sin \alpha$. The points marked by \times give the values of the equation found in the text at arguments $10^{\circ}, 40^{\circ}, 70^{\circ}$, etc. (cf. Table 5). Since $\mathbb{4} 20$ corresponds to $\alpha=0$ we may also say that the points \times correspond to $\wp 0^{\circ}, \delta 0^{\circ}, \ldots$ etc. The very close agreement of the points \times with $1 ; 12$ $\sin \alpha$ shows that the maximum equation for the Sun was assumed to be $1 ; 12^{\circ}$, almost exactly one half of the value in the Almagest $\left(2 ; 23^{\circ}\right)$.
III,4 and 9. The lunar velocity v is here described as a linear zigzag function with the following parameters

[^11]

Fig. 3.
$m=702$ minutes in 9 padas, i.e. $11 ; 42^{0 / d}$
$M=879$ minutes in 9 padas, i.e. $14 ; 390 / \mathrm{d}$
$d=\frac{9 \cdot 10}{7}$ in 9 padas, i.e. $\frac{1 ; 30^{\circ / d}}{7}$ per day.
This is the same function which we derived from II,2 to 6 , excepting M which had previously the value $14 ; 39+\frac{1}{7,0}$ as is necessary if one wishes to obtain the exact

Table 5.

α	$\|1 ; 12 \sin \alpha\|$	Text		α
0	0			360
$10 \quad 170$	0;12,30	-0;11	$+0 ; 10$	$190 \quad 350$
20160	0;24,39	$-0 ; 25$	$+0 ; 25$	200340
30150	0;36			$210 \quad 330$
$40 \quad 140$	0;46,17	-0;48	+ 0;48	$220 \quad 320$
50130	0;55, 9	$-0 ; 54$	$+0 ; 54$	230310
$60 \quad 120$	1; 2,21			240300
$70 \quad 110$	1; 7,39	$-1 ; 9$	$+1 ; 10$	250290
80100	1;10,54	$-1 ; 10$	$+1 ; 11$	260280
90	1;12			270

period of 248/9 days for the anomalistic month. Obviously the value of M in (1) is only a convenient rounding for the value in II, $2-6$.

Separated from III, 4 by different rules for the lunar equation (III, $5-8$) is III, 9 where it is said that the longitude of the Moon $\lambda(t+1)$ at the moment $t+1$ is found from $\lambda(t)$ by adding to it $v(t+1)$ as determined from (1).

III,5-8. These verses deal with the determination of the lunar equation, i.e. with the correction θ which must be added to, or subtracted from, the mean longitude to give the true longitude. This function θ has the value zero at the apogee and the perigee of the lunar orbit. Otherwise it is here assumed that the differences $\Delta \theta$ form a linear zigzag function of period $P / 2, P=27 ; 33,20^{d}$ being the anomalistic month. Consequently θ is represented by a difference sequence of second order.

The rules of the text distinguish between the first and the second half of the anomalistic month, beginning at the apogee. As in II,2-6 the anomalistic month is again divided into 248 "padas", (cf. p. 17) such that $1 p=\frac{1^{\text {d }}}{9}$.

For the first half, or more specifically, for

$$
\begin{equation*}
0 \leqq p \leqq 120 \quad \text { or } \quad 0 \leqq t \leqq 13 ; 20^{\mathrm{d}} \tag{1a}
\end{equation*}
$$

one finds θ (i.e. the negative equation) from

$$
\begin{equation*}
\theta=(5261-40(p-1)) \frac{p}{729} \tag{1b}
\end{equation*}
$$

reckoned in minutes. Proceeding again as in II,2-6 one can replace (1b) by the equivalent rule

$$
\begin{equation*}
\theta=1 ; 1 \cdot t-\left(0 ; 4+\frac{0 ; 4}{9}\right) t(t-1) \tag{2}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
\Delta \theta=1 ; 1-\left(0 ; 8+\frac{0 ; 8}{9}\right) t=1 ; 1^{\circ}-0 ; 8,53,20 \cdot t \tag{3}
\end{equation*}
$$

The maximum equation should occur at $t=\frac{1}{4} P=6 ; 53,20^{d}$. Substituting this value in (2) one obtains

$$
\begin{equation*}
\theta_{\max }=3 ; 59,55, \ldots{ }^{\circ} \approx 4^{\circ} \tag{4}
\end{equation*}
$$

while (3) gives $\Delta \theta=-0 ; 0,14, \ldots \approx 0$ as it should be. The equation (4) would correspond to an eccentricity of $3 ; 49$ for $R=60$.

In the discussion of II, $2-6$ we have seen (p. 20) that the velocity function (1) of III, 4 leads to a maximum equation of $5 ; 5^{\circ}$. Consequently it is certain that III, $5-8$ is unrelated to III, 4 and III, 9 which are the equivalent to II, $2-6$.

One can again ask how the parameiers could have been determined which underly the rules (2) and (3). Obviously one intended to construct a function θ of the type shown in Fig. 2 p. 21 i.e. a sequence of second order such that

$$
\begin{equation*}
\Delta \theta=a-d t \tag{5}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\theta=a t-\frac{1}{2} d t(t-1) \tag{6}
\end{equation*}
$$

Hence our question boils down to the problem of determining the lwo parameters a and d.

Here one has to start with

$$
\begin{equation*}
\theta_{\max }=4^{\circ} \quad \text { at } \quad t=\frac{P}{4}=\frac{1,2}{9} \tag{7}
\end{equation*}
$$

At that point $\Delta \theta$ must be zero; thus from (5)

$$
\begin{equation*}
a=d \cdot \frac{P}{4} \tag{8}
\end{equation*}
$$

Substituting this relation in (6) one finds

$$
\theta_{\max }=\frac{1}{32} d P(P+4)
$$

hence

$$
\begin{equation*}
d=\frac{32}{P(P+4)} \theta_{\max } \tag{9}
\end{equation*}
$$

Using the values from (7) this gives

$$
\begin{align*}
& d=\frac{5,24}{36,41}=0 ; 8,49,56, \ldots \approx 0 ; 8,50 \approx 0 ; 8+\frac{0 ; 8}{9}=\frac{1 ; 20}{9} \tag{10a}\\
& a=\frac{1 ; 20 \cdot 1,2}{1,21}=1 ; 1,18, \ldots \approx 1 ; 1 . \tag{10b}
\end{align*}
$$

One would have obtained exactly $d=1 ; 20 / 9$ if $P \approx 27 ; 27,30$ and from it exactly $a=1 ; 1$ if $P \approx 27 ; 27$. The effect of these inaccuracies is clearly visible in Fig. 4.

As a result of these operations one can determine the equation θ which concerns the time between 0 and $\frac{P}{2}$ (and should be subtracted from the mean positions). For the second half of the interval the equation could have been found simply on the basis of symmetry, counting backwards from the endpoint of the anomalistic month. In fact, however, the text instructs us (in III,6) to use for $p>120$ the amounts

$$
\begin{equation*}
p^{\prime}=p-120 \tag{11}
\end{equation*}
$$

and to find the equation θ^{\prime} from the same expression as θ in (1 b)

$$
\begin{equation*}
\theta^{\prime}=\left(5261-40\left(p^{\prime}-1\right)\right) \frac{p^{\prime}}{729} \tag{12}
\end{equation*}
$$

Fig. 4.
but only as long as

$$
\begin{equation*}
0<p^{\prime} \leqq 63 \tag{13}
\end{equation*}
$$

What happens from here on is difficult to motivate. If we interpret the text correctly (as is by no means certain) the value found for $p^{\prime}=63$ is kept valid until $p^{\prime}=70$. At $p^{\prime}=70$, however, a value is assumed as found from (12) for $p=\frac{560}{9}=$ $62^{2} / 9$, i.e. a value which is practically $\theta_{\max }$. But by moving it to $p^{\prime}=70$ the maximum area is extended instead of shortened (as θ should have shown; cf. Fig. 4). In other words from $p^{\prime}=70$ on one introduces a new variable

$$
\begin{equation*}
p^{\prime \prime}=p^{\prime}-69 \tag{14}
\end{equation*}
$$

and computes

$$
\begin{equation*}
\theta^{\prime}=\left(5261-40\left(p^{\prime \prime}-1\right)\right) \frac{p^{\prime \prime}}{729} \tag{15}
\end{equation*}
$$

This leads for $p^{\prime \prime}=55$ to an equation of about $1 ; 54^{\circ}$ instead of to a value nearly zero. The text seems to say that $\theta=0$ for $p^{\prime}=60$; actually $p^{\prime}=59$ would correspond to P. It would have been much better to use (12) for the whole second half of an anomalistic month.

III,9 see III, 4 .

Table 6.

	t	θ	t	t^{\prime}	θ^{\prime}
	$1{ }^{\text {d }}$	1; 1	13;20 ${ }^{\text {d }}$	0	0
	2	1;53, 6,40	14;20	1	1; 1
	3	2;36,20	15;20	2	1;53, 6,40
	4	3;10,40	16;20	3	2;36,20
	5	3;36, 6,40	17;20	4	3;10,40
	6	3;52,40	18;20	5	3;36, 6,40
	7	4; 0,20	19;20	6	3;52,40
	8	3;59, 6,40	20;20	7	4; 0,20
	9	3;49	t	$\mathrm{t}^{\prime \prime}$	
	10	3;30			
	11	3; 2, 6,40	21	0	4; 0, 1,.
	12	2;25,20	22	1	3;59,34,
	13	1;39,40	23	2	3;50,13,
$\begin{gathered} \mathrm{p}= \\ 120 \end{gathered}$			24	3	3;31,59, .
	13;20	1;22,26, .			
			25	4	3; 4,52,.
	14	0;45, 6,40	26	5	2;28,51,
			27	6	1;43,57, .
			27;40		0

III, 10-11. We associate the indices $i=0,1,2,3$ with the longitudes $0,30,60,90$ respectively. The remaining quadrants of the ecliptic need no special discussion since all steps can be repeated with proper symmetries.

The text gives rules for finding the length of daylight C_{i} counted in vināḍis where $360^{\circ}=3600^{\mathrm{vin}}$. At equinox $C_{0}=1800^{\text {vin }}$ and in general

$$
\begin{equation*}
C_{i}=1800+2 \omega_{i} \tag{1}
\end{equation*}
$$

where ω_{i} is the arc ω shown in Fig. 5, for $\lambda=i \cdot 30$. The geographical latitude φ is characterized by the equinoctial noon shadow s_{0} of a vertical gnomon of length $g=12$. The text gives coefficients γ_{i} such that

$$
\begin{equation*}
s_{0} \gamma_{i}=2\left(\omega_{i}-\omega_{i-1}\right) \tag{2}
\end{equation*}
$$

Since obviously $\omega_{0}=0$ the formula (2) suffices to find all ω_{i} and thus all C_{i}. The values given for the γ_{i} are

$$
\begin{equation*}
\gamma_{1}=20^{\mathrm{vin}} \quad \gamma_{2}=16 ; 30^{\mathrm{vin}} \quad \gamma_{3}=6 ; 45^{\mathrm{vin}} . \tag{3}
\end{equation*}
$$

It is not difficult to derive, at least approximately, these values from other known data. Let δ_{i} be the declination of the Sun. Then Fig. 5 shows that

$$
\begin{equation*}
\cot \varphi=\frac{\tan \delta}{\sin \omega} \tag{4}
\end{equation*}
$$

Now

$$
\begin{equation*}
\cot \varphi=g / s_{0} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \delta=R \sin \delta / r=\operatorname{Sin} \delta / r \tag{6}
\end{equation*}
$$

where r is the "day radius" (cf. Fig. 6) of the Sun. Thus

$$
\begin{equation*}
\operatorname{Sin} \omega=\frac{R \operatorname{Sin} \delta}{r} \cdot \frac{s_{0}}{g} \tag{7}
\end{equation*}
$$

For geographical latitudes near 24° the quantities ω can be considered to be small angles for which the approximation

Fig. 5.

Fig. 6.

$$
\begin{equation*}
\operatorname{Sin} \omega \approx 2 \omega^{\circ} \tag{8}
\end{equation*}
$$

is permissible. ${ }^{1}$) Thus from (7)

$$
2 \omega^{\circ} \approx \frac{R \operatorname{Sin} \delta}{r} \cdot \frac{s_{0}}{g}
$$

with $R=120$ and $g=12, d=2 r$:

$$
\begin{equation*}
2 \omega^{\circ}=\frac{20 \operatorname{Sin} \delta}{d} \cdot s_{0} \quad \text { hence } \quad 2 \omega^{\operatorname{vin}}=\frac{200 \operatorname{Sin} \delta}{d} \cdot s_{0} \tag{9}
\end{equation*}
$$

We do not know the exact values used for the declination δ and for d but the proper order of magnitude is found when using the parameters given in IV,23-25 (cf. Table 7). The values of the coefficients γ_{i} in (3) agree well enough with the result of our computation to leave little doubt as to the correctness of our reconstruction.

III,12. The region between the Himālayas and the ocean is Bhāratavarṣa, the Indian sub-continent, corresponding to latitudes φ roughly between 10° and 30°. For this
${ }^{1}$) This approximation implies two more assumptions:
(a) $\pi \approx 3$
(b) $R=120$.

For small α, counted in radians, we have $\sin \alpha \approx \alpha$, thus $\operatorname{Sin} \alpha \approx R \alpha$ and consequently $(\alpha R)^{\circ} \approx \frac{180}{\pi} \operatorname{Sin} \alpha \approx$ $60 \operatorname{Sin} \alpha$ because of (a) and finally $2 \alpha^{\circ} \approx \operatorname{Sin} \alpha$ because of (b).
area φ is sufficiently near to $\in \approx 24^{\circ}$ to justify the approximation (8) in III, 10-11. The reference for the further explanations is to XIV,1-4.

III,13. The true distances of Avantī (= Ujjayinī) and Vārāṇasī (= Benares) from Yavanapura, assuming that the last is Alexandria in Egypt, are $45 ; 50^{\circ}$ and $53 ; 7^{\circ}$. The distances given in the text are $0 ; 7,20^{\mathrm{d}}=44^{\circ}$ and $0 ; 9^{\mathrm{d}}=54^{\circ}$ respectively.

A result of this type, if not purely accidental, could only have been obtained from the observation of lunar eclipses. The procedure described in the next verse is not applicable for larger distances.

Table 7.

i	$\operatorname{Sin} \delta_{\mathrm{i}}$	d_{i}	$\frac{200 \operatorname{Sin} \delta_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}}}$	$\frac{2\left(\omega_{\mathrm{i}}-\omega_{\mathrm{i}-1}\right)}{\mathrm{s}_{0}}$	γ_{i}
0	0	$4,0=2 R$	0	0	
1	$24 ; 24$	3,55	$20 ; 46$	$20 ; 46^{\operatorname{vin}}$	20^{vin}
2	$42 ; 15$	3,$44 ; 40$	$37 ; 37$	$16 ; 51$	$16 ; 30$
3	$48 ; 48$	3,$39 ; 15$	$44 ; 31$	$6 ; 54$	$6 ; 45$

III,14. If d is the shortest distance between two localities, measured in yojanas, while their geographical latitudes differ by Δb degrees, the longitudinal difference, in degrees, is found from

$$
\Delta l=V(9 d / 80)^{2}-\Delta b^{2}
$$

and hence the difference of local time $\Delta l / 6$ nāḍikās.
The factor $9 / 80$ is based on assuming 3200 yojanas for the equatorial circumference of the earth, hence

$$
\frac{360^{\circ}}{3200}=\frac{9^{\circ}}{80} .
$$

The same parameter is found in IX,10 and in XIII,15-16.
III,15. A fragmentary passage which in the present form makes no sense, e.g., because one cannot add longitudinal differences and ascensional differences.

III,16. Cf. II,7 and p. 22.
III,17. The daily velocity of the Sun as function of its longitude is assumed to be $1^{\circ / \mathrm{d}}$ plus a small correction, constant in each sign (cf. the graph Fig. 7). The apogee lies correctly in Gemini if we assume that the enumeration begins with Aries. The arithmetical mean of the twelve given values is $0 ; 59^{\circ} / \mathrm{d}$, the same as the mean value between the minimum $0 ; 57^{\circ} / \mathrm{d}$ and the maximum $1 ; 1^{0 / \mathrm{d}}$.

Obviously there is no astronomical reason for the asymmetry of the given values nor can such data be the result of direct observations. On the other hand, the text does not allow for plausible emendations. Hence it is probably a distorted tradition
on which the extant text is based. It is, of course, not difficult to reconstruct a symmetric distribution, without changing either the extrema or the mean value. The dotted graph in Fig. 7, changing only two numbers by $0 ; 1$ respectively leads, e.g., to a typical "System B" type ${ }^{1}$) of distribution.

III,18-19. A karaṇa is half of a tithi or the period in which the elongation of the Moon from the Sun increases by $6^{\circ}=360^{\prime}$.

Four of the 60 karaṇas thus contained in one synodic month are called "fixed" because the same name is always associated with them: the first karana after conjunction, $n=1$, is Kimstughna, and at the end $n=58$ is Sakuni, $n=59$ is Catuṣpada, $n=60$ is Nāga. The remaining 56 karaṇas are called 'movable" and are divided

Fig. 7.
into 8 series of 7 each, named in order Bava, Bālava, Kaulava, Taitila, Gara, Vaṇij, and Viș̣̦i (see Bṛhatsaṃhitā 99,4-5).

Consequently, in the first half of the month, in the suklapakṣa, the second karaṇa has the name Bava, i.e., the number $k=1$ among the movable karaṇas and in general

$$
\begin{equation*}
k \equiv n-1 \bmod .7 \tag{1}
\end{equation*}
$$

where n is the consecutively counted number of the karaṇa (i.e., $n=1,2, \ldots, 60$) and k the order number of the names of the movable karaṇas (i.e., beginning with Bava, $k=1$ and ending with Viști, $k=7$).

In the second half of the month, i.e., in the kṛ̣̣apaksa, the first karaṇa has the number $n=31$ but $k=2$. Hence, if we count the karaṇas of the kṛ̣napakṣa from $n^{\prime}=1$ to 30 we have now

$$
\begin{equation*}
k \equiv n^{\prime}+1 \bmod .7 \tag{2}
\end{equation*}
$$

In order to find n in the suklapakṣa one takes the elongation $\lambda_{\mathrm{m}}-\lambda_{\mathrm{s}}=\Delta \lambda^{\circ}$ where λ_{m} and λ_{s} are the longitudes of Moon and Sun respectively, reckoned in minutes, $\Delta \lambda^{\circ}$ the corresponding elongation in degrees. We furthermore assume that these elongations refer to the upper end of a karaṇa such that, e.g., $\Delta \lambda^{\circ}=6^{\circ}$ for the first karaṇa ($n=1$). With these assumptions one can express (1) in the form

$$
\begin{equation*}
k=\frac{\Delta \lambda^{\circ}}{6}-1=\frac{\left(\lambda_{\mathrm{m}}-\lambda_{\mathrm{s}}\right)-360^{\prime}}{360} . \tag{1a}
\end{equation*}
$$

$\left.{ }^{1}\right)$ Cf., e.g., Neugebauer, Exact Sci. ${ }^{(}{ }^{2}$) p. 159.

For n^{\prime} in the krṣnapakṣa we have only to replace $\Delta \lambda^{\circ}$ by $\Delta \lambda^{\prime 0}=\Delta \lambda^{\circ}+180^{\circ}$ and obtain from (2)

$$
\begin{equation*}
k=\frac{\Delta \lambda^{\prime \circ}}{6}+1=\frac{\left(\lambda_{\mathrm{m}}+180^{\circ}-\lambda_{\mathrm{s}}\right)+360^{\prime}}{360} . \tag{2a}
\end{equation*}
$$

III,20-22. The vaidhrta occurs when the Sun and the Moon are equidistant from and on opposite sides of an equinox; then

$$
\begin{equation*}
\lambda_{\mathrm{s}}+\lambda_{\mathrm{m}}=360^{\circ} . \tag{1}
\end{equation*}
$$

The vyatipāta occurs when the Sun and Moon are equidistant from and on opposite sides of a solstice; then

$$
\begin{equation*}
\lambda_{\mathrm{s}}+\lambda_{\mathrm{m}}=180^{\circ} \tag{2}
\end{equation*}
$$

This simple scheme is modified by the assumption of a trepidation of the solstices and equinoxes over an arc of $46 ; 40^{\circ}$. The summer solstice is assumed by Varāhamihira to be at Cancer 0° in his own time, in the middle of the arc of trepidation. ${ }^{1}$) But the summer solstice was once in the middle of Āśleṣa (i.e. Cancer $23 ; 20^{\circ}$), and again it will be at Gemini $6 ; 40^{\circ}$. At this latter extreme the vyatipāta produces, instead of (2), the sum

$$
\lambda_{\mathrm{s}}+\lambda_{\mathrm{m}}=180^{\circ}-46 ; 40^{\circ}=133 ; 20^{\circ} .
$$

This implies that the base vyatipāta occurred when the summer solstice was at Cancer $23 ; 20^{\circ}$.

The choice of an arc of $23 ; 20^{\circ}$ is here associated with the obliquity of the ecliptic, though elsewhere that is stated to be $23 ; 40^{\circ}$ (IV,16-18) or 24° (IV,24). In fact the choice of the arc must be motivated by the statement in the Jyotiṣavedānga ($\mathrm{Rk} 6=$ Yajus 7) that the northern ayana of the Sun begins at Dhanișthā, i.e., at Capricorn $23 ; 20^{\circ}$.

Varāhamihira states in the Bṛhatsamhitā $(2,1)$:
āśleṣārdhād dakṣiṇam uttaram ayanaṃ raver dhaniṣṭhādyam/ nūnaṃ kadācid āsīd yenoktaṃ pūrvaśāstreṣu//
"Once, according to what is said in ancient treatises, the southern ayana of the Sun was from the middle of Āśleṣā, and the northern began with Dhanisṭthā."

The Jyotiṣavedānga placed the beginning of the Sun's northern ayana in Dhanișṭhā because its list of nakṣatras began with Kṛttikā (as do those in the Atharvaveda and in the Samhitās) rather than with Aśvinī. The true difference between the two starting points is $26 ; 40^{\circ}$ not $23 ; 20^{\circ}$.

[^12]III,23-24. The șaḍaśītimukhas divide the ecliptic into four equal ares of 86° each and one remaining arc of 16°. The four equal arcs are:

Libra 0° to Sagittarius 26°, Sagittarius 26° to Pisces 22°, Pisces 22° to Gemini 18°, Gemini 18° to Virgo 14°.

The remaining arc from Virgo 14° to Libra 0° completes the circle. The modern Sūryasiddhānta (XIV,6) states that one must sacrifice to the Pitres on the 16 days that do not fall in a ṣaḍaśitimukha; the reason for this practice is not mentioned.

III,25. For the seasons or ṛtus see Part I p. 187. The expression is reminiscent of the passage in the Parāśaratantra cited by Utpala (on Bṛhatsaṃitā 2,1): "While the Sun travels from the beginning of Sravișṭhā (= Dhaniṣṭhā) to the end of Pauṣṇa (= Revatī) it is Siśira; from the end of Pauṣṇa to the end of Rohiṇī, Vasanta; from the beginning of Saumya (= Mṛgaśiras) to the middle of Sārpa (= Āśleṣā), Grīṣma; from the middle of Sārpa to the end of Hasta, Prāvṛt (=Vārṣa); from the beginning of Citrā to the middle of Indra (= Jyesṭhā), Sarat; and from the middle of Jyesṭhā to the end of Vaiṣṇava (= Sravaṇa), Hemanta.,"

Parāśara adheres to the old scheme of the Jyotiṣavedānga. Varāhamihira's verse is intended to bring the calendar in line with his solstice position.

III,26. The problem is to find the time in nādis that it takes the disc of the Sun to traverse a point on the ecliptic. If v_{s} is the daily progress of the Sun in minutes, then $v_{\mathrm{s}} / 60$ is the motion during one nāḍī. Consequently it takes $60 d_{\mathrm{s}} / v_{\mathrm{s}}$ nāḍis for the Sun to move the d_{s} minutes of its apparent diameter. The mean diameter of the Sun is stated in VIII, 13 to be $0 ; 30^{\circ}$.

This solution is specifically applied to the sankrāntis or entries of the Sun into a zodiacal sign, which are auspicious. By computation of the Sun's longitude the moment of the entry of its center into a sign is determined; the period of auspiciousness is assumed to extend over the length of time determined in this verse, half taken before, half after the computed moment.

Fig. $8 \mathrm{~A}-\mathrm{B}$.

III,27. Three possibilities exist: that a true tithi (τ) be longer than the sāvana (sunrise) day, that it be equal to it, or that it be shorter than it. For the first case Fig. 8A illustrates the situation when the tithi participates in three days while Fig. 8B shows for a short tithi the case in which one day participates in three tithis.

III,28-29. These verses concern the retrograde motion of the lunar nodes. Since the ahargaṇa a is to be multiplied by $8 / 151$ we have in first approximation a daily motion of the nodes by

$$
8 / 151=8 / 2,31 \approx 0 ; 3,10,43,42,31, \ldots{ }^{\mathrm{o} / \mathrm{d}} .
$$

At this rate one revolution requires exactly

$$
2,31 \cdot 6,0 / 8=1,53,15^{\mathrm{d}}
$$

Consequently the number of revolutions of the nodes during a days is $a / 1,53,15$. For each revolution a correction of $+1^{\prime}$ of retrograde motion is required. Thus the daily motion is given by ${ }^{1}$)

$$
\frac{8}{2,31}+\frac{1}{1,53,15,0} \approx 0 ; 3,10,43,42,31+0 ; 0,0,0,31,47 \approx 0 ; 3,10,44,14,18, \ldots{ }^{\mathrm{o} / \mathrm{d}}
$$

In III, 29 the ascending node at epoch is placed at Scorpio $25 ; 59^{\circ}\left(\lambda=235 ; 59^{\circ}\right)$. Modern tables ${ }^{2}$) give for 505 March 22 for the ascending node about Scorpio $25 ; 54^{\circ}$. Varāhamihira's Sūryasiddhānta would place it at Scorpio $26 ; 6,57^{\circ}$; see below IX, 5 .

III,30-31. The variation of the lunar latitude is treated as a simple linear zigzag function with $4 ; 40^{\circ}$ as maximum, a value which seems to be attested nowhere else. The value in IX,6 is the more common one $4 ; 30^{\circ}$.

III,32-35. These verses are evidently based on some obscure speculation in the Romakasiddhānta about the duration of creation. III, 33 seems to belong naturally with XV,17-27.

The separation of tithi and nakșatra presumably means that at the first tithi of the month the Moon is not in the first nakșatra, Aśvinī; this separation is supposed to be an auspicious muhūrta for the pratipatti, i.e. the beginning of any action (or the beginning of creation?). However, if on a bhadrā tithi (the 2 nd , 7 th, or 12 th in any pakṣa ${ }^{3}$)) the Moon is in Śravaṇa (Sagittarius 10° to $23 ; 20^{\circ}$), the muhūrta is inauspicious. The inauspiciousness arises from the fact that the creation ceases at such a yuga, i.e. when the conjunction of the Sun and Moon (the first tithi) occurs in Uttarāṣāḍhā, i.e. at the winter solstice. This is reminiscent of Hellenistic speculations regarding a "world-year."'4)

The 68550 years in III,34 is derived from the Romakasiddhānta; it is equal to $24 \cdot 19 \cdot 150+150=19,2,30$, where $19 \cdot 150=2850$ years is the Romaka's yuga (cf. I,15). The significance of this computation is obscure.

[^13]The meaning of III, 35 also defies comprehension. Dikshit [1890a] has indeed demonstrated that, by the elements of Varāhamihira's Sūryasiddhānta, the Caitra whose pratipad is used as epoch in this karaṇa is pūrṇimānta; but there is no reason to compute the longitudes of the Sun and Moon for the pūrṇimā of that month. Moreover, at Caitrapūrnimā the Moon must be close to Libra 0° so that the Moon on the ninth tithi is far from Punarvasu (Gemini 20° to Cancer $3 ; 20^{\circ}$). The reference to Punarvasu rather suggests an ecpyrosis at the summer solstice as we had a cataclysm at the winter solstice (III,32), but the text as it stands does not allow us to arrive at this interpretation.

III,36-38. The need to select the proper times (muhūrta) for the twice-born (Brāhmaṇa, Kṣatriya, or Vaiśya) to perform the various śrauta (Vedic) and smārta (customary) rituals is one of the principal motivations for the study of astronomy in India. Therefore those who despise astronomy as being inaccurate as well as those who incorrectly practice it are suitably punished, while experts in the field are rewarded in the traditional manner. Compare IX,8 in the Paitāmahasiddhānta of the Viṣṇudharmottarapurāṇa.

Chapter IV

IV,1-5. Let c be the circumference of a circle of radius R, d its diameter. It is assumed that

$$
\begin{equation*}
d=\sqrt{c^{2} / 10} \tag{1}
\end{equation*}
$$

hence

$$
\begin{equation*}
\pi=\sqrt{10} \approx 3.162 \text { instead of } \approx 3.141 \tag{1a}
\end{equation*}
$$

Furthermore

$$
\left.\begin{array}{rl}
\operatorname{Sin} 30^{\circ}=\sqrt{R^{2} / 4} & =R / 2 \\
\operatorname{Sin} 60^{\circ}=\sqrt{R^{2}-R^{2} / 4} & =R \sqrt{3 / 2} \tag{2}
\end{array}\right\}
$$

Finally a formula is given to obtain $\operatorname{Sin} \alpha$ from $\operatorname{Sin} 2 \alpha$, i.e., to go from $\operatorname{Sin} 30^{\circ}$ to $\operatorname{Sin} 15^{\circ}$, Sin $7 ; 30^{\circ}$, $\operatorname{Sin} 3 ; 45^{\circ}$:

$$
\begin{equation*}
\operatorname{Sin}^{2} \alpha=\left(\frac{R-\operatorname{Sin}(90-2 \alpha)}{2}\right)^{2}+\left(\frac{\operatorname{Sin} 2 \alpha}{2}\right)^{2} \tag{3}
\end{equation*}
$$

This formula can easily be obtained from the relation between chord- and sinefunction (cf. Fig. 9):

$$
\operatorname{Crd}^{2} \theta=\operatorname{Vers}^{2} \theta+\operatorname{Sin}^{2} \theta
$$

and

$$
\operatorname{Crd} \theta=2 \operatorname{Sin} \frac{\theta}{2}
$$

give indeed

$$
4 \operatorname{Sin}^{2} \frac{\theta}{2}=(R-\operatorname{Cos} \theta)^{2}+\operatorname{Sin}^{2} \theta
$$

The relation (3) is the equivalent of
hence

$$
4 \sin ^{2} \alpha=\left(1-2 \cos 2 \alpha+\cos ^{2} 2 \alpha\right)+\sin ^{2} 2 \alpha=2-2 \cos 2 \alpha
$$

$$
\begin{equation*}
2 \sin ^{2} \alpha=1-\cos 2 \alpha . \tag{4}
\end{equation*}
$$

Also this form is found in our text (IV,5):

$$
\begin{equation*}
\operatorname{Sin}^{2} \alpha=60(R-\operatorname{Sin}(90-2 \alpha)) \tag{5}
\end{equation*}
$$

which follows from (4) if $R=120$.

Fig. 9.

Fig. 10.

IV,6-15. Table 8 shows the numerical equivalents of the numbers described in these verses. The units are called "minutes" and "seconds" but in fact the "minutes" are the same units in which R counts as 120 . The terminology is derived from the earlier Sine-table in the Paitāmahasiddhānta of the Viṣnudharmottarapurāna (III,12) in which the radius as well as the circumference are reckoned in minutes $(R=3438=$ $57,18, \quad c=21600=6,0,0)$.

IV,16-18. These verses concern the solar declinations (δ) for which the text gives the differences ($\Delta \delta$) in steps of $7 ; 30^{\circ}$ of longitude (cf. Table 9). The trend of these differences is rather irregular (cf. Fig. 10) but the effect on the declinations themselves is not very visible. The total for 90° is

$$
\begin{equation*}
\varepsilon=23 ; 40^{\circ} . \tag{1}
\end{equation*}
$$

and that this was intentional is shown by the statement in IV, 16 that

$$
\begin{equation*}
\operatorname{Sin} \varepsilon=48 ; 9 \tag{2}
\end{equation*}
$$

which is indeed correct for $\varepsilon=23 ; 40^{\circ}$.
From IV, $23-25$ one derives the round value $\varepsilon=24^{\circ}$.

Table 8.

α	$\sin \alpha$	$\operatorname{Sin}_{120} \alpha$	$\begin{gathered} \text { Text } \\ \operatorname{Sin}_{120} \alpha \end{gathered}$	Δ	Text Δ
$3 ; 45^{\circ}$	0; 3,55,27	7;50,54	7;51	7;50,54	7;51
7;30	7,49,54	15;39,48	15;40	7;48,54	7;49
11;15	11,42,20	23;24,40	23;25	7;44,52	7;45
15	15,31,45	31 ; 3,30	31; 4(+)	7;38,50	7;39
18;45	19,17,11	38;34,22	38;34	7;30,52	7;30(-)
22;30	22,57,40	45;55,20	45;56(+)	7;20,58	7,22(+)
26;15	26,32,14	$53 ; 4,28$	53; 5(+)	7; 9, 8	7; 9
30	30	1, 0	1, 0	6;55,32	6;55(-)
33;45	$33,20,3$	1, 6;40, 6	1, 6;40	6;40, 6	6;40
37;30	36,31,32	1,13; 3, 4	1,13; 3	6;22,58	6;23
41;15	39,33,39	1,19; 7,18	1,19; 7	6; 4,14	6; 4
45	42,25,35	1,24;51,10	1,24;51	5;43,52	5;44
48;45	45, 6,37	1,30;13,14	1,30;13	5;22, 4	5;22
52;30	47,36, 4	1,35;12, 8	1,35;12	4;58,54	4;59
56;15	49,53,17	1,39;46,34	1,39;46(-)	4;34,26	4;34
60	51,57,41	1,43;55,22	1,43;55	4; 8,48	4;11(+)
63;45	$53,48,45$	1,47;37,30	1,47;37(-)	3;42, 8	3;42
67;30	$55,25,58$	1,50;51,56	1,50;52	3;14,26	3;15(+)
71;15	56,48,57	1,53;37,54	1,53;37(-)	2;45,58	2;45(-)
75	57,57,20	1,55;54,40	1,55;55	2;16,46	2;18(+)
78;45	58,50,50	1,57;41,40	1,57;42	1;47, 0	1;47
82;30	59,29,12	1,58;58,24	1,58;59(+)	1;16,44	1;17
86;15	59,52,18	1,59;44,36	1,59;44(-)	0;46,12	0;45(-)
90	1; 0, 0, 0	2, 0; 0, 0	2, 0; 0	0;15,24	0;16(+)

Fig. 11.

Fig. 12.

Table 9.

λ	$\Delta \lambda$	
$7 ; 30^{\circ}$	$190^{\prime}=3 ; 10^{\circ}$	$3 ; 10^{\circ}$
15	183	$3 ; 3$
$22 ; 30$	175	$2 ; 55$
30	166	$2 ; 46$
		$6 ; 13$
$37 ; 30$	$142^{\prime}=2 ; 22^{\circ}$	$11 ; 54$
45	133	$2 ; 13$
$52 ; 30$	121	$2 ; 1$
60	103	$1 ; 43$
		$16 ; 16$
$67 ; 30$	$90=1 ; 30^{\circ}$	$20 ; 30$
75	63	$1 ; 3$
$82 ; 30$	43	$0 ; 43$
90	11	$0 ; 11$

IV,19. Construction of the cardinal directions in a horizontal plane (cf. Fig. 11) If G is the foot of a gnomon, $\mathrm{E}^{\prime}, \mathrm{W}^{\prime}$ the intersections of a shadow-curve with a circle of center G (why of radius $4 g$?) ; perpendicular to $\mathrm{E}^{\prime} \mathrm{W}^{\prime}$ (based on a "barley-corn figure" $\mathrm{N}^{\prime} \mathrm{S}^{\prime}$) is the $\mathrm{N}-\mathrm{S}$ direction.

IV,20-23. The following formulae are direct consequences of Fig. 12A and B, assuming $R=120$ and $g=12$:

$$
\begin{gather*}
\operatorname{Sin} \varphi=120 s_{0} / \sqrt{s_{0}^{2}+144} \tag{1}\\
s=12 \operatorname{Sin}(\varphi \pm \delta) / \sqrt{R^{2}-\operatorname{Sin}^{2}(\varphi \pm \delta)} \tag{2}\\
\operatorname{Sin} \bar{\varphi}=\sqrt{R^{2}-\operatorname{Sin}^{2} \varphi} . \tag{3}
\end{gather*}
$$

The second part of IV,21 implies that, when one replaces the equinoctial noon shadow s_{0} in (1) by s, the noon shadow at any day, one obtains the Sine of the Sun's coaltitude h :

$$
\begin{equation*}
\operatorname{Sin} \bar{h}=R s / \sqrt{s^{2}+g^{2}} \tag{1a}
\end{equation*}
$$

and again φ from \bar{h} by adding (algebraically) the declination:

$$
\begin{equation*}
\varphi=\bar{h}+\delta . \tag{1b}
\end{equation*}
$$

IV,23-25. It follows from Fig. 6 (p. 30) that the radius r of the Sun's daycircle at a declination δ is given by

$$
\begin{equation*}
r=\sqrt{R^{2}-\operatorname{Sin}^{2} \delta} \tag{1}
\end{equation*}
$$

measured in units in which $R=120$. In the text we have the following numerical relations

$$
\begin{array}{rccc}
\lambda_{\mathrm{s}}: & 30^{\circ} & 60^{\circ} & 90^{\circ} \\
\operatorname{Sin} \delta: & 24 ; 24 & 42 ; 15 & 48 ; 48 \tag{2}\\
2 r: & 3,55 & 3,44 ; 40 & 3,39 ; 15 .
\end{array}
$$

It follows from (1) that one should have $\operatorname{Sin}^{2} \delta+r^{2}=R^{2}=4,0,0$. In fact one obtains from (2) for $\operatorname{Sin}^{2} \delta+r^{2}$ the values

$$
3,54,51 ; \ldots \quad 4,0,3 ; \ldots \quad 3,59,58 ; \ldots
$$

respectively. Since the last number agrees best we may use correspondingly

$$
\begin{equation*}
48 ; 48=\operatorname{Sin} \varepsilon \tag{3}
\end{equation*}
$$

for the determination of the obliquity ε of the ecliptic and find by linear interpolation in Table 8 (p. 38) of IV,6-15 ${ }^{1}$)

$$
\begin{equation*}
\varepsilon=24 ; 0,12, \ldots \approx 24^{\circ} \tag{4}
\end{equation*}
$$

a much used round value, but different from the value used in IV,16-18.
IV,26. The following rule is given for the determination of the ascensional differences ω (cf. Fig. 5 p. 30):

$$
\begin{equation*}
2 \omega^{\mathrm{vin}}=60 \frac{\operatorname{Sin} \varphi \cdot R \cdot \operatorname{Sin} \delta}{\operatorname{Sin} \bar{\varphi} \cdot d \cdot 3} . \tag{1}
\end{equation*}
$$

Its correctness follows from (6) in III,10-12 (with $R=120, g=12, d=2 r$):

$$
2 \omega^{\mathrm{vin}}=\frac{200 \operatorname{Sin} \delta}{d} s_{0}=10 \cdot 12 \tan \varphi \cdot \frac{60 \operatorname{Sin} \delta}{3 d}=R \tan \varphi \cdot \frac{60 \operatorname{Sin} \delta}{3 d}
$$

q.e.d. Cf. also IV,34.

If we reckon ω in degrees instead of in vināḍikās we obtain from (1) simply

$$
\begin{equation*}
\omega=\frac{R}{r} \operatorname{Sin} \delta \tan \varphi . \tag{2}
\end{equation*}
$$

IV,27-28. Computing first the "earth-Sin" e from

$$
\begin{equation*}
e=d \operatorname{Sin} \omega / 240 \tag{1}
\end{equation*}
$$

one finds φ from

$$
\begin{equation*}
\operatorname{Sin} \varphi=e R / \sqrt{e^{2}+\operatorname{Sin}^{2} \delta} . \tag{2}
\end{equation*}
$$

The proof follows readily from Fig. 13:

$$
e=\operatorname{Sin} \delta \tan \varphi
$$

and (cf. III, 10-12 (7) and (5))
${ }^{1}$) Accurate would be arc Sin $48 ; 48=23 ; 59,45^{\circ}$.

$$
\operatorname{Sin} \omega=\frac{R}{r} \operatorname{Sin} \delta \tan \varphi
$$

which gives (1) if $R=120$. Fig. 13 shows furthermore that

$$
\sin \varphi=e / \mathrm{AO} \quad \mathrm{AO}^{2}=e^{2}+\operatorname{Sin}^{2} \delta
$$

which proves (2).
IV,29-30. Let us assume that λ is a longitude within the first quadrant of the ecliptic; for the remaining quadrants obvious symmetries hold. Then the right ascensions $\alpha(\lambda)$ are determined by

$$
\begin{equation*}
\operatorname{Sin} \alpha=\frac{2 R}{d} \sqrt{\operatorname{Sin}^{2} \lambda-\operatorname{Sin}^{2} \delta} \tag{1}
\end{equation*}
$$

If, in particular, α obtained from (1) is measured in degrees, then 10α is the right ascension measured in vinādīs.

Fig. 13.

Fig. 14.

For the endpoints of the first three signs the text gives data which agree very well with the values found in the Almagest:

	278	27;48 ${ }^{\circ}$	Alm. II, 8 :	27;50 ${ }^{\circ}$
	: 299	29;54		29;54
	: 323	32;18		32;1

Proof of (1): It follows from Fig. 14 that ${ }^{1}$)

$$
\begin{equation*}
\sin \varepsilon=\sin \delta / \sin \lambda \quad \tan \varepsilon=\tan \delta / \sin \alpha \tag{2}
\end{equation*}
$$

thus

$$
\begin{equation*}
\frac{\sin \alpha}{\sin \lambda}=\frac{\tan \delta}{\tan \varepsilon} \cdot \frac{\sin \varepsilon}{\sin \delta}=\frac{\cos \varepsilon}{\cos \delta}=\frac{r_{0}}{r} \tag{3}
\end{equation*}
$$

where r_{0} is the day-radius for $\lambda=90^{\circ}$ i.e. for $\delta=\varepsilon$ (cf. Fig. 13); thus

$$
\begin{equation*}
r_{0}=R \cos \varepsilon \tag{4}
\end{equation*}
$$

${ }^{1}$) It is not necessary to assume here the use of spherical trigonometry (Fig. 14) since the same relation can be readily obtained from an "analemma" (Fig. 15).

Hence from (3) and (2)

$$
\begin{aligned}
\operatorname{Sin} \alpha & =\frac{r_{0}}{r} \operatorname{Sin} \lambda=\frac{R}{r} \operatorname{Sin} \lambda \cos \varepsilon=\frac{R}{r} \operatorname{Sin} \lambda \sqrt{1-\sin ^{2} \varepsilon} \\
& =\frac{R}{r} \operatorname{Sin} \lambda \sqrt{1-\left(\operatorname{Sin}^{2} \delta / \operatorname{Sin}^{2} \lambda\right)}
\end{aligned}
$$

q.e.d.

IV,31. The difference between the right ascension $\alpha(\lambda)$ of a point of the ecliptic of longitude λ and the corresponding oblique ascension $\varrho(\lambda)$ is the quantity $\omega(\lambda)$ (cf. Fig. 5 p. 30):

$$
\begin{equation*}
\omega(\lambda)=\alpha(\lambda)-\varrho(\lambda) \tag{1}
\end{equation*}
$$

which, in the terminology of the text, is half of the "ascensional difference" 2ω.
Since there is always one semicircle of the ecliptic above the horizon the rising time of λ equals the setting time of $\lambda+180$.

Fig. 15.

Fig. 16.

IV,32-33. When the Sun is on the northern semicircle (gola) of the ecliptic the declination δ is positive and one can compute the altitude h_{p} of the Sun in the prime vertical (cf. the projection on the meridian in Fig. 16) from

$$
\begin{equation*}
\operatorname{Sin} h_{\mathrm{p}}=R \operatorname{Sin} \delta / \operatorname{Sin} \varphi \tag{1}
\end{equation*}
$$

Having found the altitude h_{p} of the Sun, the time (after sunrise or before sunset) when the Sun crosses the prime vertical can be computed, but the text does not tell us how this should be done.

IV,34. The increase of the length of daylight over 12 hours $=30$ nādikās is given by

$$
\begin{equation*}
2 \omega^{\mathrm{n}}=\frac{2 R \cdot \operatorname{Sin} \delta}{6 d} \cdot \frac{\operatorname{Sin} \varphi}{\operatorname{Sin} \bar{\varphi}} . \tag{1}
\end{equation*}
$$

This, in fact, is only a repetition of IV,26. It is here out of place since IV, $35,36,38$ return to the problems connected with the crossing of the prime vertical by the Sun.

IV,35-36. As in IV,32-33 we assume $\delta>0$. Then

$$
\begin{equation*}
\operatorname{Sin} h_{\mathrm{p}}=\frac{\operatorname{Sin} \lambda \cdot \operatorname{Sin} \varepsilon}{\operatorname{Sin} \varphi} \tag{1}
\end{equation*}
$$

This follows immediately from (1) in IV, $32-33$ since with (2) in IV,29-30

$$
\begin{equation*}
R \operatorname{Sin} \delta=\operatorname{Sin} \lambda \operatorname{Sin} \varepsilon \tag{2}
\end{equation*}
$$

IV,37. By marking on the circle, whose center is the foot of the gnomon, the point that the gnomon-shadow at dawn intersects, one obtains the ortive amplitude by observation; from this can be computed δ by IV,39 and hence the longitude λ of the Sun.

IV,38. The Sun is in the prime vertical when the shadow of a vertical gnomon falls in the east-west line.

IV,39-40. The ortive- or setting-amplitude η of the Sun at declination δ can be found from

$$
\begin{equation*}
\operatorname{Sin} \eta=R \operatorname{Sin} \delta / \operatorname{Sin} \bar{\varphi} \tag{1}
\end{equation*}
$$

This follows from Fig. 16 because $\mathrm{BO}=\operatorname{Sin} \eta$ and $\sin \bar{\varphi}=\operatorname{Sin} \delta / \mathrm{BO}$. Conversely (1) can be used to find $\bar{\varphi}$ and φ from

$$
\begin{equation*}
\operatorname{Sin} \bar{\varphi}=R \operatorname{Sin} \delta / \operatorname{Sin} \eta \tag{2}
\end{equation*}
$$

IV,41-44. Determination of the length of the shadow of a vertical gnomon at a given time t^{n} (in nāḍikās) after sunrise. From the given time

$$
\begin{equation*}
t^{\circ}=6 t^{n} \tag{1}
\end{equation*}
$$

and the ascensional difference found from IV,26 or IV,34

$$
\begin{equation*}
\omega^{\circ}=\frac{1}{20} 2 \omega^{\mathrm{vin}} \tag{2}
\end{equation*}
$$

one finds a time interval

$$
\begin{equation*}
t^{\prime}=t^{\circ} \mp \omega^{\circ} \quad \text { if } \delta \ll 0 \tag{3}
\end{equation*}
$$

From IV,23-25 the diameter of the day-circle is known, hence one can compute the altitude h of the sun from

$$
\begin{equation*}
\operatorname{Sin} h=\frac{d \operatorname{Sin} \bar{\varphi}}{2 R^{2}}\left(\operatorname{Sin} t^{\prime} \pm \operatorname{Sin} \omega\right) \tag{4}
\end{equation*}
$$

and thus the length of the shadow

$$
\begin{equation*}
s=\frac{g}{\operatorname{Sin} h} \sqrt{R^{2}-\operatorname{Sin}^{2} h} \tag{5}
\end{equation*}
$$

where for $R=120$

$$
2 R^{2}=28800 \quad R^{2}=14400
$$

The proof follows from Fig. 17 which represents the plane of the meridian with half of the day-circle turned into it, the Sun being at Σ. Then

$$
\begin{equation*}
\Sigma^{\prime} B=\Sigma^{\prime} \mathrm{C} \pm \mathrm{CB}=r \sin t^{\prime} \pm r \sin \omega=\frac{r}{R}\left(\operatorname{Sin} t^{\prime} \pm \operatorname{Sin} \omega\right) \quad \delta \geq 0 \tag{6}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
\operatorname{Sin} h / \Sigma^{\prime} \mathrm{B}=\operatorname{Sin} \bar{\varphi} / R \tag{7}
\end{equation*}
$$

which gives (4) using (6). Formula (5) means simply (cf. Fig. 18):

$$
\begin{equation*}
\cot h=s / g=\sqrt{R^{2}-\operatorname{Sin}^{2} h} / \operatorname{Sin} h . \tag{8}
\end{equation*}
$$

Fig. 17.

Fig. 18.

IV,45-47. This is the inverse problem to IV,41-44: find from the length s of the shadow the time t^{n} after sunrise. One is directed to compute to given s a "first Sine" S_{1} :

$$
\begin{equation*}
S_{1}=\frac{g R^{2}}{\operatorname{Sin} \bar{\varphi} \sqrt{s^{2}+g^{2}}} \quad g R^{2}=12 \cdot 120^{2}=172800 \tag{9}
\end{equation*}
$$

and from it

$$
\begin{equation*}
S_{2}=S_{1} \mp \frac{\operatorname{Sin} \varphi}{\operatorname{Sin} \bar{\varphi}} \operatorname{Sin} \delta . \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
t^{\prime}=\operatorname{arcSin}\left(S_{2} \cdot \frac{2 R}{d}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega=\operatorname{arcSin}\left(\frac{\operatorname{Sin} \varphi}{\operatorname{Sin} \bar{\varphi}} \operatorname{Sin} \delta \cdot \frac{2 R}{d}\right) \tag{12}
\end{equation*}
$$

from which the time after sunrise in nāḍikās

$$
\begin{equation*}
t^{\mathrm{n}}=\frac{1}{6}\left(t^{\prime}+\omega\right) \tag{13}
\end{equation*}
$$

Indeed, from (7) and Fig. 18 (or IV,52)

$$
\begin{equation*}
S_{1}=\frac{R}{\operatorname{Sin} \bar{\varphi}} \cdot \frac{g R}{\sqrt{s^{2}+g^{2}}}=\frac{R}{\operatorname{Sin} \bar{\varphi}} \operatorname{Sin} h=\Sigma^{\prime} \mathrm{B} \tag{14}
\end{equation*}
$$

which explains (9). Consequently (cf. Fig. 17) for $\delta \ll 0$

$$
S_{2}=\Sigma^{\prime} \mathrm{B} \mp \tan \varphi \operatorname{Sin} \delta=\Sigma^{\prime} \mathrm{B} \mp e=\Sigma^{\prime} \mathrm{C}=r \sin \ell^{\prime}=\frac{r}{R} \operatorname{Sin} t^{\prime}
$$

therefore (11):

$$
\sin t^{\prime}=S_{2} \frac{2 R}{d}
$$

Finally (Fig. 17)

$$
r \sin \omega=\frac{r}{R} \operatorname{Sin} \omega=e=\tan \varphi \operatorname{Sin} \delta
$$

therefore

$$
\operatorname{Sin} \omega=\tan \varphi \operatorname{Sin} \delta \cdot \frac{2 R}{d}
$$

q.e.d.

IV,48-49. The relations developed in IV,41-47 for finding the time after sunrise (before noon) from the length of the shadow, and vice versa, are astronomically exact. What now follows is a crude approximation for the same problem, based on the simple assumption that the length s of the shadow at the time t after sunrise is given by

$$
\begin{equation*}
s=\frac{a}{t}+b \tag{1}
\end{equation*}
$$

with arbitrary constants a and b. This relation satisfies at least the condition $s=\infty$ for $t=0$ and a / t is the simplest function to give this result.

If C is the length of daylight, measured in the same units as t, then it follows from (1) that the noon shadow s_{0} is given by

$$
s_{0}=\frac{2 a}{C}+b .
$$

Hence we have now instead of (1)

$$
\begin{equation*}
s=\frac{a}{t}+s_{0}-\frac{2 a}{C} \tag{2}
\end{equation*}
$$

where a is still an arbitrary constant. For no special reason the text chooses

$$
\begin{equation*}
a=6 C \text {, } \tag{3}
\end{equation*}
$$

hence IV,49:

$$
\begin{equation*}
s=\frac{6 C}{t}+s_{0}-12 \tag{4}
\end{equation*}
$$

and solving for $t, I V, 48$:

$$
\begin{equation*}
t=\frac{6 C}{s-s_{0}+12} \tag{5}
\end{equation*}
$$

IV,50-51. General remarks concerning the adaptation of the preceding rules to the Moon and the planets. In fact without value and out of place.

IV,52-54. It is supposed to be known: the solar longitude λ, the solar declination δ, the geographical latitude φ, the length s of the shadow $(g=12)$, and the E-W-line in the plane of the horizon. One wishes to find the distance s^{\prime} of the endpoint A of the shadow from the E-W-line (cf. Fig. 19B).

Fig. 19.

This problem is solved through the following steps. First one finds the altitude h of the Sun from

$$
\begin{equation*}
\operatorname{Sin} h=g R / \sqrt{s^{2}+g^{2}} \tag{1}
\end{equation*}
$$

(cf. Fig. 18 p. 44) and defines

$$
\begin{equation*}
\operatorname{Sin} \theta=\operatorname{Sin} h \frac{\operatorname{Sin} \varphi}{\operatorname{Sin} \bar{\varphi}} \tag{2}
\end{equation*}
$$

This angle θ is conventionally called the "Sun's amplitude" (sūryāgrā). Furthermore the ortive amplitude η of the Sun is given by

$$
\begin{equation*}
\operatorname{Sin} \eta=R \operatorname{Sin} \delta / \operatorname{Sin} \bar{\varphi} \tag{3a}
\end{equation*}
$$

Or

$$
\begin{equation*}
\operatorname{Sin} \eta=\operatorname{Sin} \varepsilon \cdot \operatorname{Sin} \lambda / \operatorname{Sin} \bar{\varphi} \tag{3b}
\end{equation*}
$$

(cf. IV,39-40 (3) and IV,35-36 (2)). Then the "koṭi" s ' is given by

$$
\begin{equation*}
s^{\prime}=(\operatorname{Sin} \eta \mp \operatorname{Sin} \theta) h_{\mathrm{s}} / R \quad \delta \geq 0 \tag{4}
\end{equation*}
$$

where h_{s} is the "hypotenuse" of the shadow, i.e.,

$$
\begin{equation*}
h_{\mathrm{s}}=\sqrt{s^{2}+g^{2}} . \tag{5}
\end{equation*}
$$

The distance GK on the east-west-line is called the "bāhu".
In order to prove (4) we consider in Fig. 19A the top O of the gnomon as the center of the celestial sphere and project the sun Σ onto Σ^{\prime} in the meridian plane. Similarly $\mathrm{A}^{\prime} \mathrm{G}=s^{\prime}$ is the projection of the shadow $s, h_{\mathrm{s}}{ }^{\prime}=\mathrm{OA}^{\prime}$ the projection of the hypotenuse OA. Let $s_{0}=\mathrm{GB}$ be the equinoctial noon shadow, then

$$
\mathrm{A}^{\prime} \mathrm{B}=s^{\prime}-\mathrm{s}_{0}=m \quad \mathrm{OH}^{\prime}=\operatorname{Sin} \eta
$$

and because

$$
\frac{m}{h^{\prime}}=\frac{\sin \eta}{\mathrm{O} \Sigma^{\prime}} \quad \frac{h_{\mathrm{s}}^{\prime}}{\mathrm{O} \Sigma^{\prime}}=\frac{h_{\mathrm{s}}}{\mathrm{O} \Sigma}=\frac{h_{\mathrm{s}}}{R}
$$

we have

$$
\begin{equation*}
m=\operatorname{Sin} \eta \cdot h_{\mathrm{s}} / R \tag{6}
\end{equation*}
$$

Furthermore with (2), (1), and (5):

$$
\operatorname{Sin} \theta \cdot h_{\mathrm{s}} / R=\operatorname{Sin} h \cdot \tan \varphi \cdot h_{\mathrm{s}} / R=\frac{g R}{h_{\mathrm{s}}} \cdot \tan \varphi \cdot \frac{h_{\mathrm{s}}}{R}=g \tan \varphi=s_{0}
$$

hence

$$
s^{\prime}=m \mp s_{0} \quad \delta<0
$$

as is correct according to Fig. 19A (drawn for $\delta<0$).
IV,55-56. Here the inverse problem to IV, $52-54$ is solved: find the solar longitude λ from observed s and s^{\prime}, φ and ε being known, $g=12$. With

$$
h_{\mathrm{s}}=\sqrt{s^{2}+g^{2}}
$$

one finds from (4)

$$
\begin{equation*}
\operatorname{Sin} \eta \mp \operatorname{Sin} \theta=R s^{\prime} / h_{\mathrm{s}} . \tag{6}
\end{equation*}
$$

From (1) and (2) one finds $\operatorname{Sin} \theta$, hence $\operatorname{Sin} \eta$ from (6) and $\operatorname{Sin} \lambda$ from (3b).

Chapter V

$\mathbf{V , 1 - 3 .}$. If $\Delta \lambda$ is the elongation of the Moon from the Sun, $\Delta \delta$ the difference of the respective declinations, β the lunar latitude, then we are told to compute

$$
\begin{equation*}
A=\sqrt{(\Delta \lambda+\Delta \delta)(\Delta \lambda-\Delta \delta)}=\sqrt{\Delta \lambda^{2}-\Delta \delta^{2}} \tag{1}
\end{equation*}
$$

and from it

$$
\begin{equation*}
B=\beta \Delta \delta / A \tag{2}
\end{equation*}
$$

Finally one forms

$$
\begin{equation*}
C=\Delta \lambda \mp B \quad \text { at first visibility } \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\Delta \lambda \pm B \quad \text { at last visibility } \tag{3b}
\end{equation*}
$$

where the upper sign is to be used when the latitude β has the same sign as $\Delta \delta=\delta_{\mathrm{m}}-\delta_{\mathrm{s}}$, the lower sign in the opposite case.

For first visibility it is required that

$$
\begin{equation*}
\bar{\varrho}(C) \geq 2 \text { nāḍikās }=12^{\circ} \tag{4}
\end{equation*}
$$

where $\bar{\varrho}(C)$ is the setting time of the arc C, i.e., the rising time of $C+180^{\circ}$.
In order to explain these rules we consider the situation near sunset at first visibility (cf. Fig. 20), the Sun being at Σ, the Moon at M, in the case that

$$
\begin{align*}
& \mathrm{U} \Sigma=\Delta \lambda=\lambda(\mathrm{M})-\lambda(\Sigma)>0 \\
& \mathrm{UV}=\Delta \delta=\delta(\mathrm{U})-\delta(\Sigma)>0 . \tag{5}
\end{align*}
$$

Treating all triangles as plane we see that A in (1) represents the right ascensional difference

$$
\begin{equation*}
A=\Delta \alpha=\alpha(V)-\alpha(\Sigma)=V \Sigma \tag{6}
\end{equation*}
$$

Furthermore

$$
\Delta \delta / A=\mathrm{UV} / \mathrm{U} \Sigma=\cot \theta=\mathrm{c} / \beta .
$$

Therefore, from (2):

$$
\begin{equation*}
B=\beta \cot \theta=c=\mathrm{UT} \tag{7}
\end{equation*}
$$

and from (3a):

$$
\begin{equation*}
C=\Delta \lambda-c=\mathrm{U} \Sigma-\mathrm{UT}=\mathrm{T} \Sigma=\Delta \lambda^{*} \tag{8}
\end{equation*}
$$

(which, incidentally, is the "polar longitude" of the Moon). The corresponding right ascensional difference is the setting time, i.e., the delay of moonset over sunset

$$
\begin{equation*}
\bar{\varrho}(C)=\mathrm{R} \Sigma \tag{9}
\end{equation*}
$$

which must exceed 12° in order to make the first crescent visible.

V,4-7. These verses concern the determination of the width σ (sūtra) of the illuminated sickle of the new crescent (cf. Fig. 21). We first give an astronomically plausible solution of the problem (cf. Fig. 22) and discuss only at the end how the erroneous formulation in the text may have originated.

Under all circumstances we may consider to be known the longitudes of Sun and Moon, hence also their elongation $\Delta \lambda$. Fig. 21 illustrates how the width of the sickle increases with $\Delta \lambda$ such that σ can be found from

$$
\begin{equation*}
\sigma=r_{\mathrm{m}}(1-\cos \Delta \lambda) \tag{1}
\end{equation*}
$$

where r_{m} is the apparent radius of the Moon. According to $\mathrm{V}, 4$ the apparent diameter of the Moon contains 15 "parts"; the origin of this division is unknown but it seems also to be used in XIV,38.

Fig. 20.

Fig. 21.

If one assumes that $\cos \Delta \lambda$ decreases linearly from 1 to 0 as $\Delta \lambda$ increases from 0° to 90° one can replace (1) by

$$
\begin{equation*}
\sigma=\frac{\Delta \lambda}{180} \cdot 15=\frac{\Delta \lambda}{12} \tag{2}
\end{equation*}
$$

measured in "parts". For $\Delta \lambda=90^{\circ}$, i.e. for quadrature, one obtains correctly $\sigma=$ $7 ; 30=r_{\mathrm{m}}$.

In (1) we have tacitly assumed that the Moon lies in the ecliptic. If, however, the Moon is at a latitude β, as shown in Fig. 22, then $\Delta \lambda$ has to be replaced in (1) and (2) by

$$
\begin{equation*}
h=\sqrt{\Delta \lambda^{2}+\beta^{2}} . \tag{3}
\end{equation*}
$$

This would solve our problem. The text, however, continues (cf. V,5) by forming the "koṭi" by combining β and the arc of declination $\Delta \delta$

$$
\begin{equation*}
k=\beta+\Delta \delta \tag{4}
\end{equation*}
$$

(with proper signs) as shown in Fig. 22; finally the bāhu (or bhuja) is found from

$$
\begin{equation*}
b=\sqrt{h^{2}-k^{2}} . \tag{5}
\end{equation*}
$$

Hist.Filos. Skr. Dan.Vid. Selsk. 6, no. 1.

The reason for computing $b=\Delta \alpha$ would be that $\Delta \alpha \geqq 12^{\circ}$ is the criterion for the visibility of the new crescent (cf. XVI,23 and XVII,58).

The formulation of the text (cf. Fig. 23) does not agree with this interpretation since it is said that the quantity σ (the sūtra) is to be laid off on the bhuja $b(V, 4)$ "which goes toward (the center of) the Moon" (V,7). It seems that h and b were interchanged, an error perhaps caused by the description of h as "the difference of Sun and Moon" ($V, 5$) which would normally mean the longitudinal difference $\Delta \lambda$ and not the actual distance of the luminaries that is needed in our interpretation.

Fig. 22.

Fig. 23.
$\mathrm{V}, \mathbf{8} \mathbf{- 1 0}$. Let U be the point of the ecliptic for which $\lambda(\mathrm{U})=\lambda(\mathrm{M})$, hence $\mathrm{U} \Sigma=\Delta \lambda$ (cf. Fig. 20). The rising time of this arc (or the setting time) gives the delay of sunrise over moonrise, or of moonset over sunset, in $\mathrm{V}, 9$ or $\mathrm{V}, 10$ respectively.

In $\mathrm{V}, 8$ is computed a quantity d from

$$
\begin{equation*}
d=\beta \frac{s_{0}}{12}=\beta \tan \varphi \tag{1}
\end{equation*}
$$

where s_{0} is the equinoctial noon shadow, $g=12$ the length of the gnomon. It seems as if d should represent a correction of the rising times, needed for lunar latitudes $\beta \neq 0$. In fact such a correction should depend on λ as is correctly implied in $V, 1-3$.

The influence of the lunar latitude will be expressed by (1) only if one identifies the ecliptic with the equator. In other words one may say that (1) is "in the mean" correct and gives at least the proper sign for the influence of the latitude. But it seems strange that so crude a rule is given after a correct solution of the problem had been found in V,1-3.

Chapter VI

VI,1. In order to find the moment of opposition of Sun and Moon it is assumed that the longitudes of the two luminaries are known (found by some standard method of computation) for the sunrise after opposition (assuming that the eclipse occurs during night time). Let λ_{mr} and λ_{sr} denote the longitudes of the Moon and the Sun respectively for the moment of sunrise and thus

$$
\begin{equation*}
\Delta \lambda=\lambda_{\mathrm{mr}}-180^{\circ}-\lambda_{\mathrm{sr}} \tag{1}
\end{equation*}
$$

the elongation of the Moon from the shadow center at sunrise. Assuming that $\Delta \lambda$ increases 12° per day, i.e. $0 ; 12^{\circ}$ per nāḍī, the time Δt from opposition to sunrise will be given by

$$
\begin{equation*}
\Delta t=\frac{\Delta \lambda}{0 ; 12}=5 \Delta \lambda \tag{2}
\end{equation*}
$$

nāḍīs. The longitude λ_{m} of the Moon at opposition can then be computed for the moment Δt nāḍīs before sunrise.

VI,2. A lunar eclipse will take place if

$$
\begin{equation*}
\left|\lambda_{\mathrm{m}}-\lambda_{\mathrm{c}}^{\prime}\right|<13^{\circ} \tag{1}
\end{equation*}
$$

where λ_{m} is the longitude of the Moon at opposition, and

$$
\begin{equation*}
\lambda_{\mathrm{c}}^{\prime}=\lambda_{\mathrm{c}}+0 ; 36^{\circ} \tag{2}
\end{equation*}
$$

λ_{c} being the longitude of the node near λ_{m}. The modification (2) of λ_{c} to $\lambda_{\mathrm{c}}^{\prime}$ is probably introduced in order to formulate (1) in terms of integer degrees (again used in VII,5). If

$$
\begin{equation*}
13^{\circ}<\left|\lambda_{\mathrm{m}}-\lambda_{\mathrm{c}}^{\prime}\right|<15^{\circ} \tag{3}
\end{equation*}
$$

only a "darkening" takes place. It follows from VI,3 (cf. Fig. 24) that for the interval (3) the Moon does not at all come into contact with the earth's shadow. Hence it seems an inescapable conclusion that (3) refers to the penumbra though this concept seems to be otherwise unknown in ancient and mediaeval astronomy.

There is no trace of a recognition of the dependence of the eclipse limits on the lunar (and solar) anomaly.

VI,3. In this whole chapter the following dimensions are assumed for the apparent radii of the disk of the Moon and the earth's shadow:

$$
\begin{equation*}
r_{\mathrm{m}}=0 ; 17^{\circ} \quad r_{\mathrm{u}}=0 ; 38^{\circ} \tag{1}
\end{equation*}
$$

thus

$$
\begin{equation*}
r_{\mathrm{m}}+r_{\mathrm{u}}=0 ; 55^{\circ} \quad r_{\mathrm{u}}-r_{\mathrm{m}}=0 ; 21^{\circ} . \tag{1a}
\end{equation*}
$$

In the vicinity of the nodes all triangles are assumed to be plane and the lunar latitude β is reckoned as if perpendicular to the Moon's orbit (cf. Fig. 24) instead of to the ecliptic.

Fig. 24.

Fig. 25.

It follows from Fig. 24 that the duration Δt of a lunar eclipse is given by $2 \mathrm{AB} /\left(v_{\mathrm{m}}-v_{\mathrm{s}}\right)$ if $v_{\mathrm{m}}-v_{\mathrm{s}}$ represents the relative velocity of the Moon with respect to the Sun. Thus

$$
\begin{equation*}
\Delta t=\frac{2}{v_{\mathrm{m}}-v_{\mathrm{s}}} \sqrt{\left(r_{\mathrm{u}}+r_{\mathrm{m}}\right)^{2}-\beta^{2}} . \tag{2}
\end{equation*}
$$

From the boundary $13 ; 36^{\circ}$ in VI,2 (1) and (2) it follows for the inclination i of the lunar orbit that

$$
\begin{equation*}
\sin i=0 ; 55 / 13 ; 36 \approx 0 ; 4,2,40, \ldots \tag{3}
\end{equation*}
$$

Since $\sin 4^{\circ} \approx 0 ; 4,11$ it is clear that

$$
\begin{equation*}
i=4^{\circ} \tag{4}
\end{equation*}
$$

was intended. ${ }^{1}$) This value would have to be lowered to $3 ; 30^{\circ}$ if the boundary of 15° in VI,2 (3) were still to produce an eclipse in the proper sense of the term; nor would it then be meaningful to give a second limit of 13° to which no characteristic phase would correspond.

VI,4. The $\operatorname{arc} \Delta \lambda=13^{\circ}-\left(\lambda_{\mathrm{m}}-\lambda_{\mathrm{c}}\right)$ is multiplied by 5 . Exactly as in VI,1 (2) the result represents a time interval Δt, reckoned in nāḍis, and Fig. 24 shows that it is the time required for the elongation to increase by the arc FK. This Δt should be added to or subtracted from a "duration of the eclipse", depending on the position of the node before or behind the center of the shadow. What is meant by "duration" of the eclipse and what the result should represent is not clear to us.
$\left.{ }^{1}\right)$ Arcsin $0 ; 4,2,40=3 ; 52^{\circ}$. Also in VI,5 $i=4^{\circ}$ is assumed.

VI,5. It follows from Fig. 25 that for $i=4^{\circ}$ (cf. VI,3 (4))

$$
\begin{equation*}
\sin i=0 ; 4,11=\left(r_{\mathrm{u}}-r_{\mathrm{m}}\right) / \Delta \lambda_{0}=0 ; 21 / \Delta \lambda_{0} \tag{1}
\end{equation*}
$$

thus

$$
\begin{equation*}
\Delta \lambda_{0}=\left(r_{\mathrm{u}}-r_{\mathrm{m}}\right) / \sin i=21 / 4 ; 11 \approx 5 ; 1 \approx 5^{\circ} \tag{2}
\end{equation*}
$$

Furthermore

$$
\beta=\left(\lambda_{\mathrm{m}}-\lambda_{\mathrm{c}}^{\prime}\right) \sin i=\Delta \lambda \sin i
$$

and

$$
\mathrm{AB}^{2}=\left(r_{\mathrm{u}}-r_{\mathrm{m}}\right)^{2}-\beta^{2}=\left(\Delta \lambda_{0}^{2}-\Delta \lambda^{2}\right) \sin ^{2} i
$$

If we express the duration $2 \mathrm{AB}^{\circ}$ of totality in minutes of arc we have for it

$$
\tau=2,0 \mathrm{AB}=\operatorname{Sin} i \sqrt{\Delta \lambda_{0}^{2}-\Delta \lambda^{2}} \quad R=120
$$

From (1) and (2) we find

$$
\operatorname{Sin} i=2 \cdot 21 / 5
$$

hence

$$
\begin{equation*}
\tau=\frac{2 \cdot 21}{5} \sqrt{5^{2}-\Delta \lambda^{2}} \tag{3}
\end{equation*}
$$

The text gives this relation in the form

$$
\tau=\frac{21}{5} \downarrow \sqrt{4(5-\Delta \lambda)(10-(5-\Delta \lambda))}
$$

which is indeed the equivalent of (3).
VI,6. The duration of the partial phase of a lunar eclipse is the difference between the duration found in VI, 3 and the duration of totality (VI,5).

VI,7. Cf. VI,12-15.

VI,8. The "deflection" γ referring to a given position of the Sun or the Moon (at a solar- or lunar-eclipse respectively) is the angle at the given point between the ecliptic and the "east-west-line" $\mathrm{E}^{\prime} \mathrm{W}^{\prime}$ (cf. Fig. 26) which is perpendicular to the great circle $\mathrm{N}^{\prime} \mathrm{S}^{\prime}$ through the eclipsed body and the north- and south-point on the horizon. This definition is not explicitly found in the present text but there seems to be no reason to doubt the identity of terminology with later texts, e.g. Ran̄ganātha's commentary on Sūryasiddhānta IV,24-25.

If we for the moment identify ecliptic and equator, denoting the culminating point as C (cf. Fig. 27), the lunar (or solar) longitude as λ, we can represent the rule given in the present verse for finding the deflection γ by

$$
\begin{equation*}
\gamma=90^{\circ}(\mathrm{C}-\lambda) \varphi / 1800^{\prime} . \tag{1}
\end{equation*}
$$

If we cancel the factor $90^{\circ} / 90$ and call the distance between C and λ the hour angle t then we have instead of (1) the rule

$$
\begin{equation*}
\gamma=t \varphi / 90 . \tag{2}
\end{equation*}
$$

The factor $t / 90$ has the value 0 at the meridian and 1 at the horizon. Hence (2) implies that $\gamma=0$ in the meridian and $\gamma=\varphi$ in the horizon as is indeed the case for the angle between east-west-line and equator at these extremal points. The rule (2) represents simply a linear interpolation between these limits.

Fig. 26.

Fig. 27.

The values $\gamma=0$ and $\gamma=\varphi$ are also obtained if we write

$$
\begin{equation*}
\gamma=\varphi \sin t \tag{3}
\end{equation*}
$$

or even

$$
\begin{equation*}
\operatorname{Sin} \gamma=\operatorname{Sin} \varphi \operatorname{Sin} t / R \tag{4}
\end{equation*}
$$

where a trigonometric interpolation replaces the linear relation (2). The rule (4) is found in XI,2. It is also given in the Āryabhaṭiya (Gola 45) and in the Khaṇdakhādyaka (IV,7).

The preceding rule concerns only the computation of one component of the deflection, the "akṣavalana" which depends on φ of the locality and the t of the particular eclipse; it should further be modified by a second component, the "ayanavalana", in the amount of $\pm \delta\left(\lambda+90^{\circ}\right)$ as stated in XI,3. That at least one verse is missing after VI, 8 is indicated by the fact that VI, 9 is not found in our manuscripts, but is quoted with VI, 10 by Utpala. In the same direction points also the fact that VI, 9 introduces a new topic.

VI,9-10. The use of eclipse-colors as omens, which is found, e.g., in Bṛhatsamphitā $5,53-59$, can be traced back to the Babylonian series Enūma Anu Enlil, tablets 15-18.1) The goal of the present verses is to establish criteria for predicting the colors. Varāhamihira's criteria are the altitude of the eclipsed body, its relation to ascendent or descendent, and the magnitude of the eclipse; normally Indians relate the colors to the phases of the eclipse (cf. Āryabhaṭīya, Gola 46, and Brāhmasphuṭasiddhānta 4,19).
${ }^{1}$) Weidner, Archiv für Orientforschung 17 (1954) p. 71 ff.

VI,11. The direction of impact is determined by this rule. Four cases are to be considered (cf. Fig. 28), depending on the position of the Moon relative to the node and the character of the node (ascending or descending). Assuming that the Moon is ahead of the ascending node, thus $\lambda_{\mathrm{c}}-\lambda_{\mathrm{m}}>0$, then the impact (i.e., the point of contact with the shadow) occurs on the upper (northern) half of the Moon; conversely,

Fig. 28.
when the Moon has passed the node, thus $360-\lambda_{\mathrm{c}}+\lambda_{\mathrm{m}}=\lambda_{\mathrm{m}}-\lambda_{\mathrm{c}}>0$, the impact is on the lower (southern) half. The situation is reversed at the descending node.
"The beginning of Aries" $\left(\lambda=0^{\circ}\right)$ seems to mean the ascending node, "the end of Virgo" $\left(\lambda=180^{\circ}\right)$ the descending node. The number of synodic months in an 18 -year eclipse cycle is 223 , but the role of this number in the present context remains obscure to us.

Fig. 29.
VI,12-15. In VI,12 we are given explicitly the apparent diameters

$$
\begin{equation*}
r_{\mathrm{m}}=0 ; 17^{\circ} \quad r_{\mathrm{u}}=0 ; 38^{\circ} \tag{1}
\end{equation*}
$$

already used in VI, 3 and VI,5. For the graphic representation of an eclipse concentric circles have to be drawn of radius $r_{\mathrm{u}}, r_{\mathrm{m}}, \mathrm{r}_{\mathrm{u}}+r_{\mathrm{m}}$ (cf. Fig. 30).

The 13 parallel lines mentioned in VI, 13 are most likely related to the 13° given in VI,2 as eclipse limits. If this is the case the parallel lines would be drawn parallel to the lunar orbit, subdividing the radius $\mathrm{CB}=r_{\mathrm{u}}+r_{\mathrm{m}}$ (cf. Fig. 29) into 13 equal
intervals which would be a measure of the eclipse magnitudes between zero and maximum duration as function of β.

This construction can now be related to VI, 7 where a 13 -division of a quadrant of the Moon's circumference is mentioned, such that one can read off the distance of the point of first (and last) contact with respect to the line EW (cf. Fig. 30). We construct the point H^{\prime} of the first contact when the moon is at G , where FG is one of the 13 parallels from Fig. 29. According to VI,12 one has at the common midpoint C also a circle of radius r_{m}. Hence H at this fixed circle shows the same position with respect to the Moon's center as H^{\prime} with respect to G . For all lunar positions on the

Fig. 30.
quadrant between no eclipse at B and greatest duration at A we thus obtain on the quadrant ED of the Moon's image with center C the images of the points of first contact. And since we have 13 parallels FG we have also 13 sections (of unequal length) on the quadrant ED.

The verse VI, 15 gives obvious rules for the sides at which first contact will be seen at lunar- and solar-eclipses. The middle of the eclipse coincides with the syzygy, i.e., with the end of a tithi.

The "projection" of an eclipse (VI,14) is discussed later in XI,1-5. It consists of a graphical method by means of which the phases of an eclipse can be illustrated with respect to the eclipsed body which is represented by a fixed circle in the center of the diagram. Our present chapter refrains from giving specific rules.

Chapter VII

VII,1. This verse (which is repeated in VIII,9) gives a rule for the approximate determination of the longitudinal components p_{λ} of the (difference between) lunar (and solar) parallax, expressed in nāḍīs, i.e., essentially the time interval between true and apparent conjunction. It is assumed that $p_{\lambda}=0$ in the meridian (here, as is often the case, substituted for the nonagesimal) and that the maximum $p_{\lambda_{\max }}$ of p_{λ} occurs at an hour angle of $\pm 90^{\circ}$, meant to represent a position in the horizon. This "horizontal parallax" $p_{\lambda_{\max }}=p_{0}$ is estimated as 4 nādīs. A delay of this amount between true and apparent conjunction represents a reasonable estimate for the
horizontal (relative) parallax since $0 ; 4^{\mathrm{d}} \cdot 12 ; 10^{\circ} / \mathrm{d} \approx 0 ; 49^{\circ}$ is the corresponding longitudinal displacement.

Finally it is assumed that p_{λ} varies sinusoidally between the value of 4^{n} in the horizon and 0 at the meridian, hence (reckoned in nāḍīs)

$$
\begin{equation*}
p_{\lambda}=4 \sin \Delta t^{\circ}=\frac{\operatorname{Sin} \Delta t^{\circ}}{30}=\frac{\operatorname{Sin}\left(6 \Delta t^{\mathrm{n}}\right)}{30} \tag{1}
\end{equation*}
$$

where Δt° is reckoned in degrees, Δt^{n} in nādīs.
VII,2. This verse is corrupt, but seems to contain the elements necessary for the computation of the latitudinal parallax. The translation, then, here more than elsewhere, depends on astronomy rather than grammar. Cf. also VIII,10-14.

The computation of the latitudinal component p_{β} of the parallax is based on the relation

$$
\begin{equation*}
p_{\beta}=p_{0} \sin z \tag{2}
\end{equation*}
$$

where p_{0} is the horizontal parallax, z the zenith distance of the nonagesimal; p_{β} is now measured in degrees and has a constant value along the ecliptic (or, in practice, along the lunar orbit) for a fixed zenith distance. The latter is found from $\varphi \pm \delta \pm \beta$ with proper rules for the signs of the declination δ and the latitude β.

If one assumes for the horizontal parallax the same estimate of 4 nādīs as in the preceding verse, and $13^{\circ / \mathrm{d}}$ for the lunar velocity ${ }^{1}$) one has

$$
\begin{equation*}
p_{0} \approx 0 ; 4^{\mathrm{d}} \cdot 13^{\mathrm{o} / \mathrm{d}}=0 ; 52^{\circ} \tag{3}
\end{equation*}
$$

The text obtains the same result by saying

$$
\begin{equation*}
p_{0}=4 \cdot \frac{5}{23} \approx 4 \cdot 0 ; 13=0 ; 52 \tag{3a}
\end{equation*}
$$

or finally, by introducing nāḍīs:

$$
\begin{equation*}
p_{\beta}=4^{\mathrm{n}} \frac{5}{23} \cdot \frac{\operatorname{Sin} z}{2} \approx 0 ; 4^{\mathrm{d}} \cdot 0 ; 13 \frac{\operatorname{Sin} z}{2}=4 \cdot 0 ; 13 \frac{\operatorname{Sin} z}{120}=p_{0} \sin z \tag{4}
\end{equation*}
$$

as it should be according to (2).
VII,3. Here we find rules for the signs of the corrections due to parallax. The text as it stands seems to have confused the different cases. In fact the longitudinal component is subtractive to the west of the nonagesimal, additive to the east. The latitudinal component, however, is always negative.

VII,4. Let Δt be the time (of the syzygy?) after sunrise or before sunset, reckoned in nāḍīs, δ_{m} the declination of the Moon. The text seems to instruct us to compute $\Delta t \cdot \delta_{\mathrm{m}} / 80$ (or, perhaps, $\operatorname{Sin} \Delta t \cdot \delta_{\mathrm{m}} / 80$).
${ }^{1}$) Actually one should take also here the relative velocity, i.e., $\approx 12^{0 / \mathrm{d}}$.

At any rate this quotient is zero at the horizon $(\Delta t=0)$ and this seems to exclude any interpretation as parallax. We have no explanation to offer.

VII,5. As in VI,2 one introduces a modified nodal position

$$
\begin{equation*}
\lambda_{\mathrm{c}}^{\prime}=\lambda_{\mathrm{c}}+0 ; 36^{\circ} \tag{1}
\end{equation*}
$$

λ_{c} being the longitude of the node. Then the limits for lunar eclipses are

$$
\begin{equation*}
\left|\lambda_{\mathrm{m}}-\lambda_{\mathrm{c}}^{\prime}\right|<13^{\circ} \tag{2}
\end{equation*}
$$

(as in VI,2) and

$$
\begin{equation*}
\left|\lambda_{\mathrm{m}}-\lambda_{\mathrm{c}}^{\prime}\right|<8^{\circ} \tag{3}
\end{equation*}
$$

for solar eclipses, λ_{m} being the longitude of the Moon.
If we assume, as in VI, $3, r_{\mathrm{m}}=0 ; 17^{\circ}, i=4^{\circ}$, one has

$$
\sin i \approx 0 ; 4,11
$$

and thus with (3)

$$
r_{\mathrm{s}}=0 ; 4,11 \cdot 8-0 ; 17=0 ; 16,28
$$

hence probably originally

$$
\begin{equation*}
r_{\mathrm{s}}=r_{\mathrm{m}}=0 ; 17^{\circ} \tag{4}
\end{equation*}
$$

whereas the Romakasiddhānta assumes (cf. VIII,13) the slightly different values

$$
\begin{equation*}
r_{\mathrm{s}}=0 ; 15^{\circ} \quad r_{\mathrm{m}}=0 ; 17^{\circ} \tag{5}
\end{equation*}
$$

for the apparent radii of the luminaries.
VII,6. The duration of an eclipse is given by

$$
\begin{equation*}
\frac{3}{4} \sqrt{\Delta^{2}-\Delta \lambda^{2}} \tag{1}
\end{equation*}
$$

where, according to VII,5

$$
\Delta=\left\{\begin{array}{r}
13^{\circ} \text { for lunar eclipses } \tag{2}\\
8^{\circ} \text { for solar eclipses }
\end{array}\right.
$$

In order to check this rule we use again Fig. 24 (p. 52) calling $\mathrm{CK}=\Delta, \mathrm{CF}=\Delta \lambda$ and

$$
r= \begin{cases}\mathrm{r}_{\mathrm{u}}+r_{\mathrm{m}} & \text { for lunar eclipses } \\ \mathrm{r}_{\mathrm{s}}+r_{\mathrm{m}} & \text { for solar eclipses. }\end{cases}
$$

Then $r=\Delta \sin i$ and $\beta=\Delta \lambda \sin i$ and thus the distance $A B$ which measures the half duration

$$
\begin{equation*}
\mathrm{AB}=\sin i \sqrt{\Delta^{2}-\Delta \lambda^{2}} \approx 0 ; 4 \sqrt{\Delta^{2}-\Delta \lambda^{2}} \tag{3}
\end{equation*}
$$

The distance $A B$ is here measured in degrees.

Assuming as the daily increase of elongation 12° we obtain for the total duration of the eclipse

$$
\begin{aligned}
t & =\frac{0 ; 4}{12} \sqrt{\Delta^{2}-\Delta \lambda^{2}}=0 ; 0,40^{\mathrm{d}} \sqrt{\Delta^{2}-\Delta \lambda^{2}} \\
& =\frac{2^{\mathrm{n}}}{3} \sqrt{\Delta^{2}-\Delta \lambda^{2}}
\end{aligned}
$$

instead of (1), reckoned in nāḍīs. We cannot explain the origin of this discrepancy.

Chapter VIII

VIII,1. The mean longitude $\bar{\lambda}$ of the Sun, reckoned in rotations, is obtained from the ahargaṇa a by means of

$$
\begin{equation*}
\bar{\lambda}=\frac{a \cdot 150-65}{54787}=\frac{a \cdot 2,30-1,5}{15,13,7} \operatorname{rot} . \tag{1}
\end{equation*}
$$

Since

$$
\frac{2,30}{15,13,7}=\frac{1,0,0}{6,5,14,48}
$$

one sees that (1) is based on the assumption that

$$
\begin{equation*}
1 \text { year }=365 ; 14,48^{\mathrm{d}} \tag{2}
\end{equation*}
$$

i.e. on the value adopted for the tropical year by Hipparchus and Ptolemy; cf. also I, 15 (1).

For the constant $-65 / 54787$ cf. below at VIII,5.
VIII,2-3. The solar apogee is placed at II 15°. If α denotes the anomaly reckoned from this point the following equations of center θ are assumed (cf. Fig. 31):

α	$\Delta \theta$	θ
0°		0
15	$0 ; 20+0 ; 15-0 ; 0,18=0 ; 34,42^{\circ}$	$0 ; 34,42^{\circ}$
30	$+0 ; 14-0 ; 0,5$	$1 ; 8,37$
45	$+0 ; 10+0 ; 0,2$	$1 ; 38,39$
60	$+0 ; 4+0 ; 0,10$	$2 ; 2,49$
75	$-0 ; 6+0 ; 0,16$	$2 ; 17,5$
90	$-0 ; 14+0 ; 0,18$	$2 ; 23,23$

The maximum equation of $2 ; 23,23$ would correspond, for $R=60$, to an eccentricity of $2 ; 17$. Cf. also IX,7-8.

VIII,4. The sidereal mean longitude of the Moon, reckoned in rotations, is given by

$$
\begin{equation*}
\bar{\lambda}=\frac{a \cdot 38100-1984}{1040953}=\frac{a \cdot 10,35,0-33,4}{4,49,9,13} \operatorname{rot} . \tag{1}
\end{equation*}
$$

From

$$
\begin{equation*}
\frac{4,49,9,13}{10,35,0} \approx 27 ; 19,17,45,50, \ldots{ }^{d} \tag{2}
\end{equation*}
$$

one knows the length of the sidereal month. In I,15 (5) we have shown that (2) is based on the relation

$$
\begin{equation*}
4,14 \text { sid.m. }=3,55 \text { syn.m. }=19^{\mathrm{y}} . \tag{3}
\end{equation*}
$$

For the epoch constant (ksepa), obtained for $\alpha=0$, cf. the commentary on VIII, 5 .

VIII,5. The longitude of the lunar anomaly is give by

$$
\begin{equation*}
\bar{\alpha}=\frac{a \cdot 110+609}{3031}=\frac{a \cdot 1,50+10,9}{50,31} . \tag{1}
\end{equation*}
$$

This rule is based on an anomalistic month of

$$
\begin{equation*}
\frac{50,31}{1,50} \approx 27 ; 33,16,21,49, \ldots{ }^{\mathrm{d}} \tag{2}
\end{equation*}
$$

Cf. for this relation above II,2-6.

The epoch constants in VIII, 1,4, and 5 indicate that the initial positions for the Sun, the Moon, and the lunar anomaly at epoch were respectively

$$
\begin{align*}
& \text { for the Sun : }-\frac{1,5}{15,13,7} \text { revol. }=-\frac{6,30,0^{\circ}}{15,13,7} \approx-0 ; 25,38^{\circ}=359 ; 34,22^{\circ} \tag{3}\\
& \text { for the Moon: }-\frac{33,4}{4,49,9,13} \text { revol. }=-\frac{3,18,24,0^{\circ}}{4,49,9,13} \approx-0 ; 41,10^{\circ}=359 ; 18,50^{\circ} \tag{4}\\
& \text { for the lunar anomaly: } \frac{10,9}{50,31} \text { revol. }=-\frac{1,0,54,0^{\circ}}{50,31} \approx 72 ; 19,57^{\circ} \tag{5}
\end{align*}
$$

The longitude of the lunar apogee, λ_{A}, can be found (cf. Fig. 58 p. 101) from

$$
\begin{equation*}
\lambda_{\mathrm{A}}=\bar{\lambda}-\bar{\alpha} \tag{6}
\end{equation*}
$$

Consequently (4) and (5) give

$$
\begin{equation*}
\lambda_{\mathrm{A}}=359 ; 18,50^{\circ}-72 ; 19,57^{\circ}=286 ; 58,53^{\circ} \tag{7}
\end{equation*}
$$

as position of the apogee at epoch.
These here determined epoch constants refer, according to VIII,1, to sunset at Avantī. In I,8 the epoch of the Romakasiddhānta and in XV,18 the epoch of Lāteacārya is said to be sunset at Yavanapura.

VIII,6. As function of the anomaly α the following equations θ are prescribed for the motion of the Moon (cf. Fig. 31)

α	$\Delta \theta$		θ
0°			0
15	$1^{\circ}+0 ; 14$	$=1 ; 14^{\circ}$	1;14 ${ }^{\circ}$
30	+ 0; 11	$=1 ; 11$	2;25
45	+ 0; 2	$=1 ; 2$	3;27
60	$4 \cdot 0 ; 18-8 \cdot$	$=0 ; 48$	4;15
75		$=0 ; 25$	4;40
90	$6 \cdot 0 ; 16-1 ;$	$=0 ; 6$	4;46

The maximum equation of $4 ; 46^{\circ}$ would correspond to an eccentricity of $4 ; 33$ for $R=60$. The above given numbers are, however, not very secure; one would prefer a maximum equation of $4 ; 56^{\circ}$ as found in the ārdharātrika system (cf. IX,7).

VIII,7. Crude approximations for the daily motion in longitude $\left(13 ; 10^{\circ}\right)$ and in anomaly $\left(13 ; 4^{\circ}\right)$. Cf. also IX, 11-12.

VIII,8. For the ahargaṇa a the ascending lunar node has the longitude

$$
\begin{equation*}
\lambda_{\mathrm{c}}=\frac{a \cdot 24+56266}{163111}=\frac{a \cdot 24+15,37,46}{45,18,31} . \tag{1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{45,18,31}{24}=1,53,16 ; 17,30^{\mathrm{d}} \tag{2}
\end{equation*}
$$

we have in (2) the number of days required for one revolution of the lunar nodes (about $18^{1} / 2$ years). From it one finds for the retrograde daily motion

$$
\begin{equation*}
\frac{6,0}{1,53,16 ; 17,30} \approx 0 ; 3,10,41,32, \ldots \text { o/d } \tag{3}
\end{equation*}
$$

The kṣepa in (1) indicates that the longitude of the ascending node at epoch was

$$
\begin{equation*}
-\frac{15,37,46}{45,18,31} \text { revolutions } \approx-124 ; 11,2^{\circ}=235 ; 48,58^{\circ} \tag{4}
\end{equation*}
$$

in close agreement with III,29.
VIII,9. The same rule for the determination of the longitudinal parallax as given in VII, 1 (q.v.).

VIII,10-14. The goal of this section is the determination of the latitudinal parallax p_{β} of the moon, or of the apparent latitude β_{a} of the Moon at a solar eclipse.

First one has to find the nonagesimal V of the ecliptic, i.e. the midpoint of the semicircle of the ecliptic that is above the horizon. Having determined for the given moment the ascendent H one has

$$
\begin{equation*}
\lambda(\mathrm{V})=\lambda(\mathrm{H})+270^{\circ}=\lambda(\mathrm{H})-90^{\circ} . \tag{1}
\end{equation*}
$$

Hence one can also find the declination $\delta(\mathrm{V})$ which belongs to $\lambda(\mathrm{V})$.
Let U be the point of the lunar orbit for which (cf. Fig. 32)

$$
\lambda(\mathrm{U})=\lambda(\mathrm{V})
$$

β its latitude, ω its distance from the ascending node. Then it is assumed that approximately

$$
\begin{equation*}
\delta(\mathrm{U})=\delta(\mathrm{V}) \mp \beta \tag{2}
\end{equation*}
$$

i.e., the directions of latitudes and of declinations at V are identified. Since for a given moment the longitude λ_{c} of the ascending node can be considered to be known one can also find $\beta(\mathrm{U})$ from

$$
\begin{equation*}
\beta=\frac{2}{60} \operatorname{Sin}\left(\lambda(H)-\left(\lambda_{\mathrm{c}}+90\right)\right) . \tag{3}
\end{equation*}
$$

Indeed, it follows from (1) that (with $R=120$)

$$
\begin{equation*}
\beta^{\circ}=\frac{2}{60} \operatorname{Sin}\left(\lambda(V)-\lambda_{\mathrm{c}}\right) \approx \frac{2}{60} \operatorname{Sin} \omega=4 \sin \omega . \tag{3a}
\end{equation*}
$$

Accurately one should have

$$
\sin \beta=\sin i \sin \omega
$$

but for small angles

$$
\sin \beta \approx \beta=\beta^{\circ} \frac{\pi}{180} \approx \frac{\beta^{\circ}}{60} \quad(\pi \approx 3)
$$

hence

$$
\begin{equation*}
\beta^{\circ} \approx 60 \sin \beta=60 \sin i \sin \omega \tag{3b}
\end{equation*}
$$

thus from (3a)

$$
\begin{equation*}
\sin i \approx 0 ; 4 \approx 0 ; 4,11 \quad \text { thus } i \approx 4^{\circ} \tag{3c}
\end{equation*}
$$

It is assumed next that the zenith distance of U can be found from

$$
\begin{equation*}
z(\mathrm{~V})=\varphi \pm \delta(\mathrm{U}) \tag{4}
\end{equation*}
$$

Fig. 32.
which is the same as to say that (approximately) V, U, and Midheaven lie in the same meridian. With z thus determined the latitudinal parallax is computed from

$$
\begin{equation*}
p_{\beta}=\frac{v_{\mathrm{m}} \operatorname{Sin} z}{1800} \tag{5}
\end{equation*}
$$

where v_{m} is the lunar velocity.
Since p_{β} can be considered constant along the ecliptic ${ }^{1}$) (or along the lunar orbit) with the value

$$
\begin{equation*}
p_{\beta}=p_{0} \sin z \tag{6}
\end{equation*}
$$

we can obtain an estimate for the "horizontal parallax" p_{0} by using (5) in the form

$$
p_{\beta}=\frac{v_{\mathrm{m}}}{15} \sin z
$$

Consequently

$$
\begin{equation*}
p_{0}=0 ; 4 v_{\mathrm{m}} \approx 0 ; 53^{\circ} \tag{7}
\end{equation*}
$$

since $v_{\mathrm{m}} \approx 13 ; 10,35^{\circ} / \mathrm{d}$.
With p_{β} known from (5) one finds the apparent latitude of the Moon

$$
\begin{equation*}
\beta_{\mathrm{a}}=\beta \pm p_{\beta} \tag{8}
\end{equation*}
$$

${ }^{1}$) Cf. Neugebauer, Al-Khwārizmĩ, p. 122 f.; also below IX,24-25.
where the true latitude β is found in minutes of arc from

$$
\begin{equation*}
\beta=\frac{21}{9} \operatorname{Sin} \omega . \tag{9}
\end{equation*}
$$

For small β we use again (3b)

$$
\beta^{\circ} \approx \frac{1}{2} \sin i \operatorname{Sin} \omega .
$$

Hence from (9), since $\beta^{\circ} \approx 60 \beta$

$$
\sin i \approx \frac{2 \cdot 21}{9 \cdot 60}=0 ; 4,40
$$

thus

$$
\begin{equation*}
i \approx 4 ; 30^{\circ} \tag{10}
\end{equation*}
$$

in contrast to (3c); cf. also IX,6.
VIII,15. In VIII, 13 the following mean values for the apparent diameters of Sun and Moon were given

$$
\begin{equation*}
\bar{d}_{\mathrm{s}}=0 ; 30^{\circ} \quad \bar{d}_{\mathrm{m}}=0 ; 34^{\circ} \tag{1}
\end{equation*}
$$

For the true apparent diameters it is assumed that the ratio of diameter to velocity remains constant. Consequently

$$
\begin{equation*}
d_{\mathrm{s}}=\frac{\bar{d}_{\mathrm{s}}}{\bar{v}_{\mathrm{s}}} v_{\mathrm{s}} \quad d_{\mathrm{m}}=\frac{\bar{d}_{\mathrm{m}}}{\bar{v}_{\mathrm{m}}} v_{\mathrm{m}} \tag{2}
\end{equation*}
$$

VIII,16. Let β_{a} be the apparent latitude of the moon, found in VIII,10-14 (8). Then it follows from Fig. 33 that the duration of a solar eclipse between first and last contact is given by

$$
\begin{equation*}
2 \mathrm{AB}=\sqrt{\left(r_{\mathrm{s}}+r_{\mathrm{m}}\right)^{2}-\beta_{\mathrm{a}}^{2}} \tag{1}
\end{equation*}
$$

The same rule is given in IX,26.
Note that the text here and in VIII, 17 uses avanati, i.e. p_{β}, in the sense of "corrected latitude" i.e. $\beta-p_{\beta}=\beta_{\mathrm{a}}$.

Fig. 33.
VIII,17-18. Fig. 33 shows that the obscured part of the Sun at the middle of the eclipse has the width

$$
\begin{equation*}
m=r_{\mathrm{s}}-\left(\beta_{\mathrm{a}}-r_{\mathrm{m}}\right)=r_{\mathrm{s}}+r_{\mathrm{m}}-\beta_{\mathrm{a}} \tag{1}
\end{equation*}
$$

All quantities should be measured in minutes of arc, hence also m. Nevertheless the text calls the result "digits". Cf. also X,5-6.

Chapter IX

IX,1. The mean longitude $\bar{\lambda}_{\mathrm{s}}$ of the Sun, reckoned in sidereal rotations, is found for the ahargana a by means of

$$
\begin{equation*}
\bar{\lambda}_{\mathrm{s}}=\frac{a \cdot 800-442}{292207}=\frac{a \cdot 13,20-7,22}{1,21,10,7} \text { rot. } \tag{1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{1,21,10,7}{13,20}=6,5 ; 15,31,30 \tag{2}
\end{equation*}
$$

we see that (1) is based on a sidereal year of $365 ; 15,31,30^{\mathrm{d}}$ (exactly).
The daily mean motion of the Sun amounts accordingly to

$$
\begin{equation*}
\frac{6,0}{6,5 ; 15,31,30} \approx 0 ; 59,8,10,10,37, \ldots{ }^{\mathrm{o} / \mathrm{d}} \tag{3}
\end{equation*}
$$

The exact equivalent of (2) is the statement of the ārdharātrika system (cf. $I, 14)$ that
$4320000(=20,0,0,0)$ sid. years $=1577917800(=2,1,45,10,30,0)$ days
as is evident in the sexagesimal version since the number of days in (4), multiplied by a factor 3 gives the right hand side in (2).

For the epoch-correction (ksepa)

$$
\begin{equation*}
-\frac{7,22 \cdot 6,0^{\circ}}{1,21,10,7} \approx-0 ; 32,40^{\circ} \tag{5}
\end{equation*}
$$

cf. the commentary to XVI,1-9.
IX,2. The mean longitude of the Moon, reckoned in sidereal rotations, is obtained from

$$
\begin{equation*}
\bar{\lambda}_{\mathrm{m}}=\frac{a \cdot 900000-670217}{24589506}=\frac{a \cdot 4,10,0,0-3,6,10,17}{1,53,50,25,6} \text { rot. } \tag{1}
\end{equation*}
$$

The quotient

$$
\begin{equation*}
\frac{1,53,50,25,6}{4,10,0,0}=27 ; 19,18,1,26,24 \text { days } \tag{2}
\end{equation*}
$$

gives the length of the sidereal month (exactly). From (2) one finds for the daily mean motion of the Moon

$$
\begin{equation*}
\frac{4,10,0,0 \cdot 6,0}{1,53,50,25,6}=\frac{25}{1 ; 53,50,25,6}=13 ; 10,34,52,9 \ldots{ }^{\mathrm{o} / \mathrm{d}} \tag{3}
\end{equation*}
$$

For the epoch correction

$$
\begin{equation*}
-\frac{3,6,10,17 \cdot 6,0^{\circ}}{1,53,50,25,6} \approx-9 ; 48,44^{\circ} \tag{4}
\end{equation*}
$$

cf. the commentary to XVI,1-9.
IX,3. The number of sidereal rotations of the Moon's apogee at the ahargana a is given by

$$
\begin{equation*}
\frac{a \cdot 900+2260356}{2908789}=\frac{a \cdot 15,0+10,27,52,36}{13,27,59,49} \text { rot. } \tag{1}
\end{equation*}
$$

Consequently one rotation takes

$$
\begin{equation*}
\frac{13,27,59,49}{15,0}=53,51 ; 59,16 \text { days } \tag{2}
\end{equation*}
$$

(exactly). The daily motion of the Moon's apsidal line amounts therefore to

$$
\begin{equation*}
\frac{6,0}{53,51 ; 59,16} \approx 0 ; 6,40,59,29, \ldots{ }^{\mathrm{o} / \mathrm{d}} \tag{3}
\end{equation*}
$$

rounded to $0 ; 6,40=1 / 9^{\circ / \mathrm{d}}$ in IX,12 (3).
For the epoch-correction

$$
\begin{equation*}
\frac{10,27,52,36 \cdot 6,0^{\circ}}{13,27,59,49} \approx 279 ; 44,53^{\circ} \tag{4}
\end{equation*}
$$

cf. the commentary to XVI,1-9.
$\mathbf{I X}, 4$. It is of interest to note that the basic intervals which correspond to the rules formulated in IX, $1-3$ (and IX,5) are all expressed exactly by finite sexagesimal fractions, no doubt intentionally. In IX, 4 small corrections of the lunar parameters are introduced the purpose of which is an adjustment to the parameters of the ārdharātrika system which in turn is based on simple sexagesimal relations without approximations but now referring to the huge interval of $20,0,0,0$ years. The corrections in IX, 4 serve to bridge the inevitable gap between the exact identities of the individual basic periods and similar identities for the cosmic intervals.

The rules given in IX, 4 are as follows:

For each sidereal revolution of the mean Moon $\bar{\lambda}_{\mathrm{m}}$ should be modified by

$$
\begin{equation*}
-\frac{51}{3120}=-\frac{51}{52,0} \text { seconds } \approx-0 ; 0,0,0,58,50,46, \ldots \circ \tag{1}
\end{equation*}
$$

and
For each sidereal revolution of the Moon's apogee one should add

$$
\begin{equation*}
\frac{10}{297}=\frac{10}{4,57} \text { seconds } \approx 0 ; 0,0,2,1, \ldots \circ \tag{2}
\end{equation*}
$$

In order to relate these rules to the ārdharātrika system we proceed as follows. First we combine IX,1 (2)

$$
1 \text { year }=6,5 ; 15,31,30^{\mathrm{d}}=\frac{1,21,10,7}{16 \cdot 50}
$$

with IX,2 (2)

$$
1 \text { sid. month }=27 ; 19,18,1,26,24^{\mathrm{d}}=\frac{1,53,50 ; 25,6}{5 \cdot 50}
$$

and thus find

$$
\left.\begin{array}{c}
\text { 1 year }=\frac{1,21,10,7 \cdot 5}{1,53,50 ; 25,6 \cdot 16}=\frac{6,45,50,35}{30,21,26 ; 41,36}= \tag{3}\\
13 ; 22,7,46,50,11,5,24, \ldots \text { sid. months. }
\end{array}\right\}
$$

In the ārdharātrika system, however, it is assumed that

$$
\begin{equation*}
4320000(=20,0,0,0) \text { sid. y. }=57753336(=4,27,22,35,36) \text { sid. m. } \tag{4a}
\end{equation*}
$$

Multiplication by the factor 3 gives this assumption the form

$$
\begin{equation*}
1 \text { year }=13 ; 22,7,46,48 \text { sid. months. } \tag{4b}
\end{equation*}
$$

Comparison of (4b) with (3) shows that the rule of IX, 2 produces a result which is $0 ; 0,0,0,2,11,5,24$ sidereal months in excess over the result obtained by the ārdharātrika norm. Since each sidereal month corresponds to a complete rotation the above found excess amounts to

$$
0 ; 0,0,0,2,11,5,24 \cdot 6,0^{\circ}=0 ; 0,0,13,6,32,24^{\circ}
$$

per year, i.e., because of (4b)

$$
\left.\frac{0 ; 13,6,32,24 \text { seconds }}{13 ; 22,7,46,48} \approx \frac{51}{52,0} \text { seconds }^{1}\right)
$$

as subtractive correction. This is the above given rule (1).
${ }^{1}$) Indeed $13,6,32,24 \cdot 52 \approx 11,21,40$ and $13,22,7,46,48 \cdot 51 \approx 11,21,48$.

Similarly IX,3 (2) in combination with IX,1 (2) shows that

$$
\begin{equation*}
1 \text { year }=\frac{1,21,10,7 \cdot 9}{13,27,59,49 \cdot 8}=\frac{12,10,31,3}{1,47,43,58,32}=0 ; 6,46,50,56,57,43,23, \ldots \operatorname{rot} \tag{5}
\end{equation*}
$$

of the lunar apogee. The ārdharātrika system, however, postulates

$$
\begin{equation*}
4320000(=20,0,0,0) \text { years }=488219(=2,15,36,59) \text { rotations } \tag{6a}
\end{equation*}
$$

or the equivalent

$$
\begin{equation*}
1 \text { year }=0 ; 6,46,50,57 \text { rotations } \tag{6b}
\end{equation*}
$$

i.e. $0 ; 0,0,0,0,2,16,37$ rotations $=0 ; 0,0,2,16,37 \cdot 6,0$ seconds $=0 ; 0,13,39,42$ seconds more than in (5) in each year. Since, according to (5) each year contains $0 ; 6,46, \ldots$ rotations the correction per rotation amounts to

$$
\left.\frac{0 ; 13,39,42}{6 ; 46,50,57} \approx \frac{10}{4,57} \text { seconds }^{1}\right)
$$

as required in (2).
No correction is needed for the mean Sun since IX,1 (2) and IX,1 (4) are exactly equivalent, both being based on ārdharātrika parameters.

IX,5. The longitude of the ascending node of the Moon at the ahargana a, reckoned in sidereal rotations, is found from

$$
\begin{equation*}
\lambda_{\mathrm{n}}=\frac{a \cdot 2700+6313219}{18345822}=\frac{a \cdot 45,0+29,13,40,19}{1,24,56,3,42} \text { rotations. } \tag{1}
\end{equation*}
$$

The time required for one sidereal rotation is therefore (exactly) given by

$$
\begin{equation*}
\frac{1,24,56,3,42}{45,0}=1,53,14 ; 44,56^{\mathrm{d}} \tag{2}
\end{equation*}
$$

From (2) and from the number $2,1,45,10,30,0$ assumed in the ārdharātrika system for the days contained in the Mahāyuga (cf. (4) in IX,1) one finds for the number of sidereal rotations of the nodes in that period

$$
\begin{equation*}
\frac{2,1,45,10,30,0}{1,53,14 ; 44,56}=1,4,30,26 ; 3, \ldots \text { rot. } \tag{3}
\end{equation*}
$$

hence not exactly an integer number. In fact, however, the ārdharātrika system postulates exactly $232226=1,4,30,26$ rotations of the nodes ${ }^{2}$) in a Mahāyuga. One
${ }^{1}$) Indeed $13,39,42 \cdot 4,57 \approx 1,7,40$ and $6,46,50,57 \cdot 10 \approx 1,7,48$.
${ }^{2}$) Cf. note 1 to I, 14 Table 1.
expects, then, a correction to be applied to the longitude of the ascending lunar node such as was applied to the mean longitude and the apogee of the Moon in IX,4. Perhaps such a correction has accidentally been dropped from the text.

Again from (2) one can derive the corresponding daily motion of the nodes:

$$
\begin{equation*}
-\frac{6,0}{1,53,14 ; 44,56}=-0 ; 3,10,44,7,53, \ldots{ }^{\mathrm{o} / \mathrm{d}} \tag{4}
\end{equation*}
$$

Cf. also III,28-29.
The epoch correction contained in (1) has to be reckoned negative since the rotation of the nodes proceeds in retrograde direction. Converted to degrees it amounts to

$$
\begin{equation*}
-\frac{29,13,40,19 \cdot 6,0^{\circ}}{1,24,56,3,42} \approx-123 ; 53,3=236 ; 6,57^{\circ} \tag{5}
\end{equation*}
$$

Cf. for it the commentary to XVI,1-9 (p. 100).
$\mathbf{I X}, 6$. The value

$$
i \approx 4 ; 30^{\circ}
$$

for the inclination of the lunar orbit agrees with VIII, 10-14 (10).

Fig. 34.
IX,7-8. Here we have rules for the determination of the equation of center for Sun and Moon as function of the anomaly α, based on a simple epicyclic model (cf. Fig. 34). The anomaly α is found from

$$
\begin{equation*}
\alpha=\lambda-\lambda_{\mathrm{A}} \tag{1}
\end{equation*}
$$

$\bar{\lambda}$ being the mean longitude at the given moment, λ_{A} the longitude of the apogee.
For the Sun, in the ārdharātrika system, one has always

$$
\begin{equation*}
\lambda_{\mathrm{A}}=80^{\circ} \tag{2}
\end{equation*}
$$

as fixed sidereal longitude. For the Moon λ_{A} has to be found with IX, 3 and IX, 4 .
Let c be the length of the circumference of the epicycle, measured in the same units (misleadingly called "degrees") in which the circumference of the deferent measures 360 . Then it is assumed that

$$
c=\left\{\begin{array}{l}
14 \text { for the Sun } \tag{3}\\
31 \text { for the Moon. }
\end{array}\right.
$$

Using c and α from (3) and (1) respectively the equation θ is found from

$$
\begin{equation*}
\operatorname{Sin} \theta=\frac{c \operatorname{Sin} \alpha}{360} \tag{4}
\end{equation*}
$$

It is easy to see that (4) is the result of a plausible approximation (cf. Fig. 34). Obviously

$$
\frac{c}{360}=\frac{r}{R}=\frac{r \sin \alpha}{R \sin \alpha}=\frac{\mathrm{PP}^{\prime}}{\operatorname{Sin} \alpha}
$$

Since r is small in comparison to R^{1}) we may assume that $\mathrm{PP}^{\prime} \approx \mathrm{CD}$, hence

$$
\frac{c}{360} \approx \frac{\mathrm{CD}}{\operatorname{Sin} \alpha}=\frac{R \sin \theta}{\operatorname{Sin} \alpha}=\frac{\operatorname{Sin} \theta}{\operatorname{Sin} \alpha}
$$

which proves (4).
It follows from (3) and (4) that

$$
r=\left\{\begin{array}{l}
0 ; 2,20 \text { for the Sun } \tag{5}\\
0 ; 5,10 \text { for the Moon }
\end{array}\right.
$$

which leads to a maximum equation of

$$
\theta_{\max }=\left\{\begin{array}{l}
2 ; 14^{\circ} \text { for the Sun } \tag{6}\\
4 ; 56^{\circ} \text { for the Moon. }
\end{array}\right.
$$

Cf. also VIII,2-3 and VIII,6. In terms of Greek astronomy the eccentricities corresponding to (5) would be $2 ; 20$ and $5 ; 10$ respectively $(R=60)$; cf. also XVI, 12-14 Table 22 (p. 102).
$\mathbf{I X}, 9$. This is a rule for finding the daily increase in the solar and lunar equations. Since the increase of both θ and α in a day will be very small we replace (3) in IX, $7-8$ by $\theta=c \alpha / 360$ and thus obtain

$$
\theta^{\prime}=\frac{c}{360} \alpha^{\prime}
$$

where θ^{\prime} and α^{\prime} denote the daily increments of θ and α respectively. For the Sun the daily increase in anomaly is the same as its daily increase v_{s} in longitude, reckoned in degrees per day. If b denotes the same velocity (bhukti) expressed in minutes we have therefore
${ }^{1}$) Fig. 34 is not drawn to scale; for the Moon r should be about $1 / 12$ of R, for the Sun only $1 / 30$ of R (cf. (2)).

$$
\theta^{\prime}=\frac{c}{21600} b=\frac{c b}{6,0,0}
$$

For the Moon one should use the bhukti of the anomaly given in IX, 12 ; cf. also IX, 13 .

IX,10. For $53 ; 20$ yojanas of distance (measured on the terrestrial equator) a time correction of ± 1 nādī is to be applied. With this time correction one can compute the correction to the longitudes of the planets due to the fact that one's locality is a known number of yojanas (on the equator) to the east or west of the prime meridian.

Fig. 35.

It follows from the above given numbers that

$$
1^{\mathrm{d}}=53,20 \text { yojanas }=3200 \text { yojanas }
$$

on the equator; cf. also III,14 and XIII,15-19. The radius of the earth is therefore about 510 yojanas.

IX,11-14. The mean motions are (cf. also VIII,7)

$$
\bar{v}= \begin{cases}0 ; 59,8^{\circ} / \mathrm{d} & \text { for the Sun } \tag{1}\\ 13 ; 10,34 & \text { for the Moon. }\end{cases}
$$

The true motion of the Moon is given by

$$
\begin{equation*}
v=\bar{v} \pm \bar{v}_{\alpha} \frac{\Delta \operatorname{Sin} \alpha}{225} \cdot \frac{c}{360} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{v}_{\alpha}=\bar{v}-\bar{v}_{\mathrm{A}} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{v}_{\mathrm{A}} \approx 0 ; 6,40^{\circ / \mathrm{d}} \tag{4}
\end{equation*}
$$

(cf. also IX,3) and c being defined as in IX,7-8. As shown in Fig. $35 \bar{v}_{\alpha}$ represents therefore the velocity of the center C of the epicycle with respect to the apsidal line.

Since the function $\operatorname{Sin} \alpha$ is tabulated in steps of $3 ; 45^{\circ}=225^{\prime}$ (cf. IV, $6-15$, Table 8) we see that $\Delta \operatorname{Sin} \alpha / 225$ is approximately the derivative of the Sine-function. Thus we have

$$
\bar{v}_{\alpha} \frac{\Delta \operatorname{Sin} \alpha}{225}=\bar{v}_{\alpha} \frac{\Delta \operatorname{Sin} \alpha}{\Delta \alpha} \approx \bar{v}_{\alpha} \cos \alpha .
$$

Because of the "reducing" factor $c / 360=r / R$ we have in $\bar{v}_{\alpha} c / 360$ the velocity of the Moon P on the circumference of the epicycle. Consequently the multiplication with $\cos \alpha$ gives the component in the direction of \bar{v}_{α} representing (algebraically) the effect of the motion of P on the epicycle, while C moves with the constant mean velocity \bar{v}.

The instantaneous velocity v of P with respect to O (cf. Fig. 34) can also be described by means of the "true hypotenuse" $\varrho=$ OP in relation to R :

$$
\begin{equation*}
\bar{v} / v=R / \varrho . \tag{5}
\end{equation*}
$$

IX,15-16. It is the purpose of these verses to introduce the actual geocentric distances (kaksā) of Sun and Moon instead of operating uniformly with the norm $R=120$ for the radii of the deferents. If ϱ_{s} and ϱ_{m} represent the true hypotenuse of Sun and Moon respectively the kakṣa is defined by

$$
\begin{equation*}
k_{\mathrm{s}}=\frac{5347}{40} \varrho_{\mathrm{s}}=\frac{1,29,7}{40} \varrho_{\mathrm{s}} \quad k_{\mathrm{m}}=10 \varrho_{\mathrm{m}} . \tag{1}
\end{equation*}
$$

By means of two more parameters

$$
\begin{equation*}
b_{\mathrm{s}}=517080(=2,23,38,0) \quad b_{\mathrm{m}}=38640(=10,44,0) \tag{2}
\end{equation*}
$$

are found the apparent diameters of Sun and Moon

$$
\begin{equation*}
d_{\mathrm{s}}=\frac{b_{\mathrm{s}}}{k_{\mathrm{s}}}=1,4,28 ; 11, \ldots \cdot \frac{1}{\varrho_{\mathrm{s}}} \quad d_{\mathrm{m}}=\frac{b_{\mathrm{m}}}{k_{\mathrm{m}}}=1,4,24 \frac{1}{\varrho_{\mathrm{m}}} . \tag{3}
\end{equation*}
$$

For the mean distances of the luminaries, i.e. for

$$
\varrho_{\mathrm{s}}=\varrho_{\mathrm{m}}=R=120
$$

one obtains from (1) the geocentric distances

$$
\begin{equation*}
k_{\mathrm{s}}=4,27,21 \quad k_{\mathrm{m}}=20,0 \tag{4}
\end{equation*}
$$

and from (3) the apparent diameters

$$
\begin{equation*}
d_{\mathrm{s}}=32 ; 14,6, \ldots \quad d_{\mathrm{m}}=32 ; 12 \tag{5}
\end{equation*}
$$

obviously measured in minutes of arc.

One can now determine the absolute dimensions of the diameters $2 s$ and $2 m$ of Sun and Moon respectively, measured in the units of k_{s} and k_{m}. Dividing d_{s} and d_{m} by the ratio

$$
3,0,0^{\prime}\left|\pi=10800^{\prime}\right| \pi \approx 3438^{\prime}=57,18^{\prime}
$$

one changes minutes of arc to radians. Multiplication by k_{s} and k_{m} then produces $2 s$ and $2 m$:

$$
\begin{align*}
2 s & =\frac{d_{\mathrm{s}}}{57,18} k_{\mathrm{s}}=\frac{b_{\mathrm{s}}}{57,18}=2,30 ; 24,5, \ldots \\
2 m & =\frac{d_{\mathrm{m}}}{57,18} k_{\mathrm{m}}=\frac{b_{\mathrm{m}}}{57,18}=11 ; 14,20, \ldots \tag{6}
\end{align*}
$$

i.e. the radii

$$
\begin{equation*}
s \approx 1,15 ; 12 \quad m \approx 5 ; 37 \tag{7}
\end{equation*}
$$

respectively.
In IX,19-23 we shall find (cf. below p. 76) that the determination of the lunar parallax is based on the assumption that

$$
\begin{equation*}
e=18 \tag{8}
\end{equation*}
$$

is the radius of the earth, measured in otherwise unknown units. If we assume that these units are the same as in s and m, hence also as in k_{s} and k_{m}, we can convert all these quantities to earth radii; from (4) one obtains:

$$
\begin{align*}
k_{\mathrm{s}} & =\frac{4,27,21}{18} e=14,51 ; 10 e=891^{1} / 6 e \\
k_{\mathrm{m}} & =\frac{20,0}{18} e=1,6 ; 40 e=66^{2} / 3 e \tag{9}
\end{align*}
$$

The value for the lunar distance is essentially correct and in general agreement with the results obtained in ancient astronomy. This confirms the uniformity of all units of distance.

Finally one obtains the absolute sizes for Sun and Moon from (7):

$$
\begin{equation*}
s \approx \frac{1,15 ; 12}{18} e=4 ; 10,40 e \quad m \approx \frac{5 ; 37}{18} e=0 ; 18,43,20 e \tag{10}
\end{equation*}
$$

Hence, the radius of the Sun is about four times the radius of the earth, the radius of the Moon about one third.

IX,17-18. We are given the time difference $\Delta \alpha$ between the moment of conjunction and noon, i.e. the arc $\Sigma^{\prime} \mathrm{C}$ in Fig. 36. The corresponding ecliptic arc $\Delta \lambda=\Sigma \mathrm{M}$ can be found from a table of right ascensions since $\Delta \alpha$ is the rising time of $\Delta \lambda$ at sphaera recta.

Since we know for the given moment the longitude λ of the conjunction we have in $\lambda+\Delta \lambda$ the longitude of M. Hence one can find from a table the declination δ_{M} of M and finally the zenith distance of M :

$$
\begin{equation*}
z_{\mathrm{M}}=\varphi \mp \delta_{\mathrm{M}} . \tag{1}
\end{equation*}
$$

IX,19-23. These verses concern the determination of the longitudinal parallax of sun and moon at a conjunction, i.e. for a solar eclipse. The procedure is best broken up in single steps for which we give the proofs as we go along.

Let M be the culminating point of the ecliptic (cf. Fig. 37), V the nonagesimal, Z the zenith, λ_{M} and δ_{M} longitude and declination of M respectively, η the azimuth

Fig. 36.

Fig. 37.
of the ascendent H, ε the obliquity of the ecliptic, φ the geographical latitude. Then, with λ_{M} known from IX,17

$$
\begin{equation*}
\operatorname{Sin} \eta=\frac{\operatorname{Sin} \varepsilon \cdot \operatorname{Sin} \lambda_{\mathrm{M}}}{\operatorname{Sin} \bar{\varphi}} \tag{1}
\end{equation*}
$$

Proof: $\sin \varphi=\operatorname{Sin} \delta_{\mathrm{M}} / \operatorname{Sin} \eta$ (cf. IV,39-40(2)) and $\sin \varepsilon=\operatorname{Sin} \delta_{\mathrm{M}} / \operatorname{Sin} \lambda_{\mathrm{M}}$ (cf. IV, $35-36$ (2)); q.e.d.

Let z_{M} and z_{V} represent the zenith distances of M and V respectively. Then

$$
\begin{equation*}
\operatorname{Sin} \mathrm{VM}=\operatorname{Sin} \eta \cdot \operatorname{Sin} z_{\mathrm{M}} / R \tag{2}
\end{equation*}
$$

where $\operatorname{Sin} \eta$ is known from (1) and z_{M} from IX, 17-18 (1).
Proof: In the right spherical triangle ZVM holds

$$
\sin \eta=\sin \mathrm{VM} / \sin z_{\mathrm{M}}
$$

q.e.d.

The next step implies a very crude approximation because it assumes that the right spherical triangle ZVM can be considered as a plane triangle. Hence

$$
\begin{equation*}
\operatorname{Sin} z_{V}=\sqrt{\operatorname{Sid}^{2} z_{M}-\operatorname{Sin}^{2} V M} \tag{3}
\end{equation*}
$$

can be computed, using z_{M} from IX,17-18 (1) and VM from (2).

With z_{V} known from (3) one has for the altitude a_{V} of V

$$
\begin{equation*}
a_{\mathrm{V}}+z_{\mathrm{V}}=90^{\circ} \tag{4a}
\end{equation*}
$$

thus

$$
\begin{equation*}
\operatorname{Sin} a_{\mathrm{V}}=\sqrt{R^{2}-\operatorname{Sin}^{2} z_{\mathrm{V}}} \tag{4b}
\end{equation*}
$$

Let a_{s} be the altitude, z_{s} the zenith distance of the Sun for a given moment when the Sun has a longitudinal distance $\Delta \lambda\left(<90^{\circ}\right)$ from the rising or setting point of the ecliptic. Then

$$
\begin{equation*}
\operatorname{Sin} a_{\mathrm{s}}=\operatorname{Sin} \Delta \lambda \cdot \operatorname{Sin} a_{\mathrm{V}} / R . \tag{5}
\end{equation*}
$$

Since

$$
\begin{equation*}
a_{\mathrm{S}}+z_{\mathrm{s}}=90^{\circ} \tag{6a}
\end{equation*}
$$

one has

$$
\begin{equation*}
\operatorname{Sin} z_{\mathrm{s}}=\sqrt{R^{2}-\operatorname{Sin}^{2} a_{\mathrm{s}}} \tag{6b}
\end{equation*}
$$

Fig. 38.

Fig. 39.

Fig. 40.

Proof of (5): it follows from Fig. 38

$$
\Sigma \Sigma^{\prime}=R \sin a_{\mathrm{s}}=\mathrm{P} \Sigma \sin a_{\mathrm{V}}
$$

and

$$
\mathrm{P} \Sigma=R \sin \Delta \lambda
$$

q.e.d.

We have now all elements that are required for the computation of the longitudinal parallax

$$
\begin{equation*}
p_{\lambda}=\frac{18}{\varrho R} \sqrt{\operatorname{Sin}^{2} z_{\mathrm{s}}-\operatorname{Sin}^{2} z_{\mathrm{V}}} \tag{7}
\end{equation*}
$$

where ϱ is the distance of the Sun or Moon (cf. Fig. 39) from the earth. If we substitute in (7) for ϱ the value ϱ_{s} we obtain the longitudinal solar parallax $p_{\lambda_{\mathrm{s}}}$, otherwise with ϱ_{m} the lunar parallax $p_{\lambda_{\mathrm{m}}}$ and, for an eclipse, when $\lambda_{\mathrm{s}}=\lambda_{\mathrm{m}}$, the "adjusted" longitudinal parallax

$$
\begin{equation*}
p_{\lambda}^{\prime}=p_{\lambda_{\mathrm{m}}}-p_{\lambda \mathrm{s}} \tag{8}
\end{equation*}
$$

Proof of (7): In the right spherical triangle ZV Σ (cf. Fig. 40), Σ being the Sun, we have

$$
\sin \gamma=\sin z_{\mathrm{V}} / \sin z_{\mathrm{s}}
$$

If p is the total parallax at Σ then

$$
\begin{gathered}
p_{\lambda}=p \cos \gamma=p \sqrt{1-\operatorname{Sin}^{2} z_{\mathrm{V}} / \operatorname{Sin}^{2} z_{\mathrm{s}}} \\
=\frac{p}{\operatorname{Sin} z_{\mathrm{s}}} \sqrt{\operatorname{Sin}^{2} z_{\mathrm{s}}-\operatorname{Sin}^{2} z_{\mathrm{V}}} .
\end{gathered}
$$

Comparison with (7) shows that one should have the following relation

$$
\begin{equation*}
p / \operatorname{Sin} z_{\mathrm{s}}=18 / \varrho R \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
p=\frac{18}{\varrho} \sin z_{\mathrm{s}}=p_{0} \sin z_{\mathrm{s}} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
p_{0}=\frac{18}{\varrho} . \tag{11}
\end{equation*}
$$

Since $z_{\mathrm{s}}=90^{\circ}$ at the hirizon we see from (10) that p_{0} is the horizontal parallax. But the lunar horizontal parallax is the angle under which the radius e of the earth appears from the moon when in the horizon. Thus (11) implies a value

$$
\begin{equation*}
e=18 \tag{12}
\end{equation*}
$$

for the radius of the earth, a value confirmed by its use in $\mathrm{X}, 1-2$.
In VII,2 we found that $p_{0} \approx 0 ; 52^{\circ}$, in VIII, $10-14$ we arrived at the estimate $p_{0} \approx 0 ; 53^{\circ}$. In order to express p_{0} also here in degrees we have to replace (11) by

$$
\begin{equation*}
p_{0}=\frac{18}{\varrho} \cdot \frac{3,0}{\pi}=\frac{54,0}{\varrho \pi} . \tag{13}
\end{equation*}
$$

In IX, 15-16 (1b) the distance of the Moon is assumed to be measured by

$$
\varrho=k_{\mathrm{m}}=20,0 .
$$

If we accept for π the approximation $\pi \approx 3$ we have $\varrho \pi=1,0,0$ and thus

$$
\begin{equation*}
p_{0}=0 ; 54^{\circ} \tag{14}
\end{equation*}
$$

which agrees sufficiently well with the previously obtained estimates.
IX,24-25. For a given zenith distance z of the nonagesimal V the latitudinal component p_{β} of the parallax is assumed to be constant with the value

$$
p_{\beta}=p_{0} \sin z_{\mathrm{V}}
$$

where p_{0} represents the horizontal parallax (cf. VIII,10-14 (6)).

IX,26. The same rule for the duration of an eclipse is found in VIII, 16.
IX,27. Effect of the longitudinal component of the adjusted parallax on the duration of a solar eclipse.

Chapter X

$\mathbf{X , 1 - 2}$. Let k_{s} and k_{m} denote (as in IX,15-16) the geocentric distances of Sun and Moon respectively, s, e, and u the radii of Sun, earth, and shadow at the Moon's (mean) distance, all these quantities measured in the same units. Then the diameter $2 u$ of the shadow cone at the Moon's (mean) distance is found from

$$
\begin{equation*}
2 u=\left(36-\frac{36 k_{\mathrm{m}}}{90 k_{\mathrm{s}} / 286}\right) \frac{120}{k_{\mathrm{m}}} \tag{1}
\end{equation*}
$$

A more convenient form of the rule (1) would be

$$
\begin{equation*}
u=36,0\left(\frac{1}{k_{\mathrm{m}}}-\frac{3 ; 10,40}{k_{\mathrm{s}}}\right) \tag{1a}
\end{equation*}
$$

Fig. 41.

Fig. 41 illustrates the underlying argument. Obviously

$$
\begin{equation*}
\frac{s-e}{k_{\mathrm{s}}}=\frac{e-u}{k_{\mathrm{m}}} \tag{2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
u=e\left(1+\frac{k_{\mathrm{m}}}{k_{\mathrm{s}}}\right)-s \frac{k_{\mathrm{m}}}{k_{\mathrm{s}}} \tag{3}
\end{equation*}
$$

We now assume, as in IX,19-23 (12)

$$
\begin{equation*}
e=18 \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
s=75 ; 12 \tag{4b}
\end{equation*}
$$

as derived in IX,15-16 (7). Then one obtains from (3)

$$
u=18-57 ; 12 \frac{k_{\mathrm{m}}}{k_{\mathrm{s}}}=18 k_{\mathrm{m}}\left(\frac{1}{k_{\mathrm{m}}}-\frac{3 ; 10,40}{k_{\mathrm{s}}}\right)
$$

which agrees with (1a) if

$$
\begin{equation*}
k_{\mathrm{m}}=2,0=R \tag{5}
\end{equation*}
$$

i.e. for the normed mean distance of the Moon.
$\mathbf{X}, 2-4$. Let r_{u} and r_{m} be the apparent radii of shadow and Moon, both expressed in degrees, β_{0} the latitude of the Moon at the moment t_{0} of the true opposition, $v_{\mathrm{m}}-v_{\mathrm{s}}$ the relative angular velocity of the Moon with respect to the Sun, expressed in degrees per day, then

$$
\begin{equation*}
\Delta_{1} t=\sqrt{\left(r_{\mathrm{u}}+r_{\mathrm{m}}\right)^{2}-\beta_{0}^{2}} \cdot \frac{120}{v_{\mathrm{m}}-v_{\mathrm{s}}} \tag{1}
\end{equation*}
$$

is in first approximation the half-duration of the eclipse (cf. Fig. 42). The underlying assumption that the latitude of the Moon at first contact is the same as at the midpoint of the eclipse, is, however, not quite correct. If one computes the latitude

Fig. 42.

Fig. 43.
for the moment $t_{0}-\Delta_{1} t$ one will find a value β, slightly different from β_{0}. If we replace β_{0} in (1) by β_{1} a more accurate value $\Delta_{2} t$ of the half-duration will result. Computing the latitude for $t_{0}-\Delta_{2} t$, etc., leads to β_{2}, β_{3} etc. The process ends when $\Delta_{\mathrm{n}+1} t=\Delta_{\mathrm{n}} t$.

X,5-6. If t is an arbitrary moment near the moment t_{0} of the true syzygy, β the corresponding latitude of the Moon, then the size m of the obscured part is found, for a lunar eclipse, from

$$
\begin{equation*}
m=\left(r_{\mathrm{u}}+r_{\mathrm{m}}\right)-\mathrm{MS} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{MS}=\sqrt{M^{\prime} \mathrm{S}^{2}+\beta^{2}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{M}^{\prime} \mathrm{S}=\frac{v_{\mathrm{m}}-v_{\mathrm{s}}}{60}\left(\mathrm{t}_{0}-\mathrm{t}\right) \tag{3}
\end{equation*}
$$

The correctness of this rule follows immediately from Fig. 43. For a solar eclipse (1) is to be replaced by

$$
m=\left(r_{\mathrm{s}}+r_{\mathrm{m}}\right)-\mathrm{MS}
$$

Cf. also VIII,17-18.
$\mathbf{X , 7}$. The half-duration of totality is computed by determining the distance $A B$ (cf. Fig. 44) between first contact and eclipse middle:

$$
\mathrm{AB}=\sqrt{\left(r_{\mathrm{u}}-r_{\mathrm{m}}\right)^{2}-\beta^{2}}
$$

The duration of totality can be found from the distance 2 AB by dividing it by the relative velocity of the two luminaries, a step which is hinted at by referring to "the case of the tithi'".

Chapter XI

XI,1-5. These verses concern the "projection" of eclipses, i.e., a graphical method for finding the points of first and last contact on the eclipsed body in relation to certain orthogonal diameters $\mathrm{N}^{\prime} \mathrm{S}^{\prime}$ and $\mathrm{E}^{\prime} \mathrm{W}^{\prime}$ as defined previously in VI,8 (cf. Fig. 26 p. 54).

For any given moment the direction of the ecliptic must be determined by means of an angle γ (called "deflection") with respect to the "east-west-line" $\mathrm{E}^{\prime} \mathrm{W}^{\prime}$ (cf. Fig.

Fig. 44.

Fig. 45.
45). This angle is found from two components. The first, depending on the geographical latitude φ, is found in XI, 2 from

$$
\begin{equation*}
\operatorname{Sin} \gamma_{1}=\operatorname{Sin} \varphi \operatorname{Sin} t / R \tag{1}
\end{equation*}
$$

where t is the hour angle. We have explained the reasoning underlying this rule in connection with VI,8. As was then shown the resulting angle gives actually the direction of the equator with respect to the east-west-line. One can formulate this situation also in the following form: γ_{1} assumes that the eclipsed body is in the equator, i.e., $\lambda=0^{\circ}$ or 180°. The angle of the ecliptic with the east-west-line is then $\gamma_{1} \pm \varepsilon=$ $\gamma_{1} \pm \delta\left(\lambda+90^{\circ}\right)$ where $\delta\left(\lambda+90^{\circ}\right)$ is the declination at $\lambda+90^{\circ}$. For $\lambda= \pm 90^{\circ}$, i.e. at the solstices, the ecliptic is parallel to the equator; then $\gamma \approx \gamma_{1}=\gamma_{1}+0$, i.e. again $\gamma_{1}+$ $\delta\left(\lambda+90^{\circ}\right)$ since now $\lambda+90^{\circ}=0^{\circ}$ or 180°, and hence $\delta=0$. Hence, in all four cases we have found that $\gamma=\gamma_{1}+\delta\left(\lambda+90^{\circ}\right)$ and XI, 3 shows that this rule was considered valid not only for the equinoxes and solstices but generally:

$$
\gamma=\gamma_{1}+\gamma_{2}=\gamma_{1 \pm} \pm\left(\lambda+90^{\circ}\right)
$$

This, then, represents the angle between ecliptic and east-west-line at a moment when the eclipsed body has the longitude λ. Hence we can consider γ to be known for
any phase of the eclipse since the times for the phases can be computed, starting from the true syzygy.

We now can turn to the graphic construction. In XI, 1 we are directed to draw two concentric circles, one with radius r of the eclipsed body, the other with radius r^{\prime} which is the total of the radii of eclipsed and eclipsing body, i.e.

$$
\left.\begin{array}{lll}
r=r_{\mathrm{m}} & r^{\prime}=r_{\mathrm{m}}+r_{\mathrm{u}} & \text { for lunar eclipses } \tag{3}\\
r=r_{\mathrm{s}} & r^{\prime}=r_{\mathrm{s}}+r_{\mathrm{m}} & \text { for solar eclipses. }
\end{array}\right\}
$$

Through the center A of these circles one draws a fixed direction which represents the ecliptic (Fig. 46) and, knowing γ from (2), one also can draw the east-west-line $\mathrm{E}^{\prime} \mathrm{W}^{\prime}$ through A. Perpendicular to it is $\mathrm{N}^{\prime} \mathrm{S}^{\prime}(\mathrm{XI}, 3)$. For each phase a diagram of this type has to be constructed because γ can vary considerably, e.g., between beginning and end of a lunar eclipse.

Suppose that Fig. 46 is constructed for the moment of first contact at a lunar eclipse. We then assume parallelism between the lunar orbit and the ecliptic. If, there-

Fig. 46.
fore, A is the center of the Moon, the point B at $-\beta$ is the center of the shadow and $A B$ intersects the rim of the Moon where the first contact will occur.

XI,6. This verse seems to deal with the optical illusion that the disk of the Moon or the Sun near the horizon seems larger than when high in the sky. An arc of one minute would then subtend (on some instrument?) ${ }^{1 / 2}$ digit when near the horizon but only $1 / 3$ digit at high altitude. The rule occurring here must be intended to determine the actual physical dimensions of the "projection" described in XI,1-5.

Chapter XII

XII,1. The yuga is here a cycle of 5 years, containing $12 \cdot 5+2=62$ months. It is furthermore stated after every 62 days one tithi has to be omitted, i.e.

$$
\begin{equation*}
62^{\tau}=61 \text { sid. days. } \tag{1}
\end{equation*}
$$

and hence the length of one tithi

$$
\begin{equation*}
1^{\tau}=61 / 62 \text { sid. d. }=0 ; 59,1,56, \ldots \text { sid. d. } \tag{2a}
\end{equation*}
$$

and conversely

$$
\begin{equation*}
1 \text { sid. d. }=62 / 61 \text { tithi }=1 ; 0,59,0,59, \ldots{ }^{\tau} \tag{2b}
\end{equation*}
$$

The same relation follows from XII, 3 .
From (1) one obtains

$$
\begin{equation*}
1 \text { yuga }=5 \text { years }=62 \text { months }=62 \cdot 30^{\tau}=\frac{62}{61} \cdot 1830^{\tau}=1830 \text { sid. d. } \tag{3}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
1 \text { year }=366 \text { sid. d. }=365 \text { days. } \tag{4}
\end{equation*}
$$

The "years" are here the Egyptian-Persian years without intercalation.
These relationships in the Paitāmahasiddhānta of the Pañcasiddhāntikā are taken from the Jyotiṣavedānga of Lagadha (fifth century B.C.?), and are found also in the earliest recension of the Gargasaṃhitā (first century B.C. or A.D.?). Varāhamihira's use of the technical term avama here and in I,11-16 and his statement in XII, 2 that the ahargaṇa begins with sunrise indicates that he assumes that the Paitāmahasiddhānta operated with sāvana (sunrise) rather than with nākṣatra (sidereal) days. Nevertheless the only reasonable interpretation of (3)

$$
5 \text { years }=1830 \text { "days" }
$$

is the relation (4).
XII,2. If S represents the number of completed years in the Saka Era then

$$
\begin{equation*}
N=\frac{S-2}{5} \tag{1}
\end{equation*}
$$

gives the number of completed yugas, i.e. the counting of the yugas begins with Śaka Era 3.

The year Saka 3, i.e. A.D. 80, being fixed by the text as the year of epoch for Varāhamihira's Paitāmahasiddhānta, the date can be determined more closely as January 11 of this year. ${ }^{1}$) At this date occurred a conjunction of Sun and Moon at a tropical longitude $\lambda \approx 290^{\circ}$. Consequently the Sun would enter Aries in the third month after this conjunction. Now Māgha is the second month before Caitra. Under the plausible assumption that Caitra was already in the first century the month in which the Sun enters Aries, as is the case in the fifth century, the above given date would fit all conditions of the text.

XII,3. If a is the ahargana (here to be understood in sidereal days) then the number of corresponding tithis is given by

$$
\begin{equation*}
\tau=a\left(1+\frac{1}{61}\right) \tag{1}
\end{equation*}
$$

${ }^{1}$) This was suggested by Kharegat [1895/7] p. 134 f . (cf. below p. 154).
Hist.Filos.Skr. Dan.Vid. Selsk. 6, no. 1.

The Sun traverses 27 nakṣatras in one year of 366 sidereal days (cf. XII, 1 (4)), hence in a sidereal days

$$
\begin{equation*}
\frac{a}{366} \cdot 27=a \cdot \frac{9}{122} \text { nakṣatras } \tag{2}
\end{equation*}
$$

The Moon completes in 5 years of 62 months

$$
\begin{equation*}
62+5=67 \text { sid. rotations }=67 \cdot 27 \text { nakṣatras. } \tag{3}
\end{equation*}
$$

Since 5 years $=1830$ sid. days (cf. XII,1(3)) the Moon progresses in a sidereal days

$$
\begin{equation*}
a \cdot \frac{67 \cdot 27}{1830}=a \cdot \frac{603}{610}=a\left(1-\frac{7}{610}\right) \text { nakṣatras. } \tag{4}
\end{equation*}
$$

These rules make sense only if one is dealing with "equal" nakṣatras, i.e. with sections of uniformly $13 ; 20^{\circ}$ in length. If the conjunction, mentioned in XII,2, was in fact the conjunction of A.D. 80 Jan. 11 at the beginning of the nakṣatra Dhanișṭa we would know that this point had in the first century a tropical longitude of about $\lambda=290^{\circ}$. Since there are 5 nakṣatras from Dhanisṭthā to Aśvinī, the beginning of the nakṣatra-zodiac, we find for this point $290+5 \cdot 13 ; 20=356 ; 40^{\circ}$, i.e., Pisces $26 ; 40^{\circ}$, in the first century A.D.

XII,4. The parvan is either the conjunction or the opposition of Sun and Moon. The first half of this verse, then, correctly states that the parvan is the boundary between the first and second halves (pakṣas) of a month.

The second part of this verse refers to the 17 th yoga, called vyatipāta, in a series of 27 yogas. These yogas count arcs of $13 ; 20^{\circ}$ each, contained in the sum of solar and lunar longitude (cf. also III,20-22). According to XII,3 a conjunction occurred at epoch, in A.D. 80, at the beginning of Dhanișthā, i.e. at Capricorn $23 ; 20^{\circ}$ or $\lambda=$ $293 ; 20^{\circ}$. Consequently the yoga has the number

$$
\begin{equation*}
\frac{2 \cdot 293 ; 20}{13 ; 20} \equiv \frac{226 ; 40}{13 ; 20}=17 \tag{1}
\end{equation*}
$$

i.e. vyatipāta.

Furthermore, the combined travel of Sun and Moon in a yuga of 5 years is $5+67=72$ complete rotations, i.e. $72 \cdot 360^{\circ}$. But each series of 27 yogas of $13 ; 20^{\circ}$ each amounts also to 360°. Thus the above travel contains 72 series of yogas, accumulated during 1830 days (cf. XII,1 (3)). Hence the number of series elapsed since epoch at ahargana a is given by

$$
\begin{equation*}
\frac{72}{1830} a=\frac{12}{305} a \tag{2}
\end{equation*}
$$

XII,5. For the interval from the winter solstice to the summer solstice (the "nothern ayana'") the length of daylight C, measured in muhūrtas:

$$
\begin{equation*}
30 \text { muhūrtas }=1 \text { day } \tag{1}
\end{equation*}
$$

is given by

$$
\begin{equation*}
C=\frac{2}{61}(n+732)-12 \text { muhūrtas } \tag{2}
\end{equation*}
$$

where n is the number of days since the winter solstice. For $n=0$ this formula gives $C=12$, for $n=\frac{366}{2}=183$ one obtains $C=18$. Hence (2) is based on the assumption that the length of daylight varies according to a linear zigzag function between the extrema

$$
m=12 \quad M=18
$$

i.e. it is assumed that

$$
\begin{equation*}
\frac{m}{M}=\frac{2}{3} \tag{3}
\end{equation*}
$$

and that the year is exactly halved by the solstices. The ratio (3) is a basic parameter in Babylonian astronomy; cf. II,8 above.

Chapter XIII

XIII, 1-5, 9-14. This is the conventional cosmography of the astronomers who have adapted the Purānic (and Jaina) conception of a flat oikoumene surrounding Mount Meru to the necessities of spherical astronomy by retaining Meru as the North Pole where the gods dwell, and calling the South Pole Vaḍavāmukha, the dwelling place of the demons. The phraseology echoes verses of Lāṭadeva (see above Pt. I p. 14 f .).

XIII,6-7. The "others" are Āryabhaṭa (Āryabhațīya, Daśagītikā 4 and Gola 9).
XIII,8. The Arhats or Jainas believe that there are two Suns, two Moons, and two sets of nakșatras which rise alternately, so that a complete revolution of one of these bodies about the center of the flat earth, Mount Meru, takes 2 nychthemera. This system is also referred to by Brahmagupta (Brāhmasphuțasiddhānta XI,3) who perhaps had this verse of the Pañcasiddhāntikā in mind; for a detailed description of this peculiar conception see Kirfel [1920] pp. 285-291 and plate 16.

Varāhamihira's criticism seems to imply that the Jaina theory must be false because a determined point associated with the Sun appears on two successive nychthemera. This is not a valid criticism as the Jainas could assert an absolute identity in appearance between the two opposite halves of heaven occupied by the two Suns. More cogent would have been the argument that the Jaina theory accounts for only 90° of motion of heaven between sunrise and sunset whereas observations with a gnomon would quickly establish that the motion amounts to about 180°. We do not see, however, how such an interpretation could be made of this verse.

XIII,9-10. These verses show that Lan̄kā is located on the terrestrial equator, $\varphi=0^{\circ}$, and Avanti at $\varphi=\varepsilon=24^{\circ}$. Cf. also XIII, 19 .

XIII,15-19. The following relations are assumed for a terrestrial great circle:

$$
\begin{gather*}
1^{\circ}=8 ; 53,20 \text { yojanas } \tag{1}\\
1 \text { yojana }=0 ; 6,45^{\circ} . \tag{2}
\end{gather*}
$$

Consequently one quadrant measures 800 yojanas (in agreement with III,14 and IX,10).

On the basis of the relation (1) the distance in yojanas can be found between two places on the same meridian after the geographical latitudes were determined by direct astronomical observation.

The distance from Mount Meru to Avantī (= Ujjayinī) is $586^{2} / 3$ yojanas, hence, according to (1), exactly 66° as it should be if $\varphi=24^{\circ}$ at Avantī (cf. XIII,10).

Fig. 47.

XIII,20-25. Here are consequences developed, based on the assumption made in XIII,15-19:

$$
42^{\circ}=373^{1} / 3 \text { yojanas north of Avantī }
$$

i.e., at a latitude

$$
\varphi=66^{\circ}=90^{\circ}-\varepsilon
$$

the longest daylight is 60 nādikās $=24$ hours.
Furthermore
$403^{5} / 9$ yojanas $\approx 45 ; 24^{\circ}$ north of Avantī $\chi^{\boxed{ }}$ and \bar{r} remain invisible
482 yoj. $\approx 54 ; 14^{\circ}$ north of Avantī m to \nless remain invisible
$586^{2} / 3$ yoj. $=66^{\circ}$ north of Avantī \bumpeq to)(never rise, γ to m never set.
If one schematically identifies months and zodiacal signs, the above statements imply that

$$
\begin{array}{ll}
\text { at } \varphi \approx 69 ; 24^{\circ} & \text { longest daylight }=2 \text { months } \\
\text { at } \varphi \approx 78 ; 14^{\circ} & \text { longest daylight }=4 \text { months } \\
\text { at } \varphi=90^{\circ} & \text { longest daylight }=6 \text { months. }
\end{array}
$$

In Almagest II,6 the same data are associated with $\varphi \approx 69 ; 30^{\circ}, \varphi \approx 78 ; 20^{\circ}, \varphi=90^{\circ}$ respectively.

XIII,26-29. Cf. the commentary to XIII,1-5, 9-14.
The astrological rules in XIII,28 are common to all Sanskrit texts on the subject since they were introduced by the Yavanajātaka of Yavaneśvara in 149/150 A.D.

XIII,30-34. The tip of a gnomon which is parallel to the earth's axis is $g \sin \varphi$ above the horizontal plane (cf. Fig. 47) at a locality of latitude φ.

XIII,35-38. On the phases of the Moon. For the pakṣas cf. the commentary on III,18-19.

XIII,39-42. The order of the planets is the familiar Greek one. From it follows the order of the rulers of the months, hours, days, and years (for which cf. I,17-21).

Fig. 48.

Chapter XIV

XIV,1-4. We have here a graphical method for the determination of the ascensional difference ω (cf. Fig. 48B) to given declination δ-though the formulation of the text is less general since it considers only the endpoints of zodiacal signs. ${ }^{1}$)

The basis of construction is a graduated circle AN with center O (cf. Fig. 48), only one quadrant being actually needed. On its circumference one marks the point H such that the arc NH represents the given geographical latitude φ and AO the equator. Consequently HO represents the horizon if N is the north pole. A second arc is determined such that AB is the declination. Since AO is the equator the parallel DB is in the plane of the day-circle which belongs to δ, hence $\mathrm{DB}=r$ the "day-radius", $\mathrm{DC}=e$ the "earth-Sine" (cf. Fig. 48A) and

$$
\begin{equation*}
e=\operatorname{Sin} \delta \tan \varphi . \tag{1}
\end{equation*}
$$

${ }^{1}$) The ascensional difference is called "composite" (XIV,4) when the arc beginning at the vernal point extends over more than one sign.

One now uses the same diagram as representation of the plane of the day-circle by making $\mathrm{OE}=\mathrm{OF}=\mathrm{DB}=r$. We then determine on the day-circle a point F such that the chord $\mathrm{EF}=2 e$. If we call the resulting angle

$$
\mathrm{EOF}=2 \omega
$$

one has

$$
\sin \omega=e / r
$$

thus with (1)

$$
\begin{equation*}
\operatorname{Sin} \omega=\frac{R}{r} \operatorname{Sin} \delta \tan \varphi \tag{2}
\end{equation*}
$$

which is, according to IV,26 (2), the defining relation for the ascensional difference ω which belongs to δ.

The present method is, of course, independent of the units in which the radius R of the diagram is drawn. Why the text requires to make $\mathrm{OA}=90$ digits is not clear since $R=90$ is nowhere else a norm for trigonometric functions. Only if our first interpretation of XIV, 7 is correct the number 90 could perhaps represent the number of degrees from the pole to the equator.

XIV,5-6. If t is a time interval (since sunrise or before sunset), measured in nāḍis, then $6 t$ is the equivalent angle in degrees. If furthermore s_{0} is the length of the shadow cast by a vertical gnomon of length g at noon, s at any time t, the text seems to tell us how to find the increment of s over s_{0}. Apparently this should be found from

$$
\begin{equation*}
s=s_{0}+R-\operatorname{Sin} t \tag{1}
\end{equation*}
$$

Unfortunately such a relation cannot be correct since it gives for $t=0$ not $s=\infty$ but $s=s_{0}+R$ (though for $t=90^{\circ}$ one obtains $s=s_{0}$ as expected).

Furthermore any such formula must involve g, the geographical latitude φ, and the solar declination on the day in question. The only possibility of avoiding these data would imply that (1) concerns only the equinoxes and that s_{0}, the equinoctial noon shadow, is considered to be a given parameter. But even so s would have to be found from $s=s_{0} / \cos \alpha$ with α found from $\tan \alpha=\cot r / \sin \varphi$.

XIV,7. A possible interpretation of this verse is illustrated by Fig. 49. Let AN represent a quadrant of the equator with $\mathrm{OA}=90$ (cf. XIV,1-4). On this quadrant make $\mathrm{AP}=30^{\circ}, \mathrm{AQ}=60^{\circ}$. Parallel to NO are drawn the declinations $\mathrm{NB}=\varepsilon$, $\mathrm{QQ}^{\prime}=\delta\left(60^{\circ}\right) \approx 20 ; 30^{\circ}, \mathrm{PP}^{\prime}=\delta\left(30^{\circ}\right) \approx 11 ; 40^{\circ}$, measured in the same units as the radius NO - and, if desired, analogously for any other are from A toward N . The resulting curve $\mathrm{AP}^{\prime} \mathrm{Q}^{\prime} \mathrm{B}$ is then considered as representing the ecliptic. One now draws
 define arcs $\mathrm{AP}^{\prime \prime}=\alpha\left(30^{\circ}\right), \mathrm{AQ}^{\prime \prime}=\alpha\left(60^{\circ}\right)$ which are supposedly the right ascensions for $\lambda=30^{\circ}$ and $\lambda=60^{\circ}$ respectively.

That this procedure is not correct (except for A and N) is obvious. This can be seen also by direct measurement which gives $\mathrm{AP}^{\prime \prime} \approx 23^{\circ}$ (instead of $\approx 27: 50^{\circ}$) and $\mathrm{AQ}^{\prime \prime} \approx 52^{\circ}\left(\mathrm{instead}\right.$ of $\left.\approx 57 ; 55^{\circ}\right)$. Only the general trend of the right ascensions as function of λ is more or less preserved. Cf. also XIV,10-11.

The advantage of this interpretation of the text lies in the fact that it relates the problem at hand to the general type of numerical and graphical methods which are presented in this chapter. Otherwise an alternative translation could be proposed which implies no more than a simple description of the concept "right ascension":
"The ecliptic (lies) on a line (running through) the degrees of declination north and south of the equator; the degrees of the (corresponding) arcs of that (i.e., of the

Fig. 49
equator) multiplied by 10 are, in order, the vināḍikās if rising (the right ascensions) of the zodiacal signs"'.

XIV,8-10. Let G be the foot of the gnomon of length g (Fig. 50), the point C of the north-south line the endpoint of the equinoctial noon shadow. A point F is obtained by turning the gnomon down into the east-west line, hence making $\mathrm{FG}=g$. Then FC intersects the circle at an angle $\bar{\varphi}$ from CG such that $\bar{\varphi}$ is the colatitude.

The construction in XIV,9-10 (cf. Fig. 51) is only a trivial variant of the same idea.

XIV,10-11. Based on the graphical method assumed in Fig. 49 as interpretation of XIV, 7 the longitude λ which belongs to a given declination δ could be found by fitting δ (parallel to NBO) between the two curves (cf. Fig. 52). The principle of such a procedure is, of course, incorrect, e.g., because the quadrant AN is now used as representing longitudes though originally serving as the equator.

XIV,12-13. The elongation $\Delta \lambda$ between Sun and Moon is found by direct observation. Since the velocity of the Moon relative to the Sun is about 12° per tithi the quotient $\Delta \lambda / 12$ is an estimate of the number of elapsed tithis since conjunction.

XIV,14-16. The following construction supposedly provides a method for finding the path of the shadow end of a vertical gnomon and the position of the meridian line from three arbitrarily selected positions of the shadow (cf. Fig. 53). If G is the foot of the gnomon, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ the endpoints of three shadows s_{1}, s_{2}, s_{3} then M is constructed as midpoint of the circle which circumscribes the triangle $A B C$; this circle is assumed to be the path of the shadow, i.e. a hyperbola is approximated by a circular arc as may be reasonably adequate for the section from A to C.

Fig. 50.

Fig. 51.

It is obviously wrong, however, that MG defines the meridian line since the same points A, B, C, and M can be the result of totally different positions of G. Or formulated differently: three points define a circle but not a hyperbola.

XIV,17-18. Definition of concepts which have been used many times before.
XIV,19-20. Construction of a hemispherical sun dial (cf. Fig. 54), the plane of its rim being made to coincide with the plane determined by the east-west line and the direction to the north pole. The gnomon in the center will point in the direction of midheaven, its tip being at the center of the sphere. The endpoint of the shadow then describes the part above the horizon of the respective day-circle. From this can di-

Fig. 52.

Fig. 53.
rectly be known the nāḍis that have elapsed since sunrise. However, one cannot find the ascendent point of the ecliptic by adding an arc on the day-circle to the longitude of the Sun.

XIV,21-22. Fig. 55 illustrates the principle of the instrument in question. Using for the "hand" (hasta) and the "finger"' a norm as found in the Āryabhaṭiya (Daśagītikā
6) we get a ratio $1: 48$ for the width of the ring to its diameter and width of the ring of about $1 / 3$ of an inch. To keep such a ring accurately circular and in the same plane will not be easy. A practical execution of the instrument was probably never attempted.

XIV,23-26. The text seems to suggest a solid sphere with the principal circles drawn on its surface. Equidistant perforations made on the ecliptic should then be used to single out two diametrically opposite holes which define the position of the Sun in longitude.

The practical difficulties in constructing such a sphere would be extremely great and an armillary sphere, consisting of a system of rings, would serve the purpose

Fig. 54.

Fig. 55.
much better. The wording of the text, however, seems not to allow such an interpretation.

XIV,27-28. Strings are used for drawing circles, water for leveling surfaces, sand either for constructing diagrams on the ground or for computing on the sand-board.

The references to the forms of tortoises and men look more like tantra than gaṇita.

XIV,29-30. The only accurate time signals available in ancient astronomy for the determination of relative geographical longitudes were lunar eclipses. ${ }^{1}$) The present verses speak of full-moons in general which would, in practice, deprive the method of all its value since the accurate moment of opposition cannot be established by observation. ${ }^{2}$) Nevertheless the underlying idea is in principle correct, being based on a reversal of the rule for the application of the correction for geographical longitudedifferences, e.g., in IX, 10 .

The longitudes of Sun and Moon at opposition, i.e., λ_{s} and $\lambda_{\mathrm{m}}=\lambda_{\mathrm{s}}+180^{\circ}$ may be assumed to be known by computation. Hence one can in principle establish by
${ }^{1}$) This method can be made independent from man-made clocks by relating the characteristic phases of the eclipse to transit observations of stars.
${ }^{2}$) An error of only 10 minutes in longitude (considered permissible even at the height of Greek astronomy) would result in an error of 5° in geographical longitude and parallax alone could increase the error to five times this amount.
observation the moment at which the moon reaches this longitude λ_{m}. At that moment one also should observe which point of the ecliptic is rising, giving us, at least ideally, a longitude λ_{H} and hence an ecliptic arc $\lambda_{\mathrm{H}}-\lambda_{\mathrm{m}}$ which is equal to the arc $\lambda_{\mathrm{s}}-\left(\lambda_{\mathrm{H}}+180^{\circ}\right)$ The oblique ascension of the arc $\lambda_{\mathrm{H}}-\lambda_{\mathrm{m}}$ is therefore equal to the time t^{\prime} (expressible in ghațikās) since local sunset.

The simplest method of proceeding would be to apply the equation of daylight to t^{\prime} and thus to find the time t of the observation after $6 \mathrm{p} . \mathrm{m}$. (in equinoctial hours). On the other hand, one can find by the standard computational methods of the karana the time t_{0} of the opposition with respect to $6 \mathrm{p} . \mathrm{m}$. Lañā. Hence the time difference $\Delta t=t_{0}-t$ between the given locality and the prime meridian would be known, which solves our problem.

The text is by no means clear but seems to ask for a more intricate procedure. Although mentioned in the text at the wrong place we may assume the transformation of t^{\prime} into t carried out correctly, i.e., we consider to be known the time t in equinoctial hours after 6 p.m. local time at which the opposition took place. One now computes for the same number t of hours after $6 \mathrm{p} . \mathrm{m}$. Lan̄kā time the longitude λ_{0} of the Moon. Then $\Delta \lambda=\lambda_{\mathrm{m}}-\lambda_{0}$ represents the lunar motion during the time interval $\Delta \lambda$ between the local meridian and the prime meridian through Lan̄kā. Hence Δt can be found from $\Delta \lambda$ by dividing the latter by the lunar velocity-reminiscent of the conversion of a longitudinal difference into tithis.

This circuitous way is not only needlessly complicated but increases considerably the number of inaccurately known elements. The whole method probably had never been tried in practice.

XIV,31-32. Both the inpouring and the outpouring types of waterclocks are here described. For other references in early Sanskrit literature see Isis 54 (1963) p. 232 to which add Sphujidhvaja, Yavanajātaka 79,27.

The text states that there are 180 breaths (śvāsa) in a nādī. Each śvāsa consists of two prānas - an ingoing and an outgoing. The prāṇa, in fact, is traditionally a sixth of a vinādī (i.e. ${ }^{1 / 360}$ of a day) or the time necessary to recite 10 long syllables. XIV,32 contains 60 long syllables, and should therefore require 1 vinādī to be recited.

Table 10.

Yogatārā	Longitude		Latitude		No.
	Varāhamihira	Paitāmaha	Varāhamihira	Paitāmaha	
Kṛttikā	$32 ; 40^{\circ}$	$37 ; 2{ }^{\circ}$	$+3 ; 9^{\circ}$	$+5^{\circ}$	1
Rohiṇĩ	48;30	49;28	$-5 ; 51$	-5	2
Punarvasu	88	93	$+7 ; 12$ and $-7 ; 12$	$+6$	3
Puşya	97;20	106	+4;3	0	4
Āśleșā	107;40	108	$+0 ; 54$ and $-0 ; 54$	-7	5
Maghā	126	129	-	0	6
Citrā	181;50	183	-2;42	-2	7

Table 11.

Regulus	
A.D.	λ
0	$122 ; 9^{\circ}$
100	$123 ; 32$
200	$124 ; 54$
300	$126 ; 17$
400	$127 ; 40$
500	$129 ; 3$
600	$130 ; 26$

Table 12.

No.	Longitude		Latitude	
	Var.	Pait.	Var.	Pait.
1	$-93 ; 20^{\circ}$	$-91 ; 32$	$+3 ; 9^{\circ}$	$+5^{\circ}$
	$-77 ; 30$	$-78 ; 32$	$-5 ; 51$	-5
3	-38	-36	$\pm 7 ; 12$	+6
4	$-28 ; 40$	-23	$+4 ; 3$	0
5	$-18 ; 20$	-21	$\pm 0 ; 54$	-7
6	0	0	-	0
7	$+55 ; 50$	+54	$-2 ; 42$	-2

XIV,33-37. These verses are to be used in predicting the conjunctions of the Moon with certain fixed stars whose longitudes are given as degrees within the nakṣatras for which they serve as reference stars ("yogatārās") ; the latitudes are given in "hands" (hastas), of which each should be approximately $0 ; 54^{\circ}$.

We can easily compare (cf. Table 10) the figures in our text with those of the Paitāmahasiddhānta of the Viṣṇudharmottarapurāna (III,30) from which all later Indian star catalogues seem to be derived-with various modifications, of course. The discrepancies in latitude seem to indicate that the yogatārās of Kṛttikā, Puṣya, and Āśleṣā according to Varāhamihira are different from those according to Paitāmaha.

The safest identification seems Maghā and Regulus (α Leo) since the longitudes of Regulus between A.D. 0 and 600 agree with such an identification (cf. Table 11). The latitude of Regulus during this period is practically constant $+0 ; 24^{\circ}$ in fair agreement with the Indian norm.

For the further investigation it is advantageous to operate with relative longitudes, e.g., with respect to Maghā, since one eliminates in this way all chronological questions. Thus Table 12 can replace Table 10 . Similarly Table 13 gives the coordinates of six stars which may be identified with some degree of plausibility with the yogatārās Nos. 1 to 3 and 5 to 7 of Table 12. For No. 4 one would like to suggest some star in Cancer but no convincing identification presents itself.

Table 13.

	Magn.	Long.	Lat.	No.
η Tau (Hyades)	5	$-89 ; 57^{\circ}$	$+3 ; 52^{\circ}$	1
α Tau (Aldebaran)	1	$-80 ; 11$	$-5 ; 35$	2
β Gem (Pollux)	2	$-36 ; 27$	$+6 ; 33$	3
ε Can (Crib)	neb.	$-22 ; 32$	$+1 ; 0$	5
α Leo (Regulus)	1	0	$+0 ; 24$	6
α Vir (Spica)	1	$+53 ; 55$	$-1 ; 56$	7

XIV,38. If the Moon at latitude β_{m} comes in conjunction with a star of latitude β, i.e., if the Moon and the star are of same longitude, then the distance b of the northern rim of the Moon from the star (cf. Fig. 56) is given by

$$
\begin{equation*}
b=\left(\beta-\beta_{\mathrm{m}}\right)-0 ; 17^{\circ} \tag{1}
\end{equation*}
$$

since (VI,3) we have for the apparent diameter of the Moon

$$
\begin{equation*}
d_{\mathrm{m}}=0 ; 34^{\circ} \tag{2}
\end{equation*}
$$

If one measures, however, the distance b in "digits" such that

$$
\begin{equation*}
d_{\mathrm{m}}=15 \text { digits } \tag{3}
\end{equation*}
$$

then one has to replace (1) by

$$
\begin{equation*}
b=\frac{15}{34}\left(\left(\beta-\beta_{\mathrm{m}}\right)^{\prime}-17^{\prime}\right) \text { digits } \tag{4}
\end{equation*}
$$

Fig. 56.
measuring β and β_{m} in minutes of arc. According to XIV,33 the distance $\beta-\beta_{\mathrm{m}}$ has been found by observation. Of course it would be more reasonable to determine β_{m} from the directly observable distances β and b.

The origin of the norm (3) is unknown but in V,4 we have a similar division of the lunar diameter in 15 "parts".

XIV,39-41. It is the purpose of the text to compute for a given geographical latitude φ the longitude λ_{s} of the Sun at the heliacal rising of the star Canopus (which has a longitude near, or equal to Cancer 0° i.e. 90°). The text relates the rising time ϱ of the arc $\lambda_{\mathrm{s}}-90^{\circ}$ to an expression reckoned in degrees and then multiplied by 10 in order to obtain time units (vināḍis). We can avoid this factor by counting also oblique ascensions in degrees. Then the text seems to say

$$
\begin{equation*}
\frac{1}{2}\left(s_{0} \cdot 0 ; 25^{\circ}+21^{\circ} \cdot s_{0}\right)=\varrho\left(\lambda_{\mathrm{s}}-90^{\circ}\right) \tag{1}
\end{equation*}
$$

where s_{0} is the equinoctial noon shadow.

$$
\begin{equation*}
s_{0}=12 \tan \varphi \tag{2}
\end{equation*}
$$

and thus for (1)

$$
\begin{equation*}
2,8 ; 30 \tan \varphi=\varrho\left(\lambda_{\mathrm{s}}-90^{\circ}\right) . \tag{3}
\end{equation*}
$$

This relation cannot be strictly correct since we know that the Sun must be somewhere in the last third of Leo ${ }^{1}$) which makes $\lambda_{\mathrm{s}}-90^{\circ}$ about 50° or 60°, hence the oblique ascension greater than 50 and increasing with φ. The left-hand side, however, is zero at the equator and increases toward 120 as φ moves toward 45°. Hence (3) can be only approximately correct within certain limits of φ. It is plausible to investigate the situation for $\varphi=24^{\circ}$, which is the latitude of Ujjayinī, hence for $\tan \varphi \approx 0 ; 27$. This gives

$$
\varrho\left(\lambda_{\mathrm{s}}-90^{\circ}\right) \approx 58
$$

which is satisfied at $\varphi \approx 24^{\circ}$ by $\lambda_{\mathrm{s}} \approx$ Leo 21 . Hence (1) would be applicable for an area which contains Ujjayinī.

Chapter XV

$\mathbf{X V , 1 - 4 .}$ The Sun is "eclipsed" for any observer located within the shadow of the Moon. In this sense there is always a solar eclipse somewhere in the universe; he who correctly knows the relative position of the two luminaries can predict where

Fig. 57.
and when a solar eclipse will be visible. The Pitrs, who dwell on the side of the Moon opposite the earth, cannot see the Sun for half a synodic month; the middle of this type of "solar eclipse" occurs at full moon.

XV,5-6. On the north pole solar eclipses are considered impossible. The argument seems to be that the ecliptic is not far enough from the equator to cause the Moon's shadow to reach the north pole. This would be, however, the case only if the Moon would be restricted to a position in the ecliptic. But it is easy to see (cf. Fig. 57) that for a conjunction near the summer solstice a lunar latitude of about 1° suffices to produce a solar eclipse on the north pole.

XV,7-9. Dependence of a solar eclipse on local time, whereas XV,9 refers to the influence of longitudinal parallax, here estimated as reaching as much as 2 ksanas $=$ 4 nāḍīs. This agrees with the estimate for the horizontal parallax in VII, 1 and VIII,9.
$\mathbf{X V}, \mathbf{1 0}$. The reference is to Bṛhatsaṃhitā 5, 8-11.
${ }^{1}$) Bṛhatsaṃhitā XII,14 gives Leo 23° as solar longitude when Canopus rises.
$\mathbf{X V , 1 1 - 1 4}$. If one calls a "nychthemeron" the succession of one period of light and one of darkness, then 60 nāḍis is a nychthemeron for men, a synodic month for the Pitṛs on the Moon, and one year for the Gods on the north pole.
$\mathbf{X V , 1 5}$. The maximum altitude at which the Gods on the north pole can see the Sun is $\varepsilon=24^{\circ}$. In contrast, the same altitude is attained in 2 kṣaṇas $=1 / 15$ day when the Sun crosses a horizon perpendicularly, as is possible for geographical latitudes $|\varphi| \leqq \varepsilon$, thus, e.g., anywhere between Ujjayinī and Lan̄kā.
$\mathbf{X V}, \mathbf{1 6} \mathbf{- 2 1}$. This discussion is clear enough; it will suffice to indicate here some parallel references to statements about the epochs of the various authorities listed by Varāhamihira.

XV,18. The epoch here ascribed to Lātācārya is found again in $I, 8$ as that of the Romakasiddhānta; the epoch-date 22 March 505 A.D., then, must be Lāṭa's. But note that in VIII, 5 sunset at Avantī is ascribed to the Romakasiddhānta.

XV,19. Simphācārya is not otherwise known, but his epoch is the standard epoch of most Indian astronomers - e.g., for both the āryapakṣa and the brāhmapakṣa.

The guru of the Yavanas gives as epoch 10 muhūrtas i.e., 8 hours past sunset, hence about 2 hours $\approx 30^{\circ}$ to the west of the prime meridian Lan̄kā-Ujjayinī. We have seen in III, 13 that Yavanapura (Alexandria) is assumed to lie 44° to the west of Ujjayinī, as is very nearly correct. Baghdad-Babylon, however, lies $31 ; 25^{\circ}$ west of Ujjayini ; so the epoch of the guru of the Yavanas is midnight at Babylon as it was, e.g., in the Sasanian Zīj ash-Shāh (according to al-Bīrūnī, cited by E. S. Kennedy, JAOS 78, 1958, p. 260-261).

XV,20. Āryabhaṭa's first epoch is that of the ārdharātrika system, for which see Part I p. 14; his second is that of the Āryabhaṭīya, Daśagītikā 2 and Kālakriyā 16.

XV,22-23. In Purāṇic cosmology the inner continent, Jambūdvīpa, of which Mount Meru is the center, has at its four cardinal points the four territories listed here: Bhāratavarṣa (i.e., India) to the south, the Bhadrāśvas to the east, the Kurus to the north and the Ketumālas to the west. Similarly the astronomers (e.g. Āryabhatiya, Gola 13) posit on the equator four cities distant 90° from each other; starting from Lan̄kā and proceeding westward they are Lan̄kā, Romakaviṣaya, Siddhapura, and Yamakoṭi. ${ }^{1}$)
$\mathbf{X V}, 24$. This verse states that the various series of chronological units begin at the beginning of the yuga, at which time all of the planets were at Aries 0°. There is some ambiguity in the text as it is stated that both the series of days and that of nights begin at this time. The apparent contradiction disappears if we assume a sunset epoch and interpret the word "day" (dina) in the sense of "nychthemeron". But Varāhamihira may also have been expressing himself in a very loose manner.
${ }^{1}$) Cf. D. Pingree, The Thousands of Abū Ma'shar, p. 45.

The ayanas are usually the semicircles of the solar orbit from solstice to solstice but in the present context a beginning at the equinoxes is required. The retus define a kind of seasonal division of the year. The "motion of the constellations" counts the number of sidereal days in a yuga.

XV,25. Romakaviṣaya is per definition 90° west of Lan̄kā, and Yavanapura is by III, 1344° west of Lan̄kā. The variation referred to in the second half of the verse is a direct effect of the variation in the length of daylight; such a variation does not exist, however, at Lan̄kā itself but at any other locality on the prime meridian through Lan̄kā.

XV,26-29. Criticism of the ordinary concept "Lord of the day" because of its dependence on geographical location.

Chapter XVI

XVI,1-9. In order to find from the ahargaṇa a for the outer planets their mean (sidereal) longitude $\bar{\lambda}$, for Venus and Mercury the sighra (i.e. the sum of the mean sidereal longitude of the Sun plus the planet's mean anomaly), rules of the following form are given

$$
\begin{equation*}
\bar{\lambda}=360 \frac{a}{p_{0}}+\frac{a}{p_{0}} \delta+c . \tag{1}
\end{equation*}
$$

Here p_{0} is the approximate duration (in days) of one sidereal rotation, δ a correction due to the inaccuracy of p_{0}, and c (in degrees) the epoch constant (kṣepa).

The given data for $1 / p_{0}$ and the resulting values for p_{0} are shown in Table 14. Note that the values of p_{0} are the exact equivalents of the ratios given for $1 / p_{0}$, no roundings being involved. The identical values for $1 / p_{0}$ for Mars, Venus, and Mer-

Table 14.

	$1 / \mathrm{p}_{0}$		p_{0}
Saturn. .	$\frac{1000}{10766066}$	$\frac{16,40}{49,50,34,26}=\frac{1,0,0,0}{2,59,26,3,57,36}$	2,59,26;3,57,36 ${ }^{\text {d }}$
Jupiter .	$\frac{100}{433232}$	$\frac{1,40}{2,0,20,32}=\frac{1,0,0}{1,12,12,19,12}$	1,12,12;19,12 ${ }^{\text {d }}$
Mars .	$\frac{1}{687}$	$\frac{1}{11,27}$	11,27 ${ }^{\text {d }}$
Venus śĩghra .	$\frac{10}{2247}$	$\frac{10}{37,27}=\frac{1,0}{3,44,42}$	3,$44 ; 42^{\text {d }}$
Mercury śĨghra . .	$\frac{100}{8797}$	$\frac{1,40}{2,26,37}=\frac{1,0,0}{1,27,58,12}$	1,27;58,12 ${ }^{\text {d }}$

Table 15.

cury and equivalent expressions for Saturn and Jupiter are found in Khaṇ̣akhādyaka II,1-5.

In order to determine the correction δ one has to introduce the numbers p of days which represent the accurate lengths of the sidereal periods of the planets. Traditionally these numbers p are defined by saying that exactly N sidereal revolutions of the planet take place during A days, i.e.,

$$
\begin{equation*}
p=\frac{A}{N} . \tag{2}
\end{equation*}
$$

For the number A can be taken the number of days in a Mahāyuga, i.e., in 20,0,0,0 sidereal years. In the ārdharātrika system it is assumed (cf. IX,1) that

$$
\begin{equation*}
A=1577917800^{\mathrm{d}}=2,1,45,10,30,0^{\mathrm{d}} \tag{3}
\end{equation*}
$$

which is the exact equivalent of the statement that

$$
\begin{equation*}
1 \text { sidereal year }=365 ; 15,31,30^{\mathrm{d}} . \tag{3a}
\end{equation*}
$$

In the following we shall use the parameter (3) and the values N listed in Table 15.
It follows from the definition of p as exact sidereal period that one should have

$$
\bar{\lambda}-c=360 \frac{a}{p}
$$

whereas (1) gives

$$
\bar{\lambda}-c=360 \frac{a}{p_{0}}+\frac{a}{p_{0}} \cdot \delta .
$$

Consequently

$$
\frac{a}{p_{0}}(360+\delta)=\frac{a}{p} 360 \text { and thus } \delta=360\left(\frac{p_{0}}{p}-1\right) .
$$

Finally, using (2), we find for δ, measured in degrees

Table 16.

	$6,0 \cdot \Delta / \mathrm{A}$	Text: δ
Saturn Jupiter Mars	$\begin{aligned} & -0 ; 0,0,5,3, \ldots \\ & -0 ; 0,0,10,19, \ldots \\ & +0 ; 0,0,14,11, \ldots \end{aligned}$	$\begin{aligned} & -0 ; 0,0,5^{\circ} \\ & -0 ; 0,0,10 \\ & +0 ; 0,0,14 \end{aligned}$
Venus . . śĩghra Mercury	$\begin{aligned} & +0 ; 0,10,29,58, \ldots \\ & +0 ; 0,0,4,26,6, \ldots \end{aligned}$	$\begin{aligned} & +0 ; 0,10,30 \\ & +0 ; 0,0,4,30 \end{aligned}$

$$
\begin{equation*}
\delta=360 \frac{N p_{0}-A}{A} \tag{4}
\end{equation*}
$$

in excellent agreement with the values found in the text (cf. Tables 15 and 16).
The problem of determining the accurate moment of the epoch is naturally related to the explanation of the values given in the text for the epoch constants, the kssepas. We shall show in the following that the epoch positions for the Sun and the Moon are referred to noon (Ujjayinī) of March 20 A.D. 505 whereas the positions for the planets are based on midnight March $20 / 21$ of that year. One can consider this inconsistency as evidence for an earlier version of the Sūryasiddhānta (cf. above Pt. 1 p. 13 f.)

For the date of the epoch we can conclude from the rule given in I,8 for the computation of the ahargana that 427 years in the Saka era were completed at the epoch. Adding 427 to the number 3179 af years conventionally assumed as the date for the beginning of the Saka era with respect to the Kaliyuga ${ }^{1}$) we obtain for our epoch a distance of exactly $3606(=1,0,6)$ years from the beginning of the Kaliyuga.

We know furthermore (cf. (3a)) that

$$
1 \text { sidereal year }=6,5 ; 15,31,30^{\mathrm{d}} .
$$

Consequently the $1,0,6$ years elapsed since the beginning of the Kaliyuga contain

$$
\begin{equation*}
6,5 ; 15,31,30 \cdot 1,0,6=6,5,52,3 ; 3,9^{\mathrm{d}} \approx 1317123^{\mathrm{d}} \tag{5}
\end{equation*}
$$

If we add these days to the beginning of the Kaliyuga, i.e. to midnight of February $17 / 18-3101$ we obtain (ignoring the fraction $0 ; 3,9^{d}$) midnight March 20/21 A.D. 505.

Computing for this moment and with the parameters of the ārdharātrika system the planetary (mean) positions one finds exactly, or almost exactly, the epoch constants given in the present chapter (cf. Table 17). For Sun and Moon, however, one finds discrepancies of about one half day's motion too short; this shows that for these bodies noon of March 20 had been used as epoch, thus confirming the statement in IX, 1 that noon in Avantī is the point of reference for the solar longitudes. In the following we shall first deal with the epoch constants for Sun and Moon as given in
$\left.{ }^{1}\right)$ Brāhmasphuṭasiddhānta I,26 or Laghubhāskarīya I,4.
Hist.Filos.Skr. Dan.Vid. Selsk. 6, no. 1.

Table 17.

	N	$0 ; 18,1,48 \cdot$ $\mathrm{~N}=\mathrm{c}_{1}$	$\overline{\mathrm{v}}$	$-0 ; 3,9 \cdot$ $\overline{\mathrm{v}}=\mathrm{c}_{2}$	$\mathrm{c}_{1}+\mathrm{c}_{2}=\mathrm{c}^{\prime}$	c	XVI	$\mathrm{c}-\mathrm{c}^{\prime}$
Saturn. .	$40,42,44$	$122 ; 28,55,12^{\circ}$	$0 ; 2,0,23^{\circ} / \mathrm{d}$	$-0 ; 0,6,19 \circ$	$122 ; 28,48,53 \circ$	$122 ; 28,49^{\circ}$	5	0
Jupiter .	$1,41,10,20$	$8 ; 6,36,0$	$0 ; 4,59,9$	$-0 ; 0,15,42$	$8 ; 6,20,18$	$8 ; 6,20$	6	0
Mars . .	$10,38,0,24$	$75 ; 36,43,12$	$0 ; 31,26,27$	$-0 ; 1,39,2$	$75 ; 35,4,10$	$75 ; 35$	6	$-0 ; 0,44^{\circ}$
Venus .	$32,30,39,48$	$267 ; 35,38,24$	$1 ; 36,7,44$	$-0 ; 5,2,48$	$267 ; 30,35,36$	$267 ; 30,39$	9	$+0 ; 0,3$
Mercury	$1,23,2,30,0$	$148 ; 30,0,0$	$4 ; 5,32,17$	$-0 ; 12,53,27$	$148 ; 17,6,33$	$148 ; 17$	9	$-0 ; 0,7$

IX, 4 and 5 (cf. Table 18 and 19) before turning to the planetary ksepas from XVI,5, 6, and 9 (Table 17).

Let N again represent the number of sidereal rotations of a celestial body (or apogees, or nodes) in $20,0,0,0$ sidereal years, thus $N / 20,0,0,0$ the number of revolutions per year and therefore

$$
\begin{equation*}
1,0,6 \cdot \frac{N}{20,0,0,0} \cdot 6,0^{\circ}=0 ; 18,1,48 \cdot N \tag{6}
\end{equation*}
$$

the mean motion during $1,0,6$ sidereal years since the beginning of the Kaliyuga. At the beginning of the Mahāyuga, i.e. $15,0,0,0$ years before the beginning of the Kaliyuga, all mean longitudes are assumed to be zero. The number of sidereal revolutions during $15,0,0,0$ years is given by

$$
\begin{equation*}
15,0,0,0 \cdot \frac{N}{20,0,0,0}=0 ; 45 \cdot N . \tag{7}
\end{equation*}
$$

Hence, whenever the last digit of N, multiplied by $0 ; 45$, produces a number ending in zero - that is to say, whenever the last digit of N is divisible by 4 -then the number of rotations during $15,0,0,0$ years is an integer and therefore the corresponding longitude will again be zero, also at the beginning of the Kaliyuga.

The values of N for the rotations of Sun and Moon in a Mahāyuga are ${ }^{1}$)

\[

\]

The first two numbers are divisible by 4 ; thus the mean longitude of Sun and Moon is zero at the beginning of the Kaliyuga. But $59 \cdot 0 ; 45=44 ; 15$ and $26 \cdot 0 ; 45=19 ; 30$. Consequently the lunar apogee had a longitude of 90° at the beginning of the Kaliyuga while the longitude of the ascending node was $\pm 180^{\circ}$.
${ }^{1}$) Cf. note 1 to I,14, Table 1 .

Table 18.

	$\mathrm{c}_{0}+0 ; 18,1,48 \cdot \mathrm{~N}=\mathrm{c}_{1}$
Sun, Mean Long.	$0^{\circ}+0^{\circ}=0^{\circ}$
Moon, Mean Long.	$0+357 ; 28,4,48=-2 ; 31,55,12^{\circ}$
Moon, Apogee	$90+189 ; 48,34,12-279 ; 48,34,12$
Moon, Asc. Node	$180-303 ; 54,46,48=-123 ; 54,46,48$

Having thus found the initial longitudes c_{0} for the beginning of the Kaliyuga we can now go $1,0,6$ years forward to the epoch in A.D. 505 by adding, according to (6), the amount of $0 ; 18,1,48 \cdot N$. The resulting longitudes c_{1} are shown in Table 18 . We must now observe that (5) tells us that $1,0,6$ sidereal years, beginning at midnight of -3101 Febr. 17/18 lead $0 ; 3,9^{\text {d }}$ beyond midnight of A.D. 505 March 20/21. Thus noon of March 20, the epoch for Sun and Moon, precedes by $0 ; 33,9^{d}$ the endpoint of $1,0,6$ years.

Let \bar{v} be the daily mean motions as determined from the parameters of the ārdharātrika system in IX, $1-5$. Then

$$
\begin{equation*}
c_{2}=-0 ; 33,9 \cdot \bar{v} \tag{8}
\end{equation*}
$$

furnishes the motion away from c_{1} found before. Thus

$$
\begin{equation*}
c^{\prime}=c_{1}+c_{2} \tag{9}
\end{equation*}
$$

are the longitudes to be expected for the epoch, i.e., for noon of March 20 A.D. 505 . Table 19 shows that the agreement with the ksepas given in IX,4 and 5 is excellent.

A similar consideration leads us to the kșepas for the planets in XVI,5-9. All numbers N are divisible by 4 , thus all longitudes are zero at the beginning of the Kaliyuga and (6) gives directly c_{1} (cf. Table 17). Since midnight epoch is used for the planets the excess of c_{1} is only $0 ; 3,9 \cdot \bar{v}$ where \bar{v} is again the daily mean motion based on ārdharātrika parameters. Thus the expected epoch-longitudes are $c^{\prime}=c_{1}-$ $0 ; 3,9 \cdot \bar{v}$, again in excellent agreement with the kssepas in the text.

Table 20 gives in column I the modern data for the planetary positions in A.D. 505 March 20 (7 p.m. Babylon). ${ }^{1}$) Column II is computed with Theon's 'Handy

Table 19.

	IX	$\overline{\mathrm{v}}$	$-0 ; 33,9 \cdot \overline{\mathrm{v}}=\mathrm{c}_{2}$	$\mathrm{c}_{1}+\mathrm{c}_{2}=\mathrm{c}^{\prime}$	c	IX	$\mathrm{c}-\mathrm{c}^{\prime}$
Sun, Mean Long.	1	(3)	$0 ; 59,8,10^{\circ} / \mathrm{d}$	$-0 ; 32,40,22^{\circ}$	$-0 ; 32,40,22^{\circ}$	$-0 ; 32,40^{\circ}$	1
Moon, Mean Lng.	2	(3)	$13 ; 10,34,52$	$-7 ; 16,47,46$	$-9 ; 48,42,58$	$-9 ; 48,44$	2
(4)	0						
Moon, Apogee	3	(3)	$0 ; 6,40,59$	$-0 ; 3,41,33$	$279 ; 44,52,39$	$279 ; 44,53$	3
(4)	$0 ; 0,1^{\circ}$						
Moon, Asc. Node	5	(3)	$-0 ; 3,10,44$	$+0 ; 1,45,23$	$-123 ; 53,1,25$	$-123,53,3$	5

[^14]Table 20.

Planet		I	II	c	c - II
Saturn	λ	123.19°	$120 ; 13^{\circ}$		
	$\bar{\lambda}$		$125 ; 19$	$122 ; 28,49^{\circ}$	$-2 ; 50^{\circ}$
Jupiter	λ	9.41	$7 ; 45$		
	$\bar{\lambda}$		$9 ; 41$	$8 ; 6,20$	$-1 ; 35$
Mars	λ	53.78	$47 ; 31$		
	$\bar{\lambda}$		$80 ; 34$	$75 ; 35$	$-4 ; 59$
Venus	λ	324.28	$320 ; 53$		
	$\bar{\lambda}$		$359 ; 17$		
	$\bar{\alpha}$		$265 ; 2$	$267 ; 30,39$	$+2 ; 29$
Mercury	λ	6.89	$13 ; 1$		
	$\bar{\lambda}$		$359 ; 17$		
	$\bar{\alpha}$		$149 ; 12$	$148 ; 17$	$-0 ; 55$

Tables" ${ }^{1}$) (for midnight Ujjayinī, March 20/21). The true longitudes in column II differ so little from the modern values that we may consider the mean longitudes and anomalies as fair estimates for these parameters (which have no simple parallel in modern tables). The agreement with the ksepas c is close enough to show their correctness for the date of the epoch.

For the Moon all relevant parameters can conveniently be computed with P. V. Neugebauer's tables (cf. Table 21, column II) and, for the sake of comparison, also from the "Handy Tables" (Table 21, column I). The longitude λ_{A} of the apogee of the lunar orbit can be found, according to Fig. 58, from

$$
\begin{equation*}
\lambda_{\mathrm{A}}=\bar{\lambda}-\bar{\alpha} . \tag{10}
\end{equation*}
$$

The agreement of the ksepas is very good indeed.

Table 21.

Moon	505 March 20 noon Ujj.		c	c
	I	II		c - II
$\bar{\lambda}$	$-9 ; 24^{\circ}$	-9.84°	$-9 ; 48,44$	$+0 ; 1,40^{\circ}$
λ	$345 ; 50$	345.13		
$\bar{\alpha}$	$74 ; 5$	70.6	$70 ; 26,23$	$-0 ; 9,37$
λ_{A}	$276 ; 31$	279.6	$279 ; 44,53$	$+0 ; 9$
$-\lambda_{\mathrm{n}}$	$126 ; 57$	123.8	$123 ; 53,3$	$+0 ; 5$
β	$+4 ; 36$	$+4 ; 45$		

[^15]XVI,10-11. The yearly corrections (bija) required according to these verses are
\(\left.$$
\begin{array}{l}\left.\begin{array}{l}\text { Saturn } \\
\text { Jupiter } \\
\text { Mars }\end{array}\right\} \text { mean long. } \begin{array}{lll}+0 ; 0,6,30^{\circ} & \text { Venus } \\
-0 ; 0,10 \\
+0 ; 0,17\end{array}
$$

\hline\end{array}\right\}\) Mercury	$-0 ; 0,45^{\circ}$
$+0 ; 2$	

For Jupiter an additional correction of $-0 ; 23,20^{\circ}$ (at epoch?) is to be applied.
If one computes the number of revolutions which accumulate by these corrections during $20,0,0,0$ years and then adds the results (algebraically) to the numbers N known from the ārdharātrika system one obtains numbers (involving fractions for the outer planets) which are recorded nowhere else. We have no explanation to offer.

XVI,12-14. The underlying model of planetary motion assumed by the Sūryasiddhānta, as by other early Indian texts, is a deferent concentric with the center O

Fig. 58.

Fig. 59.
of the earth (cf. Fig. 59), carrying the mean planet $\overline{\mathrm{P}}$. The latter is the center of two epicycles, the "manda-epicycle" and the "śighra-epicycle". On the former is situated the "mandocca" M such that the radius $r_{m}=\overline{\mathrm{P}} \mathrm{M}$ has a fixed sidereal direction, parallel to the direction from O to the apogee A; on the latter epicycle is moving the "śighrocca" S such that, for an outer planet, $\overline{\mathrm{P}} \mathrm{S}=r_{\mathrm{s}}$ is always parallel to the direction from O to the Sun (which, then, the text calls sighra, i.e., "conjunction") whereas for an inner planet $\overline{\mathrm{P}}$ coincides with the mean Sun while $\overline{\mathrm{P}} \mathrm{S}$ makes with the direction $\mathrm{O} \overline{\mathrm{P}}$ the angle α which represents the anomaly of the planet.

Obviously the displacement caused by the manda-epicycle is the cinematic equivalent of an eccentric deferent in the Greek planetary theory (with $\overline{\mathrm{P}} \mathrm{M}$ as eccentricity) whereas the śighra epicycle plays essentially the same role as the epicycle which carries the planet.

As independent variables serve in the Indian arrangement the angles m (manda) and s (śīghra) shown in Fig. 59,

$$
\begin{equation*}
m=\lambda_{\mathrm{A}} \tag{1}
\end{equation*}
$$

being the (sidereal) longitude of the apogee A, and

$$
\begin{equation*}
s=\bar{\lambda}+\alpha, \tag{2}
\end{equation*}
$$

the sum of the mean longitude of the planet and its anomaly. Both m and s produce corrections, μ and σ respectively, which, combined and modified in a fashion to be described presently, lead from the mean longitude $\bar{\lambda}$ of the planet to its true longitude λ.

The basic parameters for both inequalities are expressed in the text as circumferences of the epicycles, c_{m} and c_{s} respectively, measured in units of which the circumference c of the deferent of radius R contains $360 .{ }^{1}$) Since

$$
\begin{equation*}
\frac{r_{\mathrm{m}}}{R}=\frac{c_{\mathrm{m}}}{360} \quad \frac{r_{\mathrm{s}}}{R}=\frac{c_{\mathrm{s}}}{360} \tag{3}
\end{equation*}
$$

and since we have in the Pañcasiddhāntikā the norm $R=120$, it follows from (3) that

$$
\begin{equation*}
r_{\mathrm{m}}=\frac{c_{\mathrm{m}}}{3} \quad r_{\mathrm{s}}=\frac{c_{\mathrm{s}}}{3} \tag{4}
\end{equation*}
$$

for the norm $R=60$ adopted in Greek astronomy, however, one has

$$
\begin{equation*}
e=\frac{c_{\mathrm{m}}}{6} \quad r=\frac{c_{\mathrm{s}}}{6} \tag{5}
\end{equation*}
$$

Table 22 shows the specific values (following the ārdharātrika system) for the individual planets. ${ }^{2}$) All longitudes λ_{A} of the apogees are sidereally fixed. It should be noted that the manda-parameters of Venus are the same as the solar parameters, taken from IX, $7-8$ (above p. 69 f.). This means, expressed in modern terms, that the solar orbit can serve as deferent for Venus.

Table 22.

	manda				śĩghra			asc. node
	c_{m}	r_{m}	e	$\lambda_{\text {A }}$	c_{S}	r_{s}	r	λ_{n}
Saturn.	60	20; 0	10; 0	240°	40	13;20	6;40	100°
Jupiter	32	10;40	5;20	160	72	24	12	80
Mars	70	23;20	11;40	110	234	78	39	40
Venus	14	4;40	2;20	80	260	86;40	43;20	60
Mercury	28	9;20	4;40	220	132	44	22	20
Sun . .	14	4;40	2;20	80				

${ }^{1}$) These units are, of course, not "degrees" since every circle, independent of size, contains 360°.
Here, however, we are dealing with arc-lengths measured in units of length $\frac{\pi}{180} R$ such that the circumference of a circle of radius smaller than R contains less than 360 units.
${ }^{2}$) For the Sun cf. IX,7-8 (above p. 69 f.).

XVI,15-22. These verses give the rules for finding the true longitude λ of a planet from its mean longitude $\bar{\lambda}$, the latter assumed to be known, together with the mean longitude $\bar{\lambda}_{0}$ of the Sun and the parameters from Table 22.

The first step (XVI,15) consists in the determination of the equation σ caused by the epicyclic anomaly α (cf. Fig. 60). For an outer planet one has always

$$
\begin{equation*}
\alpha=\bar{\lambda}_{0}-\bar{\lambda} \tag{1}
\end{equation*}
$$

hence one can form with α as argument the trigonometric functions

$$
\begin{gather*}
\text { bhuja (or bāhu) }=\operatorname{Sin} \alpha=R \sin \alpha \tag{2}\\
\text { koṭi }=\operatorname{Cos} \alpha=R \cos \alpha
\end{gather*}
$$

Fig. 60.

Fig. 61.
R being the radius of the deferent. Making use of the relation (1) of the preceding section one obtains (XVI,16)

$$
\begin{align*}
& b=\text { bhujaphala }=\frac{c_{\mathrm{s}}}{360} \operatorname{Sin} \alpha=r_{\mathrm{s}} \sin \alpha \\
& k=\text { koṭiphala }=\frac{c_{\mathrm{s}}}{360} \operatorname{Cos} \alpha=r_{\mathrm{S}} \cos \alpha \tag{3}
\end{align*}
$$

(cf. Fig. 60). ${ }^{1}$) Computing the "(śighra-) hypotenuse"

$$
\begin{equation*}
\mathrm{OS}=h=\sqrt{\left(R+r_{\mathrm{s}} \cos \alpha\right)^{2}+\left(r_{\mathrm{s}} \sin \alpha\right)^{2}} \tag{4}
\end{equation*}
$$

one finds (XVI,17)

$$
\begin{equation*}
\operatorname{Sin} \sigma=R \cdot \frac{b}{h} \tag{5}
\end{equation*}
$$

This gives the "śighra-correction" σ; it is positive for $0<\alpha<180^{\circ}$ and negative in the remaining semicircle. Fig. 61 shows the general type of the function $\sigma(\alpha)$.
${ }^{1}$) The rules of signs in XVI, 16 follow a terminology according to which "Aries 0° " means $\alpha=0$. Consequently $k \geq 0$ for the arc "Capricorn 0° to Gemini 30° " and similarly for $k \leqq 0$. Our notation $k=r_{\mathrm{S}}$ $\cos \alpha$ automatically takes care of these rules.

The next steps consist in a modification of the direction of the apsidal line, first under the influence of the sighra correction, then by a manda correction (cf. Fig. 62).

The first displacement moves the apogee from A to A_{1}, and correspondingly the endpoint M of the manda-radius to M_{1}, by the amount of the angle $\frac{\sigma}{2}$ where σ is the sighra correction found in (5). Having thus formed the "corrected longitude of the apogee" (XVI,18)

$$
\begin{gather*}
m_{1}=m \mp \frac{1}{2} \sigma \tag{6}\\
\varkappa_{1}=\bar{\lambda}-m_{1} \tag{7}
\end{gather*}
$$

one computes

Fig. 62.
i.e., the angle made by the radius $r_{m}=\mathrm{M}_{1} \overline{\mathrm{P}}$ with the direction $\mathrm{O} \overline{\mathrm{P}}$. From k_{1} one obtains, as in (3), the perpendicular $b_{1}=\mathrm{M}_{1} \mathrm{~N}_{1}$ from

$$
\begin{equation*}
\frac{c_{\mathrm{m}}}{360} \operatorname{Sin} \varkappa_{1}=r_{\mathrm{m}} \sin \varkappa_{1}=b_{1} \tag{8}
\end{equation*}
$$

which is seen from O under the angle μ_{1}.
In order to determine this angle μ_{1} the same type of approximation is used as in IX, $7-8$ (above p. 69 f .) that is to say it is assumed (cf. Fig. 62) that

$$
\mathrm{M}_{1} \mathrm{~N}_{1}=b_{1} \approx \overline{\mathrm{P}} \mathrm{Q}=R \sin \mu_{1}
$$

or

$$
\begin{equation*}
\operatorname{Sin} \mu_{1}=b_{1} . \tag{9}
\end{equation*}
$$

This manda correction is now used to correct once more the apsidal line by moving A_{1} to A_{2} (hence M_{1} to M_{2}) by the angle $\frac{1}{2} \mu_{1}$ (cf. Fig. 63). Thus one forms

$$
\begin{align*}
m_{2} & =m_{1} \pm \mu_{1} \tag{10}\\
x_{2} & =\bar{\lambda}-m_{2} . \tag{11}
\end{align*}
$$

and find from it (XVI,19)

Hence one can find the perpendicular $b_{2}=\mathrm{M}_{2} \mathrm{~N}_{2}$ from

$$
\begin{equation*}
\frac{c_{\mathrm{m}}}{360} \operatorname{Sin} \varkappa_{2}=r_{\mathrm{m}} \sin \varkappa_{2}=b_{2} \tag{12}
\end{equation*}
$$

to which corresponds a manda correction μ_{2}, again determined from

$$
\begin{equation*}
\operatorname{Sin} \mu_{2} \approx b_{2} \tag{13}
\end{equation*}
$$

This correction μ_{2} is now used to change the position of the center of the sighra epicycle from the original mean position $\overline{\mathrm{P}}$ to a point $\overline{\mathrm{P}}_{1}$ of longitude $\bar{\lambda}_{1}$ such that (XVI,19)

Fig. 63.

$$
\begin{equation*}
\bar{\lambda}_{1}=\bar{\lambda} \mp \mu_{2} \tag{14}
\end{equation*}
$$

With $\overline{\mathrm{P}}_{1}$ as center one finds the sighra correction σ_{1} (of course by the same process as before σ from (1) to (5)) for the anomaly (XVI,20)

$$
\begin{equation*}
\alpha_{1}=\bar{\lambda}_{0}-\bar{\lambda}_{1} \tag{15}
\end{equation*}
$$

The resulting sighra correction σ_{1} then defines the true longitude of the planet from

$$
\begin{equation*}
\lambda=\bar{\lambda}_{1} \pm \sigma_{1} \tag{16}
\end{equation*}
$$

which is in Fig. 63 the longitude of the point P^{\prime} on the deferent. This completes the computation of the true position of an outer planet.

For Venus and Mercury (XVI,21) the equation of center of the Sun is still to be taken into consideration. Let $\lambda_{\mathrm{A} 0}$ be the (sidereally fixed) longitude of the solar apogee, c_{0} the circumference of the manda epicycle of the Sun of radius r_{0} (which
is the equivalent of the solar eccentricity), $\bar{\lambda}_{0}$ the longitude of the mean Sun at the given moment and

$$
\begin{equation*}
\bar{\varkappa}_{0}=\bar{\lambda}_{0}-\lambda_{\mathrm{A} 0} . \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{c_{0}}{360} \operatorname{Sin} \bar{\varkappa}_{0}=r_{0} \sin \bar{\varkappa}_{0} \tag{18}
\end{equation*}
$$

leads as before (e.g. (3) to (5)) to the manda correction μ_{0} of the Sun. It gives us the amount by which the true Sun differs in longitude from the mean Sun; by the same amount the whole epicycle of an inner planet must be displaced with respect to the

Fig. 64.

Fig. 65.
corrected mean position $\bar{\lambda}_{1}$ obtained in (14). Thus μ_{0} has to be added to the value λ given by (16).

This solar correction μ_{0} appears to be unique to the Pañcasiddhāntikā. ${ }^{1}$) An additional correction of $-1 ; 7^{\circ}$ is prescribed in XVI,22 for the longitude of Venus. This is probably an empirical correction, perhaps introduced by Varāhamihira.

With (16) we have finally the following rules for the determination of the true longitudes of the inner planets:

$$
\begin{array}{ll}
\lambda=\bar{\lambda}_{1}+\sigma_{1}+\mu_{0}-1 ; 7^{\circ} & \text { for Venus } \tag{19}\\
\lambda=\bar{\lambda}_{1}+\sigma_{1}+\mu_{0} & \text { for Mercury }
\end{array}
$$

We now can turn to the problem of motivating the peculiar way in which the two equations, σ depending on α and μ depending on \bar{x} (cf. Fig. 64), are combined in the rules from (6) to (16). Obviously the core of the difficulty of computing planetary positions lies in the fact that two inequalities are superimposed and that all combinations of the two effects are in principle possible. In other words we are dealing actually for a function of two independent variables which one tries to control, for
${ }^{1}$) An attempt to correct for solar equation was made in Khaṇdakhādyaka IX,9.
practical reasons, through a combination of values depending on each variable separately.

In order to explain the astronomical meaning of the compromise adopted by out text we replace the effect of the manda-epicycle by the equivalent eccentricity of the deferent and change our notation accordingly. Thus r_{m} becomes the eccentricity e of the deferent (cf. Fig. 64 and Fig. 65), while r_{S} is placed by r, the radius of the epicycle which carries the planet P. Without the effect of the eccentricity the mean planet would be at C and the true planet at P^{\prime} when subject to the anomaly α alone.

To combine the two displacements, one in the fixed direction CD in the amount e, the other CP^{\prime} depending on α, we assume that both are small in comparison to the

Fig. 66.
radius R of the deferent, such that the arc EQ of the deferent (cf. Fig. 66) may be considered a straight line, of course perpendicular to the direction OC. Under this assumption the observer at O would ascribe to the planet the longitude of Q when affected only by the sighra correction $\sigma(\alpha)=C Q$. Conversely the eccentricity e would move the center of the epicycle from C (which is at a distance \bar{x} from the apogee of the deferent) to D , i.e., to the longitude of the point E . Hence CE is the manda correction $\mu(\bar{x})$.

According to the rules of the text neither $\sigma(\alpha)$ nor $\mu(\bar{x})$ are used directly. The point with the distance \varkappa_{1} from the apogee, where

$$
\varkappa_{1}=\bar{\lambda}-m_{1}=\bar{\chi}+\frac{1}{2} \sigma
$$

(according to (6) and (7)) is represented by the midpoint R of CQ (cf. Fig. 66). The manda equation μ_{1} which belongs to the point R would be obtained by projecting onto the deferent a vector from R parallel to CD and of length $e=\mathrm{CD}$. Formula (10), however, shows that only $\frac{1}{2} \mu$, is used, i.e., the projection RU of $\mathrm{RT}=\frac{1}{2} e$. The parallelograms drawn in Fig. 66 show that T is a point of CP^{\prime} and that U also can be obtained by projecting the midpoint Z of the parallelogram $\mathrm{PP}^{\prime} \mathrm{CD}$ onto the deferent. Thus the use of $\frac{1}{2} \sigma$ and $\frac{1}{2} \mu_{1}$ is shown to be the equivalent of introducing the
midpoint of the resultant displacement of both inequalities, represented on the deferent by the point U .

One now considers U as the point for which the manda correction μ_{2} should be obtained, then applied to C according to (14). This, in turn, results in some change in the epicyclic anomaly according to (15) and hence to a new śghra correction σ_{1}, to be used as the final correction in (16).

The statement made above that U is the representative of the midpoint Z of the resultant inequality is no longer exact when $Q E$ is curved. Nevertheless the general idea remains valid that a point near the point Z on the resultant may produce a better correction than a correction provided by either D or P^{\prime} alone.

XVI,22. In the Paitāmahasiddhānta of the Viṣnudharmottarapurāna IV,15 one finds the following rule which can explain what Varāhamihira had in mind:
"One should divide the difference between the corrected argument for the final sighra operation and the argument for the first station by the difference of the (planet's) true velocity and the true velocity of the sighra; the result is the time, in days and their parts, of the first station."

The idea underlying this rule can be summarized as follows. From III, 31 in the same text is known the anomaly α_{0} at which the first station should occur (and, symmetrically to 180°, the second station). Let α be the true anomaly found by computation for a moment t not too far ahead of the time for which the station may be expected. Hence $\alpha_{0}-\alpha$ is the arc still to be travelled by the planet. Its velocity v on the epicycle is the difference between the velocity of the sighra s and the mean velocity of the planet. The quotient $\left(\alpha_{0}-\alpha\right) / v$ gives the time between t and the moment when the planet becomes stationary.

XVI,23. The following angular differences between Sun and planet are required for visibility:

Moon 12°	Jupiter 11°
Mars 17	Venus 9
Mercury 13	Saturn 15.

The same numbers are found in the Paitāmahasiddhānta of the Viṣnudharmottarapurāna (III,9) and, e.g., in the Laghubhāskarīya (VII,1-2). In the latter text the degrees are transformed into vināḍikās by multiplication with 10 , a procedure which shows that we are dealing with equatorial degrees, i.e., with arcs of oblique ascensions.

Similar, but slightly different data are given in XVII,58, excepting those for the Moon and Saturn that are unchanged.

XVI,24-25. These verses deal with the computation of the latitudes of the planets, but we do not understand how the given rules can lead to reasonable results. Latitudes should depend on three elements: the inclination of the planet's orbit (i.e. inclination of deferent and epicycle with respect to the ecliptic), the location of the nodes, and the distance of the planet from the earth (i.e., essentially, on the anomaly α). The
last element is taken care of by the rule in XVI, 25 to multiply a preliminary result by R / h where h is the corrected sighra hypotenuse, i.e. the distance of the planet from the observer corrected for both inequalities (in first approximation shown by OS in Fig. 60 p. 103).

The two first mentioned effects should somehow appear in the rules which seem to involve the two planetary inequalities but the details remain obscure. The pairs of coefficients

Saturn	$9 / 8$	$9 / 8$
Jupiter	$9 / 8$	$3 / 4$
Mars	$3 / 4$	$3 / 4$
Venus	$9 / 8$	$3 / 4$
Mercury	$3 / 4$	$9 / 8$

could perhaps suggest a tilting of the epicycles about two orthogonal diameters but the restriction to only two numerical values, $3 / 4=0 ; 45$ and $9 / 8=1 ; 7,30$, makes any coordination with the individual conditions still more difficult to understand.

Chapter XVII

XVII,1-60. These sixty verses of the last chapter of the Pañcasiddhāntikā form a unit, clearly distinct from the preceding chapters. We find here a theory of the planetary motions and of the planetary phases in a form which is directly related to Babylonian methods, in marked contrast to the geometric models in the classical Greek fashion as found, e.g., in chapter XVI.

In the present text the planets are discussed one by one in the order
Venus Jupiter Saturn Mars Mercury.
This arrangement is very unusual since it differs from the ordinary sequence in Indian astronomy (e.g. in XVII,65-80)

Mars Mercury Jupiter Venus Saturn
which is the sequence of the days of the week and thus ultimately based on the Hellenistic order

> Saturn Jupiter Mars Venus Mercury.

It also differs from the Babylonian order
Jupiter Venus Mercury Saturn Mars.
Astrologically it groups together the benefic planets (Venus and Jupiter) and the malefic (Saturn and Mars), leaving the neutral Mercury for last; but this may be a completely fortuitous circumstance.

In order to avoid repetitions we shall not follow in our discussion the text verse by verse. First we will combine all data about the synodic periods from which the mean motions are derived. Then we will take up, planet by planet (from Saturn to Mercury), problems concerning the planetary phases, their distribution and natural order. Finally epoch constants and visibility conditions will be treated, again in separate sections.

1. Synodic Periods

As "synodic period" or "synodic time" one denotes the time interval between one heliacal rising of a planet and the next, or, in general, from one phase to the next of the same kind. If one wants to establish the date of a certain phase one must know the number of synodic periods elapsed since the given epoch. The following procedure is designed to furnish this information.

Let a be the given ahargana and a_{0} a positive or negative correction of a which leads from the epoch date to the nearest phase - for which we use ordinarily the first visibility after conjunction (for an inner planet: after inferior conjunction) and which we denote by Γ. We wish to know the number s of synodic periods of a given length \bar{p} contained in

$$
\begin{equation*}
a^{\prime}=a+a_{0} \tag{1}
\end{equation*}
$$

days. In our text the obvious answer

$$
\begin{equation*}
\bar{s}=a^{\prime} \mid \bar{p} \tag{2}
\end{equation*}
$$

is not reached directly but only as a result of modifications of approximate values p and s where

$$
\begin{equation*}
s=a^{\prime} / p \tag{3}
\end{equation*}
$$

If ζ is a correction which changes the approximate period p to the accurate period \bar{p} by

$$
\begin{equation*}
p+\zeta=\bar{p} \tag{4}
\end{equation*}
$$

one has

$$
\begin{equation*}
\bar{s}=\frac{a^{\prime}}{\bar{p}}=\frac{a^{\prime}}{p+\zeta}=\frac{s}{1+\zeta / p} \approx s\left(1-\frac{\zeta}{p}\right)=\frac{a^{\prime}-\zeta s}{p} \tag{5}
\end{equation*}
$$

Table 23 shows the values taken from the text for a_{0}, p, and ζ.
Let us assume that a certain phase (e.g. Γ) occurs at a point of longitude λ. The next occurrences will take place at about $\lambda+\overline{\Delta \lambda}, \lambda+2 \overline{\Delta \lambda}$, etc., where $\overline{\Delta \lambda}$ represents the "mean synodic arc". As the planet traverses the ecliptic the phases will be more or less equidistantly spaced, but one sidereal rotation will not result in an occurrence of the phase in question at the starting point λ. In general it will take Z rotations (or $Z+\Pi$ rotations for Venus and Mars) before an accurate return of the phases to the same longitudes takes place, i.e., only after Π occurrences during Z (or $Z+\Pi$) revo-

Table 23.

	a_{0}	p	ζ	$\overline{\mathrm{p}}$	ch. XVII
ち	$-150 \frac{1}{3}$ d	$378=6,18^{\text {d }}$	$+1 / 10$	6,18; $6^{\text {d }}$	14-15
4	- 34;34	$399=6,39$	$-1 / 9$	6,38;53,20	$6-7$
${ }^{\wedge}$	-216;40	$780=13,0$	-0;2,41	12,59;57,19	$21-22$
q	-147	$584=9,44$	$-1 / 11$	9,43;54,32.	$1-2$
¢	+ 28;20	$927 / 8=1,55 ; 52,30$	+ 0; 0,15	1,55;52,45	$36-37$

lutions the phases will be periodically repeated. Since neither a planet nor the Sun move with constant angular velocity the "true synodic arcs" will more or less differ from the mean $\overline{\Delta \lambda}$. Nevertheless Π occurrences will result in a periodic repetition of all phases since the apsidal lines can be considered fixed for comparatively long intervals of time.

For an outer planet the sum of Π and of the corresponding number Z of sidereal revolutions of the planet gives the length of the basic period expressed in years; for an inner planet the number of sidereal rotations itself represents the number of years. Specifically one has the following relations:

Saturn, Jupiter

$$
\Pi \text { occur. }=\left\{\begin{array}{l}
Z \text { sid. rot. }=(\Pi+Z) \text { sid. years } \tag{6}\\
(\Pi+Z) \text { sid. rot. }=(2 \Pi+Z) \text { sid. years } \\
(\Pi+Z) \text { sid. rot. }=(\Pi+Z) \text { sid. years } \\
Z \text { sid. rot. }=Z \text { sid. years }
\end{array}\right\}
$$

The quotient

$$
\begin{equation*}
P=\Pi \mid Z \tag{7}
\end{equation*}
$$

indicates the number of synodic intervals which correspond in the mean to one sidereal revolution of the planet. Consequently

$$
\begin{equation*}
\overline{\Delta \lambda}=\frac{360^{\circ}}{P}=\frac{360^{\circ} \cdot Z}{\Pi} \tag{8}
\end{equation*}
$$

gives the length of the mean synodic arc. In general P is, of course, not an integer.
Furthermore: if one divides the number \bar{s} of synodic intervals contained in the given ahargaṇa a^{\prime}, found in (5), by the number P

$$
\begin{equation*}
\frac{\bar{s}}{P}=N \tag{9}
\end{equation*}
$$

then the result N tells us how many revolutions of the planetary phase under consideration (e.g., Γ) took place during a^{\prime} days. Therefore the integer part of N can be ignored while the remainder gives the fraction of a revolution gained in longitude over the position at a_{0}. Hence (9) allows us to determine the mean longitude of the planet at the given moment.

Table 24.

	Babylonian			Pañcasiddhāntikā			
	II	Z	$\overline{\Delta \lambda}$	$\mathrm{P}=\Pi / \mathrm{Z}$	$\overline{\Delta \lambda}$	ch. XVII	
ち	4,16	9	$\approx 12 ; 39^{\circ}$	$256 / 9=4,16 / 9=28 ; 26,40$		15	ち
4	6,31	36	$\approx 33 ; 9$	$391 / 36=6,31 / 36=10 ; 51,40$		7-8	4
\bigcirc	2,13	18	$\approx 48 ; 43$	$133 / 18=2,13 / 18=7 ; 23,20$		$22-24$	0°
9	12, 0	7,11	3,35;30		3,$35 ; 50^{\circ}$	1	¢
¢	11,24	3,37	$\approx 1,54 ; 13$	$684 / 217=11,24 / 3,37=3 ; 9,7,32, \ldots \mid$		$37-38$	¢

The parameters (7) and (8) are at the foundation of Babylonian planetary theory. The close resemblance of the data recorded in XVII, 1-60 to Babylonian procedures suggests a comparison with the above mentioned basic parameters. Table 24 reveals exact numerical agreement for the outer planets and Mercury. ${ }^{1}$) For Venus one finds a minor deviation but this is not to be taken too seriously since our knowledge of Babylonian data is particularly incomplete for this planet.

2. Patterns of Distribution for the Phases on the Ecliptic

If consecutive occurrences of a given phase were always spaced at a distance $\overline{\Delta \lambda}$ from each other the Π points on the ecliptic where our phase occurs would be also equidistantly arranged at a distance of

$$
360^{\circ} / \Pi=360^{\circ} / P Z=\overline{\Delta \lambda} / Z
$$

In fact, however, the length of the synodic arcs is greater in some sections of the ecliptic and therefore smaller in others, due to the anomaly of Sun and planet and other causes, such that the density of the Π points at which a certain phase will be observed depends on the region of the ecliptic.

To take care of this empirical fact Babylonian astronomy has invented several devices among which "System A" is of interest in the present context. The ecliptic is divided in a number of sections (from two to six are attested), generally of unequal length; within each of these sections the phases are equidistantly spaced, in some sections narrower, in others wider, than the mean distance $\bar{\Lambda} \lambda / Z$. It is exactly this idea which we find applied in the present chapter.

Saturn (XVII,16-19)

The ecliptic is divided into three sections

(1) length: $\alpha_{1}=45 ; 51^{\circ}$	containing 30	occurrences
(2)	$\alpha_{2}=177 ; 34$	127
(3)	$\alpha_{3}=136 ; 35$	99
Total	$360 ; 0$	$\Pi=256$

[^16]We are not told, however, where these three arcs should be located on the ecliptic.

The lengths of these three sections $\alpha_{1}, \alpha_{2}, \alpha_{3}$, are only little different from the mean lengths $\bar{\alpha}_{1}, \bar{\alpha}_{2}, \bar{\alpha}_{3}$, which one obtains from the mean distance

$$
360^{\circ} / \Pi=6,0^{\circ} / 4,16=1 ; 24,22,30^{\circ}
$$

by multiplication with the number of occurrences each arc contains. In this way one finds

$$
\begin{aligned}
& \bar{\alpha}_{1}=42 ; 11,15^{\circ}=\alpha_{1}-3 ; 39,45^{\circ} \\
& \bar{\alpha}_{2}=178 ; 35,37,30=\alpha_{2}+1 ; 1,37,30 \\
& \bar{\alpha}_{3}=139 ; 13,7,30=\alpha_{3}+2 ; 38,7,30 .
\end{aligned}
$$

This shows that the "true" distribution of the phases is only insignificantly different from the "mean" distribution and it is difficult to see why at all one should have introduced separate zones for such minute deviations.

Jupiter (XVII,9-11)

The ecliptic is divided into three sections

| (1) length: $\alpha_{1}=159 ; 30^{\circ}$ containing
 (2) $\alpha_{2}=180 ; 0$
 occurrences
 (3) $\alpha_{3}=20 ; 30$ | 195 | |
| :--- | :--- | ---: | ---: |
| Total | $360 ; 0$ | $\Pi=391$ |

The location of these sections on the ecliptic is not specified.
The length of the mean distance on the ecliptic between phases of the same kind is given by

$$
360^{\circ} / \Pi=6,0^{\circ} / 6,31 \approx 0 ; 55,14,34,40,49, \ldots{ }^{\circ}
$$

Multiplication of this arc by the above given number of events gives mean arcs which are hardly different from the given arcs:

$$
\begin{aligned}
& \bar{\alpha}_{1}=165 ; 43,44, \ldots{ }^{\circ}=\alpha_{1}+6 ; 13,44, \ldots \circ \\
& \bar{\alpha}_{2}=179 ; 32,22, \ldots=\alpha_{2}-0 ; 27,37, \ldots \\
& \bar{\alpha}_{3}=14 ; 43,53, \ldots=\alpha_{3}-5 ; 46,7, \ldots
\end{aligned}
$$

As in the case of Saturn the true density of the occurrences is only little different from the mean one.

Mars

For a sixfold division of the ecliptic cf. below p. 119.
Hist. Filos. Skr. Dan.Vid. Selsk. 6, no.1.

Venus (XVII,1-2)

The uniformity in the motion of Venus makes it unnecessary to introduce a sectioning of the ecliptic, a conclusion also known from Babylonian astronomy.

In XVII, 1 the mean synodic are is given as

$$
\overline{\Delta \lambda}=215 ; 50^{\circ}
$$

(cf. Table 24), the mean synodic time as

$$
\overline{\Delta t}=583 ; 54,32, \ldots{ }^{\mathrm{d}}
$$

(cf. Table 23), i.e. about $593 ; 11, \ldots$ tithis. The corresponding Babylonian parameters arc $\overline{\Delta \lambda}=215 ; 30^{\circ}$ and $\overline{\Delta \tau}=593 ; 10^{\tau}$ respectively. Exactly the Babylonian value $\overline{\Delta \lambda}=215 ; 30^{\circ}$ is also attested in our present text (XVII,75; cf. Table 33, below p. 126).

For the subdivision of the synodic arc cf. below p. 120 f .

Mercury (XVII,38-40)

For this planet we find here an eightfold division of the ecliptic. The individual ares are

$$
\begin{array}{ll}
\alpha_{1}=8^{\circ} & \alpha_{5}=12^{\circ} \\
\alpha_{2}=30 & \alpha_{6}=30 \\
\alpha_{3}=60 & \alpha_{7}=97 \\
\alpha_{4}=100 & \alpha_{8}=23,
\end{array}
$$

correctly totalling 360°.
Associated with these segments are eight numbers as follows:

$$
\begin{array}{ll}
n_{1}=7 & n_{5}=14 \\
n_{2}=30 & n_{6}=33 \\
n_{3}=81 & n_{7}=104 \\
n_{4}=88 & n_{8}=31
\end{array}
$$

One would expect these numbers to represent occurrences of a certain phase, presumably Ξ, within each segment, the total being Π. In fact, however, the total $388=6,28$ is not attested as a number Π (and the corresponding $Z=\Pi / P$ with $P \approx 3 ; 9,7$ would not be an integer) but as the number Z of years which contain $\Pi=20,23$ occurrences. ${ }^{1}$)

The fact that the numbers n_{i} do not represent occurrences but their number divided by P may have to do with the determination of true and mean longitudes of the phases described in the next section. The text calls the numbers n_{i} "days" which is in any case meaningless.

The mean distance between occurrences is given by $6,0^{\circ} / \Pi(\approx 0 ; 17,39, \ldots)$. An arc of length α_{i} should therefore contain in the mean $m_{i}=\alpha_{i} \Pi / 6,0$ occurrences. If the n_{i} whose total is $Z=\Pi / P$ would correspond to a mean density their number
$\left.{ }^{1}\right)$ Cf. ACT II, p. 283.
on α_{i} should be $\bar{n}_{\mathrm{i}}=\alpha_{\mathrm{i}} Z / 6,0$, hence $m_{\mathrm{i}} / \bar{n}_{\mathrm{i}}=\Pi / Z=P$. In fact the quotients $p_{\mathrm{i}}=m_{\mathrm{i}} / n_{\mathrm{i}}$ are not constant. One finds

$$
\begin{array}{ll}
p_{1}=3 ; 52,57, \ldots & p_{5}=2 ; 54,42, \ldots \\
p_{2}=3 ; 23,50 & p_{6}=3 ; 5,18, \ldots \\
p_{3}=2 ; 30,59, \ldots & p_{7}=3 ; 10,6, \ldots \\
p_{4}=3 ; 51,40 & p_{8}=2 ; 31,13, \ldots
\end{array}
$$

But the variation from the mean value $P \approx 3 ; 9,7$ are not very great, a fact reminiscent of the experience with Saturn and Jupiter.

3. Mean and True Positions

For Venus no distinction seems to be made between mean and true positions (cf. above p. 114). For the other planets the number N of its "risings" is to be multiplied by a certain number Z and the product divided by another number $I I$. These numbers Z and Π are the well known Babylonian parameters which determine the ratio $P=\Pi / Z$ (cf. above p. 111 and Table 24) that counts the number of mean synodic arcs (and their fractions) which cover exactly 360° in longitude. Hence we can give the above rule the form: the number of risings should be divided by P.

It is not difficult to find the reason for this operation. Let N be the number of "risings" i.e. the number of occurrences of the phase Γ of a planet since a first Γ after epoch. Suppose N is an integer multiple of P. Then we know that N synodic arcs cover an integer multiple of 360°; hence the first and the last rising have the same longitude. Consequently it is only the remainder in the quotient N / P which is of interest and which tells us which fraction $n<1$ of P synodic arcs goes beyond the longitude of the first rising. The corresponding gain in mean longitude will be $n P \overline{\Delta \lambda}$.

The longitudinal progress will be greater than this amount in case the true synodic arcs $\Delta \lambda$ are greater than $\overline{\Delta \lambda}$, smaller for $\Delta \lambda<\overline{\Delta \lambda}$. This seems to be the meaning of the statements found in XVII,8, XVII, 24, and XVII, 41. That the correction is applied to "days" instead of to longitudes is a common mistake in this chapter (cf. p. 126 and p. 128). The transformation to corresponding time intervals would not be difficult since the mean synodic times are known (\bar{p} in Table 23 p .111). The information concerning the true synodic arcs would have to come from the schemes for the distribution of the occurrences of the phases in different sections of the ecliptic (cf. above p. 112).

So far the principle of the procedure seems clear. There are, however, additional steps mentioned in the text which we cannot properly explain.

Saturn (XVII, 15-17) and Jupiter (XVII,7,9-10)

For both planets additive constants, +89 (in XVII,15) and +18 (in XVII,7) respectively, are mentioned which seem to be epoch constants. Their discussion is therefore postponed to a later section (p. 123-125).

Other positive and negative corrections are related to the remainders n (called "padas") of the quotients N / P. These corrections are

for Saturn	in (1) 30 padas	$+2416^{\prime}=+40 ; 16^{\circ}$
(XVII,16-17)	(2) 127	$-2519^{\prime}=-41 ; 59^{\circ}$
	(3) 99	$+2037^{\prime}=+33 ; 57^{\circ}$
	total: $\Pi=256$	

and similarly

$$
\begin{array}{lcl}
\text { for Jupiter } & \text { in (1) } 180 \text { padas } & -1456^{\prime}=-24 ; 16^{\circ} \\
\text { (XVII,9-10) } & \text { (2) } 195 & +1265^{\prime}=+21 ; 5^{\circ} \\
& \begin{array}{ll}
\text { (3) } 16 & -1391^{\prime}
\end{array}=-24 ; 46^{\circ} \\
& \text { total: } \Pi=391 .
\end{array}
$$

If one takes the number of padas in which positive corrections are prescribed and compares it with the number of padas of opposite sign one finds

> for Saturn: 129 positive, 127 negative
> for Jupiter: 195 positive, 196 negative.

In the case of Jupiter 195 and 196 are the integers nearest to $\frac{1}{2} \Pi$.
In the case of Saturn one has $\frac{1}{2} \Pi \pm 1$ instead of simply $\frac{1}{2} \Pi=128$.
The reason for this arrangement we do not know. On the values of the corrections it seems without influence.

The above given corrections are not final, either for Saturn or for Jupiter. For Saturn XVII, 17 prescribes "a subtraction or addition" of $12 ; 12^{\circ}$ which perhaps should be applied as follows:

$$
\text { in } \begin{aligned}
(1)+40 ; 16^{\circ}-12 ; 12^{\circ} & =+28 ; 4^{\circ} \\
(2)-41 ; 59+12 ; 12 & =-29 ; 47 \\
(3)+33 ; 57-12 ; 12 & =+21 ; 45 .
\end{aligned}
$$

Finally all numbers (i.e. $28 ; 4$ etc.) should be multiplied by a factor $31 / 32=0 ; 58,7,30$.
For Jupiter no further corrections are prescribed save a reduction (in XVII, 10) of all numbers by $5 / 8=0 ; 37,40$. We have no explanation to offer for any of these numbers. Also the concluding remark that Jupiter "rises in the east (Γ) in so many minutes (of arc)" makes no sense to us.

Mercury (XVII,36-37)

Between the operations which fit the pattern of Table 23 and 24 we find in XVII,36 a subtraction of $1 / 8$ of a day and a division of the number of risings by 4. We cannot explain these steps which seem in excess of the normal procedure.

4. Subdivision of the Synodic Arc

We denote the planetary phases by Greek letters. For an outer planet we have the following sequence:
I^{\prime} heliacal rising
Φ first station
Θ opposition
Ψ second station
Ω acronychal setting.
From Ω to Γ the planet is invisible. The longitudinal progress from one Γ to the next is the "synodic arc", the time elapsed during this motion is the "synodic time". In principle the same applies to the motion from Ω to Ω or to any other phase but the corresponding intervals need not to be the same for all phases. Only for the mean synodic arc $\overline{\Delta \lambda}$ could any pair of Greek letters be used.

For an inner planet we define

I morning rising Φ first station Σ morning setting	morning star invisible at superior conjunction
$\begin{array}{ll} \Xi & \text { evening rising } \\ \Psi & \text { second station } \\ \Omega & \text { evening setting } \end{array}$	evening star
Γ morning rising	invisible at inferior conjunction

In the preceding sections we collected the information concerning (a) the mean values obtainable from the periodicity of the phases and (b) the variations in density of a given phase (Γ) on the ecliptic within the total of Π occurrences. In both cases one is dealing only with one specific phase, independent of its relation to the other phases. What remains are data which describe the sequence of all phases within one synodic arc (e.g. from Γ to Γ), both with respect to motion in longitude and to time intervals. Since no mention is made of differences in length of the synodic arcs depending on different sections of the ecliptic the total of intervals between consecutive phases should be the mean value of the synodic arc and the synodic time. Such a pattern will be fairly close to the actually observable intervals and discrepancies can be absorbed by the stretch of invisibility from Ω to Γ. Consequently such a scheme is not meant to be extended beyond one synodic period, or rather it begins with Γ and ends at Ω.

Larger intervals between consecutive phases (e.g., between Γ and Φ) are sometimes subdivided into shorter sections. We denote the dividing points-which do not correspond to real planetary phases - by Greek letters with accents.

The striking parallelism with Babylonian data established in the preceding sections extends also into the present problems. Without going into greater detail we shall therefore add to the Indian analysis of the sequence of the planetary phases also a description of similar schemes found in Babylonian sources. That such a
comparison is at all fruitful in spite of the only fragmentary character of our knowledge of Babylonian astronomy demonstrates how intimate the relation of early Indian astronomy and its Babylonian predecessor must have been.

Saturn (XVII, 19-20)

Table 25 shows the given data. For the Babylonian theory we have only a pattern with two velocity zones ${ }^{1}$) which divide the direct motion in a different fashion. Hence we have here no means for a closer comparison.

Table 25.

Saturn		ch. XVII,19-20		
$\Gamma \rightarrow \Gamma^{\prime} \ldots \ldots$	16^{d}	$1 ; 20^{\circ}$	Babylonian	
$\Gamma^{\prime} \rightarrow \Phi \ldots \ldots$	56	$3 ; 52$		
$\Phi \rightarrow \Theta \ldots$	55	-3	$52 ; 30^{\mathrm{d}}$	
$\Theta \rightarrow \Psi \ldots-8^{\circ}$ or $-6 ; 40^{\circ}$				
$\Psi \rightarrow \Omega^{\prime} \ldots$.	60	-4	60	
$\Omega^{\prime} \rightarrow \Omega \ldots$	112	8		
$\Gamma \rightarrow \Omega \ldots$	36	3		

Since XVII, 14-15 give for the mean synodic time $\bar{p} \approx 378^{\text {d }}$ (cf. Table 23 p. 111) one may estimate the time of invisibility $\Omega \rightarrow \Gamma$ as about $43^{\text {d }}$ with about $3 ; 30^{\circ}$ of direct motion since the mean synodic arc should be about $12 ; 40^{\circ}$ (cf. Table 24 p .112).

Jupiter (XVII, 12-13)

For this planet one finds (cf. Table 26) good agreement with the previously determined parameters (cf. Table 23 p. 111): $\bar{p}=398 ; 53,20^{\mathrm{d}} \approx 399^{\mathrm{d}}$ and $\overline{\Delta \lambda}=$ $33 ; 9^{\circ} \approx 34^{\circ}$ (cf. Table 24). A corresponding Babylonian pattern is also shown in Table 26.

Table 26.

Jupiter	ch. XVII, 12-13		Babylonian		
$\Gamma \rightarrow \Gamma^{\prime}$	$60^{\text {d }}$	12°	$\Gamma \rightarrow \Gamma^{\prime}$	$30^{\text {d }}$	$7 ; 2^{\circ}$
$\Gamma^{\prime} \rightarrow \Gamma^{\prime \prime}$	40	4	Γ^{\prime}		
$\Gamma^{\prime \prime} \rightarrow \Phi$	24	2	Φ	90	11;15
$\Phi \rightarrow \Theta$	56	-6	Φ		
$\Theta \rightarrow \Psi$	60	-6	Ψ	120	$-9 ; 23$
$\Psi \rightarrow \Omega^{\prime}$	80	12	$\Psi \rightarrow \Omega^{\prime}$	90	10;47
$\Omega^{\prime} \rightarrow \Omega$	50	9	$\Omega^{\prime} \rightarrow \Omega$	30	7; 2
$\Omega \rightarrow \Gamma$	29	7	$[\Omega \rightarrow \Gamma$]	[30]	7; 2
$\Gamma \rightarrow \Gamma$	399 d	34°	$\Gamma \rightarrow \Gamma$	$390{ }^{\text {d }}$	$33 ; 45^{\circ}$

${ }^{1}$) Cf. ACT II p. 315.

Mars (XVII,25-35)

These eleven verses are meant to give a description of the subdivision of the synodic arc of Mars into five sections (gatis), thrown into confusion by the insertion of a detailed description of the retrograde motion.

At the beginning (XVII,25-26) we have the following arcs between the consecutive phases (C denoting the conjunction with the Sun):

(I)	$\Gamma \rightarrow \Phi$	186°
(II)	$\Phi \rightarrow \Psi$	-18
(III)	$\Psi \rightarrow \Omega$	180
(IV)	$\Omega \rightarrow \mathrm{C}$	30
(V)	$\mathrm{C} \rightarrow \Gamma$	30
Total:	$\Gamma \rightarrow \Gamma$	$408^{\circ} \equiv 48^{\circ}\left(\bmod .360^{\circ}\right)$.

A final synodic motion of 48° agrees well with the data found in XVII,22 (cf. Table 24). The text obviously considers as point of separation between gatis (II) and (III) the opposition Θ by describing it as "half of its course since conjunction" (XVII,25). This, however, must be a mistake since 18° can only be the total arc of retrogradation. Furthermore, by adding (V), (I), and (II) one finds 198° instead of 204° whereas $\Phi \rightarrow \Theta=-9^{\circ}$ would lead to $\mathrm{C} \rightarrow \Theta=207^{\circ}$.

The intrusion which concerns retrogradation consists of the verses XVII,29-33. Since this material is divided into three sections Varāhamihira (or his source) took this as representing 3 gatis; since XVII,27 and 28 deal with the gatis (I) $\Gamma \rightarrow \Phi$ and (II) $\Phi \rightarrow \Theta$ he counted XVII,34 as the 6 th gati, concerning $\Psi \rightarrow \Omega$, the "fast gati" after retrogradation, while XVII, 35 for $\Omega \rightarrow \mathrm{C}$ and $\mathrm{C} \rightarrow \Gamma$ become gatis " 7 ", and " 8 ".

Excluding the foreign material XVII,29-33 we obtain the following pattern for the time intervals:

XVII,27:	(I)	$\Gamma \rightarrow \Phi$	$267 ; 30^{\mathrm{d}}$
XVII,28:	(II)	$\Phi \rightarrow \Psi$	between 51^{d} and 72^{d}
XVII,34:	(III)	$\Psi \rightarrow \Omega$	between 296^{d} and 314^{d}
XVII,35:	(IV)	$\Omega \rightarrow \mathrm{C}$	between 60^{d} and 72^{d}
	(V)	$\mathrm{C} \rightarrow \Gamma$	between 60^{d} and 72^{d}.

The total which may vary between 735^{d} and 798^{d} (mean value 767 d) agrees reasonably well with the mean synodic time of about $780^{\text {d }}$. Table 27 shows the distribution of the intervals within the zodiacal signs. The pairing Pisces and Aries, Taurus and Gemini, etc., is a characteristic feature of the Babylonian theory of Mars ${ }^{1}$) and assures us of a Babylonian archetype of the present material.

We now turn to the verses XVII,29-33 which concern the retrogradations of Mars, again arranged for pairs of zodiacal signs. In order to bring some sense in these data we have to assume another mistake. For each pair of signs we find three arcs

[^17]Table 27.

Mars)(γ	Ø III	\bigcirc ¢	m 1 ¢	m ${ }^{7}$	3 m	XVII
I . .	267;30 ${ }^{\text {d }}$						27
II . . .	$57^{\text {d }}$	$71^{\text {d }}$	$72^{\text {d }}$	$66^{\text {d }}$	$61^{\text {d }}$	$51^{\text {d }}$	28
III...	301305	308311	314311	309306	302299	296	34
IV . . .	62	69	72	69	63	60	35
V...	62	69	72	69	63	60	
Total.	$750 \quad 754$	$785 \quad 788$	$798 \quad 795$	781778	$757 \quad 754$	735	

and three corresponding time intervals. We assume that the first two concern $\Phi \rightarrow \Theta$ and $\Theta \rightarrow \Psi$ respectively (cf. Table 28) whereas the third belongs to an independent scheme for $\Phi \rightarrow \Psi$ (cf. Table 29), erroneously combined with the first two. This latter scheme not only forms a typical linear zigzag function for arcs as well as for days but the arcs agree exactly with the Babylonian "Scheme R" for the retrogradations of Mars. ${ }^{1}$) The data shown in Table 28 show the same pattern for the arcs $\Phi \rightarrow \Psi$. The time intervals, however, look rather garbled and we do not dare to offer any emendations.

What XVII, 33 is intended to express escapes us, except for the final statement which seems to indicate that the second part of the retrograde arc, i.e., $\Theta \rightarrow \Psi$, should be $4 / 3$ of the first part $(\Phi \rightarrow \Theta)$. In the Babylonian theory the corresponding factor is $3 / 2$.

Venus (XVII,3-5)

The only clear section concerns the direct motion of Venus as evening star from Ξ to Ψ with slowly decreasing velocity as one approaches the stationary point:

Table 28.

Mars	\%, m	$)\left(, Y\right.$ and m, x^{\top}	\bigcirc, II and mp, Ω	9, $గ$
$\Phi \rightarrow \Theta$	$-6^{\circ} 32^{\text {d }}$	$-6^{\circ} 42^{\text {d }}$	$-7^{\circ} 40^{\text {d }}$	$-7^{\circ} 44^{\text {d }}$
$\Theta \rightarrow \Psi$	$-9^{\circ} 39^{\text {d }}$	$-10^{\circ} 42^{\text {d }}$	$-10^{\circ} 40^{\text {d }}$	$-11^{\circ} 40^{\text {d }}$
$\Phi \rightarrow \Psi$.	$-15^{\circ} 71^{\text {d }}$	$-16^{\circ} 84^{\text {d }}$	$-17^{\circ} 80^{\text {d }}$	$-18^{\circ} 84^{\text {d }}$

Table 29.

$\begin{aligned} & \text { Mars } \\ & \Phi \rightarrow \Psi \end{aligned}$	\%, m	$)\left(, \gamma\right.$ and m, x^{\top}	\bigcirc, II and MD, \sim	๑,
XVII,29-32	$-15^{\circ} 57^{\text {d }}$	$-16^{\circ} 60^{\text {d }}$	$-17^{\circ} 63^{\text {d }}$	$-18^{\circ} 66^{\text {d }}$
Babyl. "R"	-15°	-16°	-17°	-18°

${ }^{1}$) Cf. ACT II p. 305 f. and Fig. 58 a.

Ξ	60^{d}	74°
	60	73
	60	72
\downarrow	$27 ; 30$	20
Ψ	3	$1 ; 15$

giving a total of $210 ; 30^{\mathrm{d}}$ and $240 ; 15^{\circ}$ in direct motion.
The retrograde motion near inferior conjunction is divided as follows:

Ψ		15^{d}
Ω	5	-2°
$\Omega \rightarrow \Gamma$	10	$-2(?)$
$\Gamma \rightarrow \Phi$	20	-4

i.e. lasting $50^{\text {d }}$, perhaps with a total of 12° in retrograde motion.

One might assume that the direct motion as morning star (i.e. $\Phi \rightarrow \Sigma$) is of the same amount as the direct motion as evening star (i.e. $\Xi \rightarrow \Psi$). This would result in a total

$$
\Xi \rightarrow \Sigma \quad 471^{\mathrm{d}} \quad 468 ; 30^{\circ}
$$

According to Table 23 p. 111 the synodic period amounts to about 584^{d} with a longitudinal motion of $575 ; 50^{\circ}$ (cf. Table 24 p .112). This would give for the period of invisibility at superior conjunction

$$
[\Sigma \rightarrow \Xi] \quad 113^{\mathrm{d}} \quad 107^{\circ}
$$

This relation cannot be correct, however, since during this period the planet must move with more than solar velocity (cf. also the above given pattern for $\Xi \rightarrow \Psi$). This seems also to be expressed in the last sentence of XVII,5:

$$
\Sigma \rightarrow \Xi \quad 60^{\mathrm{d}} \quad 75^{\circ}
$$

which is exactly what one should expect. Consequently this would lead to

$$
[\Phi \rightarrow \Sigma] \quad 264 ; 30^{\mathrm{d}} \quad 272 ; 15^{\circ}
$$

or 54^{d} and 32° more than for $\Xi \rightarrow \Psi$, a rather implausible conclusion. ${ }^{1}$) At any event the description of the motion of Venus as given in our text seems incomplete.

Mercury (XVII,42-56)

We have here a group of verses which deal with four separate cases in a perfectly parallel fashion (cf. Table 30 and Figs. 67 and 68). In each case we are given for the single zodiacal signs from Aries to Pisces an amount T of days and an amount
${ }^{1}$) We have an early Babylonian text (5th century B.C.) which assumes for $\Phi \rightarrow \Sigma$ a motion of about 248° in 227^{τ} in good agreement with $\Xi \rightarrow \Psi$ in the present text; cf. Neugebauer-Sachs [1967] p. 197 (cf. below p. 128).

Table 30.

¢	$\Xi \rightarrow \Omega$		$\Omega \rightarrow \Gamma$		$\Gamma \rightarrow \Sigma$		$\Sigma \rightarrow \Xi$		Totals		¢
	T	B	T	- B	T	B	T	B	T	B	
γ	$36^{\text {d }}$	35°	$25^{\text {d }}$	22°	$29^{\text {d }}$	21°	$29^{\text {d }}$	54°	$119{ }^{\text {d }}$	88°	γ
γ	45	44	23	17	23	23	49	69	140	119	γ
III	45	48	20	14	26	27	47	75	138	136	III
\bigcirc	42	43	18	9	30	31	46	71	136	136	6
δ	34	34	16	9	32	32	45	70	127	127	ठ
17	26	27	18	9	33	35	43	70	120	123	m
Ω	21	18	20	12	35	36	40	70	116	112	Ω
m	16	14	25	18	44	43	38	64	123	103	m
x^{7}	16	15	26	21	42	43	32	62	120	99	χ^{7}
6	20	19	27	28	38	39	32	58	117	88	6
m	23	22	26	25	35	33	35	60	119	90	m
)(24	24	25	24	29	24	27	49	105	73)(

B of degrees (which we call "pushes" in time and longitude respectively), leading from one phase to the next:

$$
\begin{aligned}
\text { I: } & \Xi \rightarrow \Omega \\
\text { II: } & \Omega \rightarrow \Gamma \\
\text { III: } & \Gamma \rightarrow \Sigma \\
\text { IV: } & \Sigma \rightarrow \Xi
\end{aligned}
$$

The whole pattern has close relations to the Babylonian theory of Mercury ${ }^{1}$) which operates with similar "pushes", although in the texts known to us only for the

Table 31.

¢	$\Xi \rightarrow \Omega$		$\Gamma \rightarrow \Sigma$		¢
	T	B	T	B	
γ	$36^{\text {d }}$	36°	$14^{\text {d }}$	12°	γ
γ	42	42	16	14	б
III	48	46	19	18	II
\bigcirc	44	42	24	22	6)
ภ	38	36	27	26	δ
IT	22	22	30	30	m
Ω	15	14	36	34	Ω
m	15	14	46	44	m
x^{7}	16	16	46	44	x^{1}
6	22	20	44	42	6
※	24	22	34	34	慈
)(24	22	24	24)(

${ }^{1}$) Cf. ACT II p. 293-295.

visible sections of the orbit, i.e., for $\Xi \rightarrow \Omega$ (here case I) and $\Gamma \rightarrow \Sigma$ (case III) as shown in Table 31 and Fig. 67. The numerical agreement is not perfect but the parallelism in the general trend and in the method itself is obvious.

We cannot connect any rational procedure with the verses XVII,54-56.

5. Epoch Values

In Table 23 (p.111) we have a list of numbers a_{0}, representing days, which are elapsed between the epoch date and the nearby date of a specific planetary phase, i.e. heliacal rising (Γ) for the outer planets, first appearance as evening star (Ξ) for Venus and Mercury.

Assuming A.D. 505 March 22 as the date of the epoch (cf. pt. I, p. 8) a date a_{0} days later (algebraically) should give us the date of the phase. Modern tables provide us with the corresponding elongations from the Sun. As Table 32 shows these elon-

gations agree reasonably well with the visibility limits $\Delta \alpha$ given in XVII,58-60 (cf. below, p. 125). The only exception is Venus where a_{0} leads only to the conjunction with the Sun. In XVII,2, however, we are given Virgo 26° as longitude of Ξ. This is indeed in agreement with the expected elongation since Venus reaches this position in A.D. 505 Sept. 10 when the Sun is about at Virgo 19°.

For Mercury we have no epoch constant giving us directly a longitude. For the outer planets we have in XVII, 7 an additive constant of 18 (degrees) for Jupiter. Interpreting this as the planet's longitude at its first Γ after epoch we would have exact agreement with the position found for the date derived from XVII,6 (cf. Table 32). Consequently one should also interpret the corresponding constants for Saturn (in XVII,15) and for Mars (in XVII,23) as longitudes of the respective phases. For Mars this would mean a longitude of 175° (instead of 194° derived on the basis of a_{0} in Table 32). This longitude would correspond to Sept. 27 and a solar position at 186°, hence to an elongation of 11°. For Saturn, however, no such agreement seems obtainable for the given numbers.

Table 32.

XVII		$-\mathrm{a}_{0}$		$\begin{aligned} & \text { March } 22 \\ & -a_{0} \end{aligned}$	Planet λ	$\begin{gathered} \text { Sun } \\ \lambda_{\mathrm{s}} \end{gathered}$	$\begin{aligned} & \Delta \lambda= \\ & \lambda_{\mathrm{s}}-\lambda \end{aligned}$		$\begin{gathered} \Delta \alpha \\ (\mathrm{XVII}, 58-60) \end{gathered}$
14	Saturn	+ $150 ; 20^{\text {d }}$	505	Aug. 19	135°	148°	13°	Γ	15°
6	Jupiter	+ 34;34		Apr. 26	18	38			15
21	Mars	$+216 ; 40$		Oct. 25	194	214			14
1	Venus	+147		Aug. 16	145	145	0		$(-) 8$
36	Mercury	- 28;20		Febr. 22	350	336	-14	Ξ	$(-) 12$

6. First Visibility (XVII,57-60)

Of these four verses the second one (XVII,58) presents the most essential data, i.e. elongations from the Sun for each planet (and the Moon) required for visibility:
$\left.\begin{array}{lrr}\text { Saturn: } & 15^{\circ} \text { in XVI,23: } & 15^{\circ} \\ \text { Jupiter: } & 15 & 11 \\ \text { Mars: } & 14 & 17 \\ \text { Venus: } & 8 & 9 \\ \text { Mercury: } & 12 & 13 \\ \text { Moon: } & 12 & 12 .\end{array}\right\}$

Arranged according to permissible approach to the Sun, i.e. brightness, we would have here the order: Venus, Moon = Mercury, Mars, Saturn $=$ Jupiter. In XVI, 23 the arrangement would be: Venus, Jupiter, Moon, Mercury, Saturn, Mars.

In XVII,60 we are told that the arcs in question should be subtracted from the longitude of the Sun in the case of the planets but added for the Moon. This shows that the planets are assumed to be near the eastern horizon, i.e. the phase in question is always Γ, i.e. heliacal rising for the outer planets, first appearance as morning star for the inner planets. In the preceding sections it was always Ξ, i.e. first appearance as evening star, which played the leading role for Venus and Mercury.

The remaining verses, XVII,59 and XVII,57, seem to concern corrections to (1) depending on variable positions of the ecliptic with respect to the horizon. In XVII,59 it is said that the values in (1) should be multiplied by a corrective factor $c=\frac{30^{\circ}}{\varrho}$ where ϱ seems to mean the rising time of the zodiacal sign in question. If the ecliptic rises to the south of the eastpoint it is steeper to the horizon than the equator, hence $\varrho>30^{\circ}$ and $c<1$. Similarly $c>1$ when the ecliptic rises to the north of the east-point. This implies that the values in (1) refer to arcs on the equator, as one would indeed expect in Indian astronomy (cf. also XVI,23). That $c<1$ to the south of the east-point, $c>1$ to the north is reasonable since the visibility of a planet depends essentially on the vertical distance of the Sun below the horizon (the socalled arcus visionis).

We meet again references to south and north (presumably from the east-point) in XVII,57, south having a subtractive, north an additive effect. If this correction would
again apply to the values in (1) one would have here only another method for solving the same problem as in XVII,59. But all details escape us.

The number 480 could be $10 \operatorname{Sin} \varepsilon$ with $\varepsilon \approx 24^{\circ}$ and $R=120$, modified by an unexplained factor 10 . The term "latitude" could also mean declination but we see no reason for computing $\operatorname{Sin} \delta / 10 \operatorname{Sin} \varepsilon$.

XVII,64-80. In conclusion Varāhamihira has recorded a set of parameters, apparently from the Pauliśasiddhānta, concerning the mean synodic arcs of the planets and their subdivision by the planetary phases. The formulation in the text is marred by a misunderstanding. Varāhamihira calls ahargaṇa what is actually the planet's longitude (at a given date) and consequently takes the results obtained as "days" instead of degrees. The error originated probably in XVII, 65 where degrees of solar motion and days are considered to be equivalent. Another consequence of this misunderstanding is probably the repeated division by the quantity which we here call b (e.g. $b=4$ in XVII,66). We disregard these mistakes from now on in our commentary.

In order to avoid repetitions we regroup the different verses for our summary according to parallel subject matters. Since we are dealing again with methods which are closely related to ultimately Babylonian procedures we also give the relevant data from the cuneiform sources.

We begin with a group of rules asking for the computation of expressions of the form

$$
\begin{equation*}
\frac{\left(\lambda-\lambda_{0}\right) b}{a}=\frac{\lambda-\lambda_{0}}{\overline{\Delta \lambda}} \tag{1}
\end{equation*}
$$

with given parameters $\lambda_{0},{ }^{1}$) a, and b, listed in our Table 33 (which also should be compared with Table 24 (p. 112). That

$$
\begin{equation*}
b / a=\overline{\Delta \lambda} \tag{2}
\end{equation*}
$$

represents the mean synodic arc of the planet in question is evident from the numerical values. It is also clear that λ_{0} represents degrees and minutes of arc; consequently

Table 33.

	$\begin{gathered} \text { ch. } \\ \text { XVII } \end{gathered}$	λ_{0}	a	b	$\overline{\triangle \lambda}=\mathrm{a} / \mathrm{b}$	$\overline{\Delta \lambda}$ Babylonian	$\begin{gathered} \text { ACT } \\ \text { p. } \end{gathered}$
ち	78	$16518^{\prime}=275 ; 18^{\circ}$	$1118=18,38$	3	6,12;40 ${ }^{\circ}$	$(6,0+) 12 ; 39,22,30$	313
4	72	$1652^{\prime}=27 ; 32$	$2752=45,52$	7	6,$33 ; 8,34, \ldots$.	$(6,0+) 33 ; 8,44,48, \ldots$	307
\bigcirc	66	$6329^{\prime}=105 ; 29$	$3075=51,15$	4	12,48;45	$(6,0+) 6,48 ; 43,18,29,$.	302
q	75	$11122^{\prime}=185 ; 22$	$1151=19,11$	2	9,35;30	9,35;30	283
¢	69	$1681^{\prime}=28 ; 1$	$3312=52,12$	29	1,54;12,24, ..	1,54;12, ..	283

${ }^{1}$) In XVII, 75 the term $\lambda-\lambda_{0}$ is described as a subtraction from "the ahargana" instead of from "the longitude of the planet." The parallelism of the corresponding sentences in XVII,66, 69, 72, and 78 leaves no doubt that the same mistake has to be assumed in all cases.
$\lambda-\lambda_{0}$ must be a longitudinal arc, reckoned from some initial position λ_{0}. If the division by $\overline{\Delta \lambda}$ results in an integer we know that the arc in question begins and ends with the same planetary phase (operating here with the mean distribution). If, however, (1) produces a fractional remainder then we know from it how far the planet is removed from the phase at the beginning of the synodic arc. As beginning may serve, of course, not only a phase like Γ but also, e.g., a (mean) conjunction with the Sun. We do not know, however, how the initial positions λ_{0} were chosen. All planets, excepting Saturn, reach the longitude λ_{0} during A.D. 505 but only Venus would then be near a characteristic phase (Ξ, about September 17 ; cf. also above p. 124).

The subdivision of the synodic arcs follows a common pattern as seen in our Table 34. Three steps lead from the conjunction (C) over heliacal rising (Γ) to the first station (Φ), then follows the retrograde arc (from Φ to Ψ) and finally again three steps from Ψ to setting (Ω) back to C. For these steps the motion of the Sun (in degrees or "days") is given and the corresponding increase of elongation of the planet. The total of these steps must be $\overline{\Delta \lambda}$ for the Sun and 360° for the elongations. Both conditions are very well satisfied for all three superior planets.

During the planet's direct motion the Sun moves faster than the elongation increases. For the retrograde arcs, however, the elongation exceeds the solar progress and the difference represents the length of the retrograde arc. Thus we find the following retrogradations

$$
\begin{array}{lrll}
\text { Saturn: } & 113^{\circ}-120^{\circ}=-7^{\circ} & \text { ACT } & \text { p. } 315:-6 ; 40^{\circ} \text { and }-8^{\circ} \\
\text { Jupiter: } & 109-120=-11 & \text { p. } 312 \text { f.: }-8 \text { to }-10 ; 12 \\
\text { Mars: } & 72-90=-18 & \text { p. } 305 \mathrm{f} .:-15 \text { to }-18 ; 45
\end{array}
$$

in good agreement with the Babylonian data. One should note that the midpoint of the retrograde arc leads in all cases to an elongation of exactly 180° which shows

Table 34.

	Saturn ch. XVII, 78-80				Jupiterch. XVII,73-74				Mars ch. XVII,67-68							
	solar motion		elongation		solar motion		elongation		solar motion		elongation					
$\begin{aligned} & \mathrm{C} \rightarrow \Gamma \\ & \Gamma \\ & \\ & \quad \Phi \end{aligned}$	$\begin{aligned} & 18^{\circ} \\ & 98 \\ & 14 \end{aligned}$	130	$\begin{aligned} & 16 ; 30^{\circ} \\ & 90 ; 30 \\ & 13 \end{aligned}$	120	165470	140	$\begin{aligned} & 12^{\circ} \\ & 44 \\ & 64 \end{aligned}$	120	36188108	332	$\begin{aligned} & 15^{\circ} \\ & 60 \\ & 60 \end{aligned}$	135				
$\Phi \rightarrow \Psi$	113		120		109		120		72		90					
$\begin{gathered} \Psi \\ \\ \Omega \rightarrow \mathrm{C} \end{gathered}$	98		91		88		76		68		50					
	13		12;30		40		32		240	364	70					
	19	130	16;30	120	16	144	12	120	56		15	135				
Totals	$373=6,13^{\circ}$		360°		$\begin{gathered} 393=6,33^{\circ} \\ \frac{\Delta \lambda}{\lambda \lambda}=6,33 ; 8, . . \end{gathered}$		360°		$768=12,48^{\circ}$$\overline{\Delta \lambda}=12,48 ; 45$		360°					
	$\overline{\Delta \lambda}=$,12;40														

Table 35.

$\begin{gathered} \text { ch. XVII } \\ 76-77 \end{gathered}$	Venus			
	solar motion		elongation	
C $\rightarrow \Gamma$	$5{ }^{\circ}$		9°	
$\Gamma \rightarrow \Phi$	15	20°	21	-30
Φ	208		15	
Σ	12		5	
$\Sigma \rightarrow$ S	48	268	10	+30
Totals	$\begin{aligned} & 288^{\circ}=4,48^{\circ} \\ & \overline{\Delta \lambda}=9,35 ; 30^{\circ} \end{aligned}$		0°	

that the opposition Θ is here assumed to divide the retrograde arc symmetrically -in contrast to the known Babylonian schemes for Mars (cf. above p. 120).

For Venus we have a slightly different pattern. The regularity of the motion of this planet makes it possible to consider only the motion from the inferior conjunction (C) to the superior conjunction (S), assuming that the other half of the motion, from S to C , is symmetric to the first half. Thus one obtains Table 35 which would give a total synodic arc of $2 \cdot 4,48^{\circ}=9,36^{\circ}$ in excellent agreement with the required $\overline{\Delta \lambda}=$ $6,0^{\circ}+3,35 ; 30^{\circ}$.

For Mercury one finds Table 36, again with a correct total for the synodic motion. In the text the degrees of solar motion are schematically replaced by "days".

We do not possess for the inner planets similar Babylonian patterns for the subdivision of the synodic arcs but this is undoubtedly caused by the accidents of preservation.

Table 36.

2. Short Terminological Glossary

For a complete index see Part I p. 187 ff .

ahargaṇa	number of days since epoch	ksepa	epoch constant
ārdharātrika	system "midnight-system". for the characteristic parameters cf. I, 14 Table 1 (p. 12).	mahāyuga muhūrta nāḍī	interval of $20,0,0,0$ years time interval of $1 / 30$ day, i.e., 48 minutes time interval of $1 / 60$ day,
Avantī ayana	see Ujjayinī semicircle of the ecliptic, usually bounded by the solstices	nakṣatra	i.e., 24 minutes "equal nakșatra": arc of $13 ; 20^{\circ}$ of longitude, i.e., $360^{\circ} / 27$ (cf. Part I p. 187)
bāhu	one side of a right triangle: $b=c \cos \alpha$	rāhu Śaka	the ascending lunar node Śaka-era: year 1 beginning
bhuja	same as bāhu		in A.D. 78
Caitra	name of a month (cf. Part I p. 187)	śuklapakṣa	first half of the synodic month (cf. III, 18)
gati	arc between consecutive Greek-letter phenomena (i.e phases) of a planet	tithi Ujjayinī	$1 / 30$ of one synodic month also called Avantī; locality at $75 ; 50^{\circ}$ east of Greenwich,
gola kakṣā	semicircle of the ecliptic, bounded by the equinoxes geocentric distance of a	vināḍī	$\varphi=23 ; 11^{\circ}$ time interval of $1 / 60$ nāḍī, thus $0 ; 0,1$ day $=24$ seconds
karaṇa koṭi	point on the orbit of a planet, etc. $1 / 2$ tithi (cf. III, 19) one side of a right triangle:	Yavanapura yojana	Alexandria in Egypt unit of length such that 3200 yojanas $=$ terrestrial equator
kṛṣnapakṣa	$a=c \sin \alpha$ second half of the synodic month, following opposition	yuga	number of years, being a common period of several phenomena

3. Notation

It is, of course, impossible to associate letters and concepts in a strictly unique fashion. We nevertheless tried to adhere, within reasonable limits, to a consistent notation.

Trigonometry

R... radius of the basic circle and of the celestial sphere, usually $R=120$, if not stated otherwise
$\operatorname{Sin} \alpha=R \sin \alpha, \quad \operatorname{Cos} \alpha=R \cos \alpha$ $\operatorname{Vers} \alpha=R-\operatorname{Cos} \alpha \quad \operatorname{Crd} \alpha=2 \operatorname{Sin} \frac{\alpha}{2}$

Gnomon

$g \ldots$ length of vertical gnomon, usually $g=12$
$s \ldots$ length of shadow of $g, s_{0} \ldots$ equinoctial noon shadow
$h_{s}=\sqrt{s^{2}+g^{2}} \ldots$ "hypotenuse" to s

Spherical Astronomy

$\lambda .$. longitude, usually sidereal, but also tropical, depending on context
β... latitude
m... "mediatio" (or "polar longitude"),
$b \ldots$ polar latitude
$\alpha \ldots$ right ascension, $\delta \ldots$ declination
$\varepsilon \ldots$ obliquity of ecliptic
Z... zenith, V... nonagesimal
$z \ldots$ zenith distance $h \ldots$ altitude, $\bar{h}=90-h$
$\varphi \ldots$ terrestrial (= geographical) latitude, $\bar{\varphi}=90-\varphi \ldots$ colatitude
$\eta \ldots$ ortive amplitude (also for setting amplitude)
$\omega .$. ascensional difference
$e .$. "earth Sine" r... "day radius" in sphere of radius R (cf. Fig. 13 p. 41)

Sun, Moon, Eclipses; Planets
Subscripts:
$s \ldots$ concerning the Sun, $m \ldots$ Moon,
$u \ldots$ shadow e.g. $r_{u} \ldots$ apparent ra-
dius of the shadow at the Moon's distance
a... ahargaṇa, i.e. days elapsed since epoch
$\bar{\lambda} \ldots$ mean longitude, $\overline{\Delta \lambda} \ldots$ mean synodic arc
$\theta=\lambda-\bar{\lambda} \ldots$ equation of center
$v \ldots$ velocity (usually in degrees per day)
$\lambda_{\mathrm{c}} \ldots$ longitude of the Moon's ascending node
i... inclination of the lunar orbit with respect to the ecliptic
β... lunar latitude
$p_{0} \ldots$ horizontal parallax, $\quad p \ldots$ total parallax
$p_{\lambda}, p_{\beta} \ldots$ components of parallax (also lunar - solar)

Units of Time and Distance
Letters in raised position:
$d \ldots$ days $\tau \ldots$ tithis
n... nāḍīs vin... vināḍīs μ... muhūrtas
y... years, sidereal or tropical, depending on context
m... months, usually mean synodic months
$z \ldots$ zodiacal signs, 30° each
na...nakṣatras $13 ; 20^{\circ}$ each

Linear Zigzag Functions

m... minimum \quad... maximum
d... constant difference (absolute value)
$\Delta=M-m \ldots$ amplitude,
$\mu=1 / 2(m+M) \ldots$ mean value
$P=2 \Delta / d \ldots$ period $\quad P=\Pi / Z$

4. Index of Parameters

Decimal

Lexicographically arranged; the integers from 1 to 59 are only listed in the sexagesimal index. For references see under the sexagesimal equivalent.

```
100 = 1,40
104=1,44
1040 953 = 4,49,9,13
1045095=4,50,18,15
1050=17,30
10766 066 = 49,50,34,26
110 = 1,50
11122=3,5,22
114 = 1,54
1200 = 20,0
122 = 2,2
123=2,3
127=2,7
128=2,8
132=2,12
136=2,16
143=2,23
144 = 2,24
1461 = 24,21
146564 = 40,42,44
148=2,28
150=2,30
1577917800=2,1,45,10,30,0
1593 336=7,22,35,36
159 = 2,39
160=2,40
1603000 080 = 2,3,41,17,48,0
16041 = 4,27,21
163111=45,18,31
16518=4,35,18
1652 = 27,32
16547 = 4,35,47
1681 = 28,1
177 = 2,57
17937000=1,23,2,30,0
180=3,0
1830=30,30
```

```
\(18345822=1,24,56,3,42\)
```

$18345822=1,24,56,3,42$
$186=3,6$
$186=3,6$
$1936=32,16$
$1936=32,16$
$195=3,15$
$195=3,15$
$1984=33,4$
$1984=33,4$
$210=3,30$
$210=3,30$
$215=3,35$
$215=3,35$
$21600=6,0,0$
$21600=6,0,0$
$220=3,40$
$220=3,40$
$2227=37,7$
$2227=37,7$
$223=3,43$
$223=3,43$
$2247=37,27$
$2247=37,27$
$225=3,45$
$225=3,45$
$2260356=10,27,52,36$
$2260356=10,27,52,36$
$228=3,48$
$228=3,48$
$2296824=10,38,0,24$
$2296824=10,38,0,24$
$232226=1,4,30,26$
$232226=1,4,30,26$
$234=3,54$
$234=3,54$
$235=3,55$
$235=3,55$
$240=4,0$
$240=4,0$
$24589506=1,53,50,25,6$
$24589506=1,53,50,25,6$
$248=4,8$
$248=4,8$
$2520=42,0$
$2520=42,0$
$254=4,14$
$254=4,14$
$260=4,20$
$260=4,20$
$267=4,27$
$267=4,27$
$2700=45,0$
$2700=45,0$
$279=4,39$
$279=4,39$
$2850=47,30$
$2850=47,30$
$286=4,46$
$286=4,46$
$288=4,48$
$288=4,48$
$2908789=13,27,59,49$
$2908789=13,27,59,49$
$292207=1,21,10,7$
$292207=1,21,10,7$
$297=4,57$
$297=4,57$
$3031=50,31$
$3031=50,31$
$3120=52,0$

```
\(3120=52,0\)
```

```
3200=53,20
    6313219=29,13,40,19
335=5,35
3438=57,18
364220 = 1,41,10,20
365=6,5
373=6,13
378=6,18
38 100=10,35,0
38640=10,44,0
390=6,30
393=6,33
399=6,39
408=6,48
428=7,8
4320000=20,0,0,0
433232=2,0,20,32
43 831 = 12,10,31
442 = 7,22
488219=2,15,36,59
514=8,34
517080 = 2,23,38,0
53433 336 = 4,7,22,35,36
5347 = 1,29,7
54787 = 15,13,7
56 266 = 15,37,46
57753 336 = 4,27,22,35,36
583=9,43
584 = 9,44
60=1,0
609 = 10,9
6329 = 1,45,29
66 389 = 18,26,29
670217 = 3,6,10,17
68550 = 19,2,30
687 = 11,27
692=11,32
70=1,10
702 = 11,42
7022 388=32,30,39,48
703 = 11,43
72 = 1,12
75 = 1,15
768=12,48
780=13,0
80=1,20
800 = 13,20
81=1,21
879 = 14,39
8797 = 2,26,37
88=1,28
900=15,0
900 000 = 4,10,0,0
927 see 1,55;52,30
97 = 1,37
9761 = 2,42,41
99 = 1,39
```


Sexagesimal

Lexicographically arranged, initial zeros being ignored. References are to chapter and verse in the commentary. The topics mentioned are not intended to give more than the general area to which a parameter belongs.

1,0	Venus, node XVI,12-14 (Table 22)
1,0	Mercury, ecliptic are XVII, 38-40
1,0	Saturn, manda epicycle XVI,12-14 (Table 22)
1;0,59,0,59	tithi XII,1 (p. 81 (2b))
1,1	tithi XII, 1 (p. 80 (1))
1,2	months in 5 years XII, 1
1,4,24	lunar diameter IX,15-16 (p. 72 (3))
1,4,28;11	solar diameter IX,15-16 (p. 72 (3))
1,4,30,26	lunar nodes, number of rotations in Mahāyuga I, 14 (Table 1) XVI,1-9
1,4,30,26;3	lunar nodes IX,5 (p. 68 (3))
1,5	Sun, kṣepa VIII,1 (p. 59 (1)) VIII,5̌ (p. 61 (3))
1,6;40	distance of Moon IX,15-16 (p. 73 (9))
1,9;7,1	moon, longitude at epoch II, 2-6 (p. 17 (9))
1,10	Mars, manda epicycle XVI,12-14 (Table 22)
1,10;26,23	lunar anomaly, kṣepa XVI,1-9 (Table 21)
1,12	Jupiter, śĭghra epicycle XVI,12-14 (Table 22)
1,12,12,19,12	Jupiter XVI,1-9 (Table 14)
1,15	solar apogee (Gemini 15) VIII,2-3
1,15;12	semidiameter of Sun X,1-2 (p. 77 (4b))
1,15;35	Mars, kṣepa XVI,1-9 (Table 17, Table 20)
1,20	Jupiter, node XVI,12-14 (Table 22)
1,20	solar apogee (Gemini 20) III,2-3 IX,7-8 (p. 69 (2)) XVI,12-14 (Table 22)
1,20	Venus, apogee XVI,12-14 (Table 22)
1,21	Mercury XVII,38-40
1,21,10,7	solar mean longitude IX,1 (p. 65 (2))
1,23,2,30,0	Mercury, śīghra, number of rotations in Mahāyuga I,14 (Table 1) XVI,1-9 (Table 15 and 17)
1;24,22,30	Saturn, density of occurrences XVII,16-19
[,24,56,3,42	lunar nodes IX,5 (p. 68 (2))
1,27;58,12	Mercury, śīghra XVI,1-9 (Table 14)
1,28	Mercury XVII,38-40
1,29,7	solar distance IX,15-16 (p. 72 (1))

1,30	R XIV,1-4
1,37	Mercury, ecliptic arc XVII, 38-40
1,39	Saturn, occurrences XVII,16-17
1,40	Mercury, ecliptic arc XVII,38-40
1,40	Saturn, node XVI,12-14 (Table 22)
1,41,10,20	Jupiter, rotations in Mahāyuga I,14 (Table 1) XVI,1-9 (Table 15 and 17)
1,44	Mercury XVII,38-40
1,45;29	Mars, kṣepa XVII,1-60 (Table 33)
1,50	Mars, apogee XVI,12-14 (Table 22)
1,50	Moon, anomaly VIII,5 (p. 60 (2))
1,53,14;44,56	lunar nodes IX,5 (p. 68 (2))
1,53,50,25,6	lunar mean longitude IX,2 (p. 65 (2))
1,54	Mercury, mean synodic arc XVII,1-60 (Table 36)
1,54;12,24	Mercury, mean synodic arc XVII,1-60 (Table 33)
1,54;13	Mercury, mean synodic arc XVII,1-60 (Table 24)
1,55;52,45	Mercury, period XVII,1-60 (Table 23)
2,0,20,32	see $1,12,12,19,12$
2,1,45,10,30,0	Mahāyuga I,14 IX,1 (p. 65 (4)) XVI,1-9 (p. 96 (3) and Table 15)
2,2;28,49	Saturn, kșepa XVI,1-9 (Table 17 and 20)
2,3,41,17,48,0	tithis in Mahāyuga I,14
2,3;53,3	lunar node, kșepa IX,5 (p. 69 (5)) XVI,1-9 (Table 19 and 21)
2,4;11,2	lunar node, kșepa VIII,8 (p. 62 (4))
2,7	Saturn, occurrences XVII,16-17
2,8	Mars, retrogradation XVII,1-60 (Table 28)
2,12	Mercury, śīghra epicycle XVI,12-14 (Table 22)
2,13	Mars, Π XVII,1-60 (Table 24)
2;14	Sun, maximum equation IX,7-8 (p. 70 (6))
2,15,36,59	Moon, rotations of apogee in Mahāyuga I,14 (Table 1) IX,4 (p. 68 (6a)) XVI,1-9
2,16;35	Saturn, ecliptic arc XVII,16-19
2;17	solar eccentricity VIII,2-3
2;20	solar eccentricity IX,7-8 XVI,12-14 (Table 22)
2;20	Venus, eccentricity XVI, 12-14 (Table 22)
2;23,23	Sun, maximum equation VIII,2-3
2,23,38,0	solar diameter IX,15-16 (p. 72 (2))
2,24	Mars, retrogradation XVII, 1-60 (Table 28)
2,26,37	see 1,27,58,12
2,27	Venus, kșepa XVII,1-60 (Table 23 and 32)
2,28;17	Mercury, kṣepa XVI,1-9 (Table 17 and 20)
2,30	Mars, retrogradation XVII,1-60 (Table 28)

```
2,30;20 Saturn, kspepa XVII,1-60 (Table 23 and 32)
2,30;24,5 solar diameter IX,15-16 (p. 73 (6))
2,39;30 Jupiter, ecliptic arc XVII,9-11
2,40 Jupiter, apogee XVI,12-14 (Table 22)
2,42,41 calendaric epoch correction I,11-13
2,57;34 Saturn, ecliptic arc XVII,16-19
2,59,26;3,57,36 Saturn XVI,1-9 (Table 14)
3,0 Jupiter, ecliptic arc XVII,9-11
3,0 Jupiter, occurrences XVII,9-10
3,0 Mars, }\Theta->\Omega XVII,25-27
3,5;22 Venus, ksepa XVII,1-60 (Table 33)
3,6
3,6,10,17
3;9,7,32
3;10,40
0;3,10,41,32
0;3,10,44,7,53
0;3,10,44,14,18 motion of lunar nodes III,28-29
3,15 Jupiter, occurrences XVII,9-10
3,30;30 Venus, }\Xi->\Psi XVII,3-5
3,35;30 Venus, mean synodic arc XVII,1-2 (Table 24) XVII, 64-80
(Table 35)
3,35;50 Venus, mean synodic are XVII,1-2 (Table 24)
3,36;40 Mars, kṣepa XVII,1-60 (Table 23 and 32)
3,37 Mercury, Z XVII,1-60 (Table 24)
3;40 Mercury, apogee XVI,12-14 (Table 22)
3,43 eclipse cycle VI,11
3,44;42 Venus, śīghra XVI,1-9 (Table 14)
3;45
3,48
3;49
3,54
3,55
3,55;48,58
3,56;6,57
4
4
4,0
4,0;15
4,7,22,35,36
4,10,0,0
Mars, }\Gamma->\Phi\mathrm{ XVII,25-27
Moon, kșepa IX,2 (p. 66 (4))
Mercury, period XVII,1-60 (Table 24)
diameter of earth's shadow X,1-2 (p. 77 (1a))
motion of lunar nodes VIII,8 (p. 62 (3))
motion of lunar nodes IX,5 (p. }69\mathrm{ (4))
steps for Sin \alpha IV,1-5 IV,6-15 (Table 8)
months in Metonic cycle I,9-10
lunar eccentricity III,5-8
Mars, śïghra epicycle XVI,12-14 (Table 22)
months in }19\mathrm{ years I,15 (p. }11\mathrm{ (2b)) VIII,4 (p. }60\mathrm{ (3))
lunar nodes, kșepa VIII,8 (p. }62\mathrm{ (4))
see 2,3;53,3
inclination of lunar orbit VI,3 (p. 52 (4)) VIII,10-14 (p. }63\mathrm{ (3c))
maximum of lunar equation III,5-8 (p. 26 (4))
Saturn, apogee XVI,12-14 (Table 22)
Venus, }\Xi->\Psi XVII,3-5
months in Mahāyuga I,14
lunar mean longitude IX,2 (p. 65 (2))
```

```
4;10,40 radius of Sun IX,15-16 (p. 73 (10))
4,14 sidereal months in }19\mathrm{ years I,15 (p. 12 (4b)) VIII,4 (p. 60 (3))
4,16
4,20 Venus, śīghra epicycle XVI,12-14 (Table 22)
4,27,21
4,27,22,35,36
4,27;30 Mars, }\Gamma->\Phi\mathrm{ XVII,25-27
4,27;30,39
4;30
4;33
4,35;18
4,35,47
4,39;44,53
4;40
4;40
4;46
4,46
4,48
4,49,9,13
4,50,18,15
4;56
4,57
5
5;5
5;10
5;20
5,35
5;37
5,37;32
5;48,21,54
5;48,44,57
6,0,0 circumference for }R=57,18\mathrm{ IV,6-15
6,5
6,5;14,48
6,5;14,48,4
6,5;15
6,5;15,30
6,5;15,31,30
6,6
Saturn, II XVII,1-60 (Table 24)
    solar distance IX,15-16 (p. 72 (4))
rotations of Moon in Mahāyuga I,14 (Table 1) IX,4 (p. }67\mathrm{ (4a))
XVI,1-9
Venus, kṣepa XVI,1-9 (Table 17 and 20)
inclination of lunar orbit VIII,10-14 (p. 64 (10)) IX,6
eccentricity of lunar orbit VIII,6
Saturn, kșepa XVII,1-60 (Table 33)
omitted tithis I,15
lunar apogee, kşepa IX,3 (p. 66 (4)) XVI,1-9 (Table 19 and 21)
inclination of lunar orbit III,30-31
Mercury, eccentricity XVI,12-14 (Table 22)
maximum of lunar equation VIII,6
diameter of earth's shadow X,1-2 (p. }77\mathrm{ (1))
Venus, mean synodic arc XVII,1-60 (Table 35)
days in 47,30 years I,15 (p. 12 (3)) VIII,4 (p. 60 (2))
omitted tithis I,14
maximum of lunar equation IX,7-8 (p. 70 (6))
correction of lunar apogee IX,4 (p. 67 (2))
yuga XII,1
    maximum of lunar equation II,2-6 (p. 20 (25))
    lunar eccentricity IX,7-8
    Jupiter, eccentricity XVI,12-14 (Table 22)
    Saturn, }\Gamma->\Omega\mathrm{ XVII,1-60 (Table 25)
    radius of Moon IX,15-16 (p. 73 (7))
    lunar motion per ghana II,2-6
    omitted tithis per year I,14
    omitted tithis per year I,11-13 (p. 10 (7))
year XII,1 (p. 81 (4))
year I,15 (p. }11\mathrm{ (1)) VIII,1 (p. 59 (2))
year I,9-10 (p. 9 (10))
year II,1 (Table 2)
year I,11-13 (p. 10 (3)) III,1
year I,14 (p. 11 (2)) IX,1 (p. 65 (2)) XVI,1-9 (p. 96 (3a))
year XII,1 (p. 81 (4))
```

```
6,11;3,53,24 tithis in year I,14 (p. 11 (1))
6,11;4,14,57 tithis in year I,11-13 (p. 10 (6))
6,12;40 Saturn, mean synodic arc XVII,1-60 (Table 33 and 34)
6,13 Saturn, mean synodic arc XVII,1-60 (Table 34)
6,18 Saturn, synodic time XVII,1-60 (Table 23)
6,18;6 Saturn, synodic time XVII,1-60 (Table 23)
6,28 Mercury, \(Z\) XVII,38-40
6,30 Jupiter, synodic time XVII,1-60 (Table 26)
6,31 Jupiter, \(\Pi\) XVII,1-60 (Table 24)
6,33 Jupiter, mean synodic arc XVII,1-60 (Table 33)
6,\(33 ; 8,34\) Jupiter, mean synodic arc XVII,1-60 (Table 33 and 34)
6,38;53,20 Jupiter, synodic time XVII,1-60 (Table 23)
\(6,39 \quad\) Jupiter, synodic time XVII,1-60 (Table 23 and 26)
0;6,40 motion of lunar apogee IX,11-14 (p. 71 (4))
6;40
0;6,40,59,29
0;6,45 yojana XIII,15-19 (p. 84 (2))
\(0 ; 6,46,50,56,57\) lunar apogee IX,4 (p. 68 (5))
0;6,46,50,57 lunar apogee IX,4 (p. 68 (6b))
6,48
7
7
7,8
7,11
7,22
7,22,35,36
7;23,20
8
8
8
8;6,20
8,34 days since epoch I,9-10 (p. 9 (6))
8;53,20
\(9 \quad\) Saturn, \(Z\) XVII,1-60 (Table 24)
\(9 \quad\) Venus, visibility XVI,23
9,35;30
9;36 daylight II,8 (Table 4)
9,36 Venus, synodic arc XVII,64-80 (p. 128)
9,\(43 ; 54,32\) Venus, mean synodic time XVII, \(1-60\) (Table 23)
eclipse limit VII,5 (p. 58 (3))
Mercury, ecliptic arc XVII,38-40
Venus, visibility XVII,57-60
Jupiter, kṣepa XVI,1-9 (Table 17 and 20)
yojanas XIII,15-19 (p. 84 (1))
Venus, mean synodic arc XVII, 64-80 (Table 35)
```

9,44 Venus, mean synodic time XVII,1-60 (Table 23)
9,47,30
months in 47,30 years $\mathrm{I}, 15$ (p. 12 (3))
9;48,44 Moon, kṣepa IX,2 (p. 66 (4)) XVI,1-9 (Table 19 and 21)

10;0 Saturn, eccentricity XVI,12-14 (Table 22)
10,9
10,27,52,36
10,35,0
$10,38,0,24$

10,44,0
10;51,40
lunar anomaly, kṣepa VIII,5 (p. 61 (5))
lunar apogee, kșepa IX,3 (p. 66 (4))
sidereal months I, 15 (p. 12 (4a)) VIII,4 (p. 60 (2))
Mars, rotations in Mahāyuga I,14 (Table 1) XVI,1-9 (Table 15 and 17)

11
11
11;14,20
11,24
11,27
11,32
lunar diameter IX,15-16 (p. 72 (2))
Jupiter, period XVII,1-60 (Table 24)
Jupiter, retrogradation XVII,64-80
Jupiter, visibility XVI,23
lunar diameter IX,15-16 (p. 73 (6))
Mercury, Π XVII,1-60 (Table 24)
Mars XVI,1-9 (Table 14)
tithis I, $9-10$ (p. 8 (3))
epoch constant I,11-13
Mars, eccentricity XVI,12-14 (Table 22)
lunar velocity, minimum II,2-6 (p. 19 (15a)) III,4 and 9 (p. 25
(1))

11,43 tithis I, 9-10 (p. 8 (3))
12 Jupiter, epicycle XVI,12-14 (Table 22)
12 Mercury, ecliptic arc XVII,38-40
12
12
12
12,0
12,10,31
Mercury, visibility XVII,57-60
Moon, visibility XVI,23 XVII,57-60
shortest daylight II,8 (Table 4) XII,5
Venus, Π XVII,1-60 (Table 24)
120 years III,1
12;12
12;22,6,18,56,50
Saturn XVII,17
months per year I,15 (p. 12 (6))
$12 ; 22,7,46,48$ months per year $\mathrm{I}, 14$ (p. 11 (1))
12;22,8,29,54 months per year I,11-13 (p. 10 (2))
12;39 Saturn, mean synodic arc XVII,1-60 (Table 24)
12,48 Mars, mean synodic arc XVII,1-60 (Table 34)
12,48;45 Mars, mean synodic arc XVII,1-60 (Table 33 and 34)
12,59;57,19 Mars, synodic time XVII,1-60 (Table 23)
13 eclipse limit VI,2 (p. 51 (1)) VII,5 (p. 58 (2))
13,0 Mars, synodic time XVII,1-60 (Table 23)
13 Mercury, visibility XVI,23
13;10,34 lunar mean motion IX,11-14 (p. 71 (1))

13;10,34,17	lunar mean motion II,2-6 (p. 20 (21))
13;10,34,43	lunar mean motion II,2-6
13;10,34,52,6	lunar mean motion I,14 (p. 11 (4))
13;10,34,59,50	lunar mean motion $\mathrm{I}, 15$ (p. 12 (8))
13;11	lunar mean motion II,2-6 (p. 20 (23))
13;20	nakṣatra XII,3
13,20	solar mean longitude IX,1 (p. 65 (2))
13;22,7,46,48	sidereal month IX,4 (p. 67 (4b))
13;22,7,46,50	sidereal month IX,4 (p. 67 (3))
13,27,59,49	lunar apogee IX,3 (p. 66 (2))
14	Mars, visibility XVII,57-60
14	Mercury XVII,38-40
14	solar epicycle IX,7-8 (p. 70 (3))
14	Venus, manda epicycle XVI,12-14 (Table 22)
14;24	longest daylight II,8 (Table 4)
14;39	maximum lunar velocity III, 4 and 9 (p. 25 (1))
14;39,8,34,17	maximum lunar velocity II,2-6 (p. 19 (18b))
14,51;10	distance of Sun IX,15-16 (p. 73 (9))
0;15	apparent semidiameter of Sun VII,5 (p. 58 (5))
15	eclipse limit VI,2 (p. 51 (3))
15	Jupiter, visibility XVII,57-60
15,0	lunar apogee IX,3 (p. 66 (2))
15	lunar diameter XIV,38 (p. 92 (3))
15	Saturn, visibility XVI,23 XVII,57-60
15	solar apogee (Gemini 15) VIII,2-3
15,13,7	Sun VIII,1 (p. 59 (1))
15,27	Mercury, synodic time XVII,1-60 (Table 23)
15,37,46	lunar node, kșepa VIII,8 (p. 62 (4))
16	Jupiter, occurrences XVII,9-10
0;17	apparent semidiameter of Moon VI,3 (p. 52 (1)) VI,12-15 (p. 55 (1)) VII,5 (p. 58 (4))
17	Mars, visibility XVI,23
17,30	intercalary months I,15
18	longest daylight II,8 (Table 4) XII,5
18	Mars, retrogradation XVII,64-80
18	Mars, $\Phi \rightarrow \Theta$ XVII, 25-27
18	Mars, Z XVII,1-60 (Table 24)
18	$\begin{aligned} & \text { radius of earth IX, } 15-16 \text { (p. } 73 \text { (8)) IX,19-23 (p. } 76 \text { (12)) X, } 1-2 \\ & (\text { p. } 77 \text { (4a)) } \end{aligned}$
18,26,29	intercalary months I,14
18,38	Saturn XVII,1-60 (Table 33)
0;18,43,20	radius of Moon IX,15-16 (p. 73 (10))

19 cycle of years I,9-10 I, 15 III,32-35 VIII,4 (p. 60 (3))

19,2,30
19,11

20,0
20
20
20,0,0,0
20;30
21;5
22
23
0;23,20
23;20
23;40
24
24
24;16
24,21
24,46
27
27
27
27;19,17,45,50
27;19,18,1,26,24
27;32
27;33,16,21,49
27;33,20
28
28;1
28;20
28;26,40
29,13,40,19
29;31,48,16,37
29;31,50,5,37
29;31,50,5,58 lunar month I,9-10 (p. 9 (9))
29;31,50,6,52,59
yuga I, 15 III,32-35
Venus XVII,1-60 (Table 33)
lunar distance IX,15-16 (p. 72 (4))
Mercury, node XVI,12-14 (Table 22)
solar apogee (Gemini 20) see 1,20
years in Mahāyuga I,14 (Table 1)
Jupiter, ecliptic arc XVII,9-11
Jupiter XVII,9-10
Mercury, epicycle XVI,12-14 (Table 22)
Mercury, ecliptic arc XVII,38-40
Jupiter, correction XVI,10-11
maximum declination III,20-22
obliquity of ecliptic IV,16-18 (Table 9)
lunar nodes VIII,8 (p. 62 (2))
Jupiter XVII,9-10
see 6,5;15
Jupiter XVII,9-10
Mars, retrogradation XVII,1-60 (Table 28)
nakṣatras XII,3
yogas XII,4
sidereal month VIII,4 (p. 60 (2))
sidereal month IX,2 (p. 65 (2))
Jupiter, kṣepa XVII,1-60 (Table 33)
anomalistic month VIII,5 (p. 60 (2))
anomalistic month II,2-6 (p. 17 (4))
Mercury, kṣepa XVII,1-60 (Table 33)
Mercury, kṣepa XVII,1-60 (Table 23 and 32)
Saturn, period XVII,1-60 (Table 24)
lunar nodes, kṣepa IX,5 (p. 69 (5))
lunar month I,11-13 (p. 10 (4))
lunar month $\mathrm{I}, 15$ (p. 12 (7))
lunar month I,14 (p. 11 (3))
obliquity of ecliptic IV,23-25 (p. 40 (4)) XIII,9-10

Mercury, manda epicycle XVI,12-14 (Table 22)

Mercury XVII,38-40
30
Saturn, occurrences XVII,16-17
5 years XII,1

31 lunar epicycle IX,7-8 (p. 70 (3))
31
Mercury XVII,38-40
Jupiter, manda epicycle XVI,12-14 (Table 22)
Mars, retrogradation XVII,1-60 (Table 28)
lunar diameter IX,15-16 (p. 72 (5))
solar diameter IX,15-16 (p. 72 (5))
epoch constant II,2-6 (p. 16 (1))
Venus, śīghra I,14 (Table 1) XVI,1-9 (Table 15 and 17)
Sun, kṣepa IX,1 (p. 65 (5)) XVI,1-9 (Table 19)
Mercury XVII,38-40
Moon, kṣepa VIII,4 (p. 60 (1)) VIII,5 (p. 61 (4))
Jupiter, mean synodic arc XVII,1-60 (Table 24)
Jupiter, mean synodic arc XVII,1-60 (Table 26)
Saturn XVII,16-17
Jupiter, mean synodic arc XVII,1-60 (Table 26)
Mars, retrogradation XVII,1-60 (Table 28)
Jupiter, kṣepa XVII,1-60 (Table 23 and 32)
Jupiter, Z XVII,1-60 (Table 24)
Mars, retrogradation XVII,1-60 (Table 28)
ahargaṇa I,17-21 (p. 12 (1))
see $3,44,42$
radius of earth's shadow VI,3 (p. 52 (1)) VI,12-15 (p. 55 (1))
Mars, epicycle XVI,12-14 (Table 22)

40 Mars, node XVI,12-14 (Table 22)
40
40;16
40,42,44

41;59
42,0
43;20
45,0
Saturn, śīghra epicycle XVI,12-14 (Table 22)
Saturn XVII,16-17
Saturn, rotations in Mahāyuga I,14 (Table 1) XVI,1-9 (Table 15
and 17)

45,18,31
Saturn XVII,16-17
ahargaṇa $\mathrm{I}, 17-21$ (p. 13 (2))
Venus, epicycle XVI,12-14 (Table 22)
lunar nodes IX,5 (p. 68 (2))

Saturn ecliptic are XVII 16
45,52 Jupiter XVII,1-60 (Table 33)
47,30 years I,15 III,32-35
48 Mars, synodic arc XVII,25-27
48;9
48;43
$\operatorname{Sin} \varepsilon$ IV,16-18 (p. 37 (2))
Mars, mean synodic arc XVII,1-60 (Table 24)
Sin ε IV,23-25 (p. 40 (3))
$49,50,34,26$ see $2,59,26,3,57,36$
Hist. Filos. Skr. Dan.Vid. Selsk. 6, no. 1.

50,31
51
51,15
0;52
52,0
52,12
0;53
53,20
53,51;59,16
0;54
0;55
0;55,14,34,40,49
57,18
57,18
0;59,1,56
$0 ; 59,3,40,11,56$
0;59,8
$0 ; 59,8,10,10,37$

110 anomalistic months II,2-6 VIII,5 (p. 60 (2)) correction of lunar longitude IX,4 (p. 67 (1))
Mars XVII,1-60 (Table 33)
lunar horizontal parallax VII,2 (p. 57 (3))
lunar longitude, correction IX,4 (p. 67 (1))
Mercury XVII,1-60 (Table 33)
lunar horizontal parallax VIII,10-14 (p. 63 (7))
circumference of earth III,14 IX, 10
lunar apogee IX,3 (p. 66 (2))
lunar horizontal parallax IX,19-23 (p. 76 (14))
radius of Moon plus shadow VI,3 (p. 52 (1a))
Jupiter, density of occurrences XVII,9-11
R IV,6-15
$3,0,0 / \pi$ IX, $15-16$
tithi XII,1 (p. 81 (2a))
tithi I,9-10 (p. 9 (8))
solar mean motion IX,11-14 (p. 71 (1))
solar mean motion IX, 1 (p. 65 (3))

5. Subject Index to the Commentary

References are to chapter and verse in the commentary
ahargaṇa I,8-15 XVII,64-80 (p. 126)
Alexandria (see also Yavanapura) III,13 XV,16-21
Almagest I,15 III,2-3 IV,29-30 XIII,20-25
amplitude of the Sun IV,52-54
angels, as rulers of days I,24-25
anomalistic month see month
anomaly see lunar a.; solar a.
apogee see lunar a.; solar a.
apparent diameter see lunar diameter, solar diameter
ārdharātrika ("midnight'") system
distances IX,15-16
epoch XV,20
lunar equation VIII, 6
parameters I, 14 IX, 1 IX,4 IX, 5 XVI,1-9 XVI,12-14 (Table 22)
solar apogee III,2-3 IX,7-8
arrangement of planets see planets
Āryabhaṭīya VI,8 VI,9-10 XIII,6-7 XIV,21-22 XV,20 XV,22-23
ascensional differences IV,26 IV,31 IV,41-44 XIV,1-4
Āśleṣā III,20-22 XIV,33-37
astrology III,32-35 XIII,26-29 XIII,39-42 XVII,1-60 (p. 109)
Aśvinī III,20-22 (p. 33 n. 1) III,32-35
Atharvaveda III,20-22
avanati VIII,16
Avantī (= Ujjayinī) I,8 III,13 VIII,5 XIII,9-25
ayana III,20-22 XII,5 XV,24

Babylon XV,19
Babylonian astronomy (see also linear zigzag functions) I, 15 II,2-6 II,8 III, 1 III, 17 XII,5 XVII,passim
bāhu IV,52-54 V,4-7
Battānī III,1
Benares see Vārāṇasī
bhuja see bāhu
bīja I,2 XVI,10-11
Brāhmasphuțasiddhānta I, 4
Bṛhajjātaka see Varāhamihira
brightness of planets XVII,1-60 (p. 125)
Bundahishn I,24-25

Caitra I, 8 III,32-35
Canopus XIV,39-41
cardinal points of horizon IV,19
cinematic planetary models XVI, passim
color of eclipses VI, $9-10$
conjunction $=$ śīghra XVI,12-23
cosmography XIII, passim XV,22-23
creation III,32-35
crescent see lunar crescent
day-radius III,10-11 IV,23-25 XIV,1-4
days instead of degrees XVII,64-80 (p. 126)
declination of points on the ecliptic III,10-11 IV,16-18 IV,23-25
deflection of eclipse VI, 8
Dhanișṭhā, nakṣatra III,20-22 III,25 XII,3
diameter, apparent see lunar diameter; solar diameter
digits VIII, 17 XIV,1 XIV,38
distances of Sun and Moon IX,15-16 IX,19-23 X,1-2
ε see obliquity of ecliptic
earth
equator, circumference III,14 IX,10 XIII,15-19
radius IX,15-16 IX,19-23 X,1-2
earth-Sine IV,27-28 XIV,1-4
eccentricities XVI,12-14 (Table 22)
eclipses I,5-7 VI, passim XV,1-9
color VI,9-10
deflection VI,8
duration VI, 3 VI, 4 VIII, 16 IX,26-27 X,2-4 X,7
limits VI, 2 VII,5
Egyptian years XII,1
elongation (see also visibility)
Moon from Sun II,7
planets from Sun XVII,64-80 (Table 34)
epoch, noon or midnight IX,1 XVI,1-9
epoch values see kṣepas
equation see lunar e.; solar e.
equinoxes III,20-22
father of Varāhamihira I, 1
finger, as unit (see also digit) XIV,21-22
fixed stars XIV,33-37

Gargasaṃhitā XII,1
gati
as anomalistic month II,2-6
as interval between Greek-letter phenomena XVII,24-35 and 54-56
geographical latitude see latitude, terrestrial
geographical longitude
determination from full-moons XIV,29-30
ghana II,2-6
gnomon (see also shadow) II,2-9 XIII,30-34
Govindasvāmin I,4
graphical methods (see also projection of eclipses) XIV,1-4 XIV,7 XIV,10-11
Greek order of planets I,17-21 XIII,39-42 XVII,1-60 (p. 109)
hand, as unit XIV,21-22 XIV,33-37
Handy Tables XVI,1-9 (p. 99)
Hellenistic astronomy II,2-6 XVI,passim
Himālayas III,12
Hipparchus I,15 VIII,1
horizontal parallax see parallax
hypotenuse
gnomon-shadow IV,52-54
lunar crescent $\mathrm{V}, 4-7$
inclination of ecliptic see obliquity
inclination of lunar orbit see lunar latitude, maximum
intercalary months I,11-14
Jupiter XVI,1-9 (Tables 14 to 17, Table 20) XVI,12-14 (Table 22)
longitudes XVII,7 XVII,9-10 (pp. 111-112, 115-116)
phases XVII,12-13 (p. 118)
retrogradation XVII,64-80 (p. 127)
visibility XVI,23 XVII,58 (p. 125)
zones XVII,9-11 (p. 113)
Julian year II,1
Jyotiṣavedān̄ga III,20-22 III,25 XII,1
kakṣā IX,15-16
Kaliyuga XVI,1-9 (p. 97-99)
karaṇa III,18-19
Khaṇḍakhādyaka I, 14 (p. 11 n. 1) VI,8 XVI,1-9
koṭi IV,52-54 V,4-7
kṛṣnapakṣa III,18-19
Kṛttikā III,20-22 XIV,33-37
kṣepas, i.e., epoch constants III,28-29 VIII,5 VIII,8 XVI,1-9 XVII,1-60 (p.123-125)
Lagadha XII,1
Lan̄kā XIII,passim XV,22-23
Lāṭācārya VIII,5 XV,18
Lāṭadeva I,3 I,8 I,11-13 I,14 XIII,1-5 XIII,9-14
latitude, lunar see lunar 1 .
latitude, terrestrial I,5-7 IV,20-23 IV,39-40 XIV,8-10
length of daylight (or night) II,8 III,10-11 IV,34 IV,48-49 XII,5 XIII,20-25
linear zigzag functions
length of daylight II,8 XII,5
lunar latitude III,30-31
lunar velocity II,2-6 III,4 and 9 III,5-8
noon shadow of gnomon II,9-10
longitudes, sidereal and tropical (see also lunar l.; solar l.) III,20-22 (p. 33 n .1)
lords of days, hours etc. I, 17-21 XIII, 42 XV, 26-29
lunar anomaly (see also lunar equation) II,2-6
lunar apogee II,2-6 VIII,5 IX,3 XVI,1-9 (Table 19)
lunar crescent $V, 4-7$
lunar diameter
actual IX,15-16
apparent VI,3 VIII,15 IX,15-16 XIV,38
15 digits XIV,38
15 parts V,4
lunar eclipses see eclipses
lunar epoch constants XVI,1-9 (Table 21)
lunar equation II,2-6 III,5-8 VIII,6 IX,7-8
lunar latitude III,30-31
maximum: $4 ; 0^{\circ}$ VI,3 (4) VIII, 10-14 (3c) $4 ; 30^{\circ}$ VIII,10-14 (10) IX,6 $4 ; 40^{\circ}$ III, $30-31$
lunar longitude VIII, 4 IX,2
lunar mean motion I,11-15 II,2-6 XVI,1-9 (Table 19)
lunar nodes III,28-29 VIII,8 IX,5 XVI,1-9 (Table 19)
lunar orbit, inclination see lunar latitude
lunar phases (see also lunar crescent) XIII,35-38
lunar velocity II,2-6 III,4 and 9 IX,11-14
lunar visibility V,1-3 XVI,23 XVII,58 (p. 125)

Maga Brāhmaṇa I,1 I,24-25
Māgha, month XII,2
Maghā (= Regulus) XIV,33-37
magical diagram I,5-7 XIV,27-28
Mahābhāskarīya $\mathrm{I}, 14$ (p. 11 n. 1)
Mahāyuga see yuga
manda XVI,12-23
Mars XVI,1-9 (Tables 14-17, Table 20) XVI,12-14 (Table 22) XVII,1-60 (p. 111-112)
phases XVII,25-35 (p. 119--120)
retrogradation XVII,1-60 (p. 119-120) XVII,64-80 (p. 127)
visibility XVI,23 XVII,58 (p. 125)
zones XVII,1-60 (p. 113)
maximum equation see lunar equation; solar equation
Mercury XVI,1-9 (Tables $14-17$, Table 20) XVI,12-14 (Table 22)
phases XVII,42-56 (p. 121-123) XVII,64-80 (p. 128)
visibility XVI,23 XVII,58 (p. 125)
zones XVII,38-40 (p. 114-115)
meridian line XIV,14-16
Meru see Mount Meru
Metonic cycle I,9-10 I,15 III,32-35 VIII,4

```
midnight system see ārdharātrika s.
month
    anomalistic II,2-6 III,4 and 9 III,5-8 IX,3
    intercalary I,11-14
    sidereal I,15 VIII,4 IX,2
    synodic I,8-15
moon see lunar
Mount Meru XIII,passim
movable karaṇas III,18-19
muhūrta II,7-8 XII,5
nakṣatra II,7 III,16 III,32-35 XIV,34-37
nakşatra-days XII,1
nodes see lunar nodes
nonagesimal VII,1 VIII,10-14 IX,24-25
oblique ascension IV,31
obliquity of ecliptic
    \varepsilon=23;20
    \varepsilon=23;40}\mp@subsup{}{}{\circ}\mathrm{ III,20-22 IV,16-18
    \varepsilon=24 }\quad\mathrm{ IV,20-25 XIII,9-25
omitted tithi I,11-13 I,14 XII,1
order of planets see planets, arrangement
ortive amplitude IV,37 IV,52-54
\pi, approximations
    3 III,10-11 (p.30 n. 1) VIII,10-14 IX,19-23
    \sqrt{}{10}}\mathrm{ IV,1-5 (1a)
    3;8,28,54,\ldots. IX,15-16 (p.73)
P. Lund 35a II,2-6 (p. }16\mathrm{ n. 1)
P. Ryl. 27 II,2-6 (p. 16 n. 1, p. }18\mathrm{ n. 1)
pada II,2-6 III,5-8 XVII,7,9,15,16
Paitāmahasiddhānta I,1 III,36-38 XII,1-2 XIV,33-37 XVI,22-23
pakṣa (see also kṛ@̣napakṣa; śuklapakṣa) XII,4 XIII,35-38
parallax
    adjusted IX,19-23 IX,27
    horizontal VII,1-2 VIII,10-14 IX,19-23 XV,7-9
    latitudinal VII,2 VIII,10-14 IX,24-25
    longitudinal VII,1 VIII,9 IX,19-23 XV,7-9
Parāśaratantra III,25
parvan XII,4
```

Pauliśasiddhānta I, 1 I,4 I,11-13 XVII,64-80
penumbra VI,2
Persian influences XV,19
names for days of the month I,24-25
years I,23 XII,1
phases see lunar phases; planets, phases
Pitṛs III,23-24 XV,1-4 XV,11-14
planets I,5-7 XVI,passim XVII,passim
arrangement I,17-21 XIII,39-42 XVII,1-60 (p. 109)
latitude XVI,24-25
longitude XVI,15-22 XVII,1-60 (pp. 111 ff .)
phases XVII,1-60 (p. 116 ff .) et passim
stations XVI,22
visibility XVI,23 XVII,57-60 (p. 125-126)
poles, north and south XIII,passim
Prakaṭārthadīpikā I,4
prāṇa XIV,31-32
prime vertical IV,32-36
projection of eclipses VI,12-15 XI,passim
Ptolemy I,15 VIII,1

Rāhu see lunar nodes
Ran̄ganātha VI, 8
Regulus XIV,33-37
Revatī III,25
right ascension IV,29-30 XIV,7
ring, as instrument XIV,21-22
Romakasiddhānta I,1 I, 4 I, 8 III,32-35 VII, 5 VIII, 5 XV, 18
Romakaviṣaya XV,23-25
ruler see lords

ṣaḍaśítimukha III,23-24
Śaka era I,8-10 XII,2 XVI,1-9 (p. 97)
sand board XIV,27-28
san̄krānti III,26
Sasanian astronomy XV,19
Saturn XVI,1-9 (Tables 14-17, Table 20) XVI,12-14 (Table 22)
longitudes XVII,15-17 (p. 115-116)
phases XVII,19-20 (p. 118)
retrogradation XVII,64-80 (p. 127)
visibility XVI,23 XVII,58 (p. 125)
zones XVII,16-19 (p. 112-113)
sāvana days III,27 XII,1
seasons III,25
shadow of earth see eclipses
shadow of gnomon
curve traced by endpoint IV,19 IV,52-54 XIV,14-16
length of shadow II,9-13 III,10-11 IV,20-23 IV,41-49 IV,52-54 XIV,5-6
Siddhapura XV,22-23
sidereal days XII,1
sidereal longitudes see longitudes
sidereal mean motion of moon see lunar mean motion
sidereal month see month
sidereal year see year
śīghra XVI,1-9 (Tables 14-16) XVI,12-23
Siṃhācārya XV,19
sine tables IV,1-16
solar anomaly (see also solar equation) III,2-3
solar apogee III,2-3 III, 17 VIII,2-3 IX,7-8 XVI,12-14 (Table 22)
solar declination see declination
solar diameter
actual IX, 15-16
apparent III,26 VIII,15 IX,15-16
solar eccentricity XVI,12-14 (Table 22)
solar eclipses see eclipses
solar equation III,2-3 VIII,2-3 IX,7-8
solar longitude III,2-3 VIII,1 IX,1
solar mean motion IX, 1 XVI,1-9 (Table 19)
solar velocity (see also solar mean motion) II,1 III,17 III,26
solstices III,20-22 III,25 III,32-35 XII,5
sphere, as instrument XIV,23-26
Sphujidhvaja see Yavanajātaka
śuklapakṣa III,18-19
sun, invocation $\mathrm{I}, 1$
sun dial (see also gnomon, shadow) XIV,19-20
sunrise epoch III,27 XII, 1
sunset epoch VIII,5 XV,18 XV,24
Sūryasiddhānta I,4 I,14 VI, 8
syllable XIV,31-32
synodic arc XVII,1-60 (p. 110-112) XVII,64-80 (p. 126)
subdivision XVII,1-60 (p. 116-123) XVII,64-80 (p. 127-128)
synodic month see month
synodic periods XVII,1-60 (p. 110-112)
synodic time see synodic period
terrestrial latitude see latitude, t .
Theon XVI,1-9 (p. 99 f .)
tithi (see also omitted tithi) I, 8-13 II, 7 III, 16 III, 27 III, 32-35
tortoise XIV,27
trepidation of solstices III,20-22
tropical year see year

Ujjayinī see Avantī
Utpala III,25 VI,8

Vaḍavāmukha XIII,1-5
vaidhṛta III,20-22
Varāhamihira
Bṛhajjātaka I,22 II,8
Bṛhatsaṃhitā I,1 I,22 III,20-22 III,32 (p. 35 n. 3) XIV,39-41 (p. 93 n .1)
Vārāṇasī (= Benares) III,13
Vāsiṣṭha I,1 II,2-6 (p. 22)
velocity see lunar v.; solar v.
Venus XVI,1-9 (Tables $14-17$, Table 20) XVI,12-14 (Table 22)
epoch values XVII,1-60 (p. 124)
mean synodic arc XVII,1-2 (p. 114)
phases XVII,3-5 (p. 120-121) XVII,64-80 (p. 128)
visibility XVI,23 XVII,58 (p. 125)
visibility, first and last see lunar visibility; planets, visibility
Viṣṇudharmottarapurāṇa see Paitāmahasiddhānta
vyatipāta III,20-22 XII,4
week, planetary I,17-21
world year III,32-35

Yamakoṭi XV,22-23
Yavana XV,19
Yavanajātaka II, 8 XIII,26-29
Yavanapura (=Alexandria) I, 8 III,13 VIII,5 XV,16-21 XV,25
Yavaneśvara XIII,26-29
year
Egyptian-Persian, $365^{\text {d }}$ I, 23 XII,1
sidereal I, 14 III, 1 IX,1 XVI,1-9
tropical I, $9-10$ I, 15 VIII, 1
yoga XII,4
yogatārā see fixed stars
yojana III,14 IX,10 XIII,15-19

```
yuga (see also Kaliyuga, Mahāyuga)
    5 years XII,1-4
    \(19,2,30\) years III,32-35
    \(50,0,0\) years \(\mathrm{I}, 14\)
    \(20,0,0,0\) years \(\mathrm{I}, 14\) (p. 11 n. 1) IX, 1 IX, 4 XVI,1-9
```

zigzag function see linear z.f.
Zīj ash-Shāh XV,19

6. Bibliography

1. Texts

A. Arabic
I. Al-Battānī, Zīj al-Sābi’

Ed. C. Nallino, Opus Astronomicum, 3 vols., Milano 1899-1907.
II. Al-Bīrūnī, Kitāb fī taḥqīq mā li al-Hind

Ed. Hyderabad-Deccan 1958; English translation by E. C. Sachau, Alberuni’s India, 2 vols., London 1879.
III. Al-Khwārizmī, Zīj al-Sindhind

Latin translation of Adelard of Bath of the version by al-Majrīṭī ed. A. Bjørnbo, R. Besthorn, and H. Suter, Danske Vidensk. Selsk. Skrifter, 7. R., Hist. filos. Afd.3,1 København 1914; English translation by O. Neugebauer, The Astronomical Tables of al-Khwārizmī, Hist. Filos. Skr. Dan. Vid. Selsk. 4,2 København 1962.
IV. Zīj al-Shāh
E. S. Kennedy, "The Sasanian Astronomical Handbook Zīj-i Shāh and the Astrological Doctrine of 'Transit' (mamarr)," Journal of the American Oriental Society 78, 1958, 246-262.
B. Chinese
I. Chüt'an Hsita, Chiuchih-li
K. Yabuuti, "The Chiuchih-li, an Indian Astronomical Book in the T'ang Dynasty," History of Chinese Science and Technology in the Middle Ages, Tokyo (?) 1963, pp. 493-538.
C. Cuneiform
I. O. Neugebauer, Astronomical Cuneiform Texts, 3 vols., London 1955 [= ACT].
II. O. Neugebauer and A. Sachs, "Some Atypical Astronomical Cuneiform Texts I," Journal of Cuneiform Studies 21, 1967, 183-217.
D. Greek
I. Papyri
a. P. Lund 35 a.
E. J. Knudtzon and O. Neugebauer, "Zwei astronomische Texte," Bulletin de la Société Royale des Lettres de Lund 2, 1946/47, 77-88.
b. P. Ryl. 27
O. Neugebauer, "The Astronomical Treatise P. Ryl. 27," Danske Vidensk. Selsk., Hist.-filol. Medd. 32,2 København 1949.
II. Paulus Alexandrinus, Ei $\sigma \alpha \omega \gamma \dot{\eta}$

Ed. E. Boer, Leipzig 1958.
III. Ptolemy, Almagest

Ed. J. L. Heiberg, 2 vols., Leipzig 1898-1903. German translation by K. Manitius, 2 vols., Leipzig 1912-1913.
IV. Theon, Handy Tables

Ed. Halma, Commentaire de Théon d'Alexandrie . . ; Tables manuelles des mouvemens des astres, Paris 1822-1823.

E. Sanskrit

I. Āryabhaṭa, Āryabhaṭīya

Ed. H. Kern, Leiden 1874. English translation by W. E. Clark, Chicago 1930.
II. Bhāskara, Laghubhāskarīya

Ed. and trans. K. S. Shukla, Lucknow 1963.
III. Bhāskara, Mahābhāskarīya

Ed. and trans. K. S. Shukla, Lucknow 1960.
IV. Brahmagupta, Brāhmasphuṭasiddhānta

Ed. S. Dvivedin, Benares 1902.
V. Brahmagupta, Khaṇdakhādyaka

Ed. P. C. Sengupta, Celcutta 1941. English translation by P. C. Sengupta, Calcutta 1934. Ed. and trsl. Bina Chatterjee, 2 vols. Calcutta 1970.
VI. Govindasvāmin, Prakaṭārthadīpikā

Ed. D. Pingree. Unpublished.
VII. Lagadha, Jyotiṣavedān̄ga Ed. S. Dvivedin, Benares 1908.
VIII. Makkibhațta, Siddhāntaśekharabhāsya

In the edition of Śripati's Siddhāntašekhara by B. Miśra, 2 vols., Calcutta 1932-1947.
IX. Nīlakanṭha, Āryabhațịyabhāṣya

In the edition of Āryabhaṭa’s Āryabhatīya by K. Sāmbaśiva śāstri, 3 vols., Trivandrum 1930-1957.
X. Paitāmahasiddhānta of the Viṣnudharmottarapurāṇa
D. Pingree, "The Paitāmahasidd̉dhānta of the Viṣnudharmottarapurāna, The Adyar Library Bulletin, 31-32, 1967/68, 472-510.

XI. Paramésvara, Āryabhaṭîyabhāṣya

In the edition of Āryabhaṭa's Āryabhaṭīya by H. Kern, Leiden 1874.
XII. Pauliśasiddhānta, Later.
D. Pingree, "The Later Pauliśasiddhānta," Centaurus 14, 1969, 172-241.
XIII. Prthūdakasvāmin, Brāhmasphuṭasiddhāntavivaraṇa

MS 1781 of the Viśveśvarānanda Vedic Research Institute and MS Sanskrit 2769 of the India Office Library.
XIV. Ran̄ganātha, Gūdhārthaprakāśaka

In the edition of the Surryasiddhānta by F. E. Hall, Benares 1860.
XV. Šañkara, Harṣacaritaṭikā

In the edition of Bāna's Harsacarita by A. A. Führer, Bombay 1909.
XVI. Śatānanda, Bhāsvatī

Ed. T. Dhanañjaya, Vārānasī iND].
XVII. Sphujidhvaja, Yavanajātaka

Ed. and trans. D. Pingree, to appear in Harvard Oriental Series.
XVIII. Utpala, Jagaccandrikā

In the edition of Varāhamihira's Brhajjātaka, Bombay 1864.
XIX. Utpala, Brhatsaṃhitāṭikā

In the edition of Varāhamihira's Brhatsamhitā by S. Dvivedin, 2 vols., Benares 1895.
XX. Utpala, Yogayātrāṭīkā

In the edition of the Yogayātrā by D. Pingree. Unpublished.
XXI. Varāhamihira, Bṛhajjātaka

Ed. Bombay 1864.
XXII. Varāhamihira, Brhatsaṇıhitā

Ed. S. Dvivedin, 2 vols., Benares 1895.
XXIII. Varāhamihira, Pañcasiddhāntikā

Ed. and trans. G. Thibaut and S. Dvivedin, Benares 1889.

2. Articles and Books

D. K. Biswas, "The Maga Ancestry of Varāhamihira," Indian Historical Quarterly 25, 1949, 175-183.
E. W. Brown, Tables of the Motion of the Moon, 3 vols., New Haven 1919.
J. Burgess, "The Romaka Siddhantas," Indian Antiquary 19, 1890, 284-285.
J. Burgess, "The Pulisa-Siddhānta," Indian Antiquary 19, 1890, 316.
J. Burgess, "The Sines of Arcs in the Pancha-Siddhantika," Indian Antiquary 20, 1891, 228.
A. Christensen, L’Iran sous les Sassanides, 2nd ed., Copenhague 1944.
S. B. Dikshit, "The Original Surya-Siddhanta," Indian Antiquary 19, 1890, 45-54.
S. B. Dikshit, "The Romaka Siddhantas," Indian Antiquary 19, 1890, 133-142.
S. B. Dikshit, "The Panchasiddhantika," Indian Antiquary 19, 1890, 439-440.
A. E. Gough, Papers Relating to the Collection and Preservation of the Records of Ancient Sanskrit Literature in India. Calcutta 1878.
M. P. Kharegat, "On the interpretation of certain passages in the Pancha Siddhántiká of Varáhamihira, an old Hindu Astronomical Work," Journal of the Bombay Branch of the Royal Asiatic Society 19, 1895/97, 109-141.
W. Kirfel, Die Kosmographie der Inder, Bonn-Leipzig 1920.
T. S. Kuppanna Sastri, "The Vāsiṣtha Sun and Moon in Varāhamihira's Pañcasiddhāntikā," Journal of Oriental Research, Madras 25, 1955/56, 19-41.
T. S. Kuppanna Sastri and K. V. Sarma, "The Saka Era of Varahamihira - Salivahana Saka," Journal of Indian History 36, 1958, 343-367.
O. Neugebauer, The Exact Sciences in Antiquity, Princeton 1952; 2nd ed. Providence 1957.
P. V. Neugebauer, Tafeln zur astronomischen Chronologie II. Tafeln für Sonne, Planeten und Mond, Leipzig 1914.
P. V. Neugebauer, Astronomische Chronologie, 2 vols., Berlin-Leipzig 1929.
D. Pingree, "The Empires of Rudradāman and Yaśodharman: Evidence from Two Astrological Geographies," Journal of the American Oriental Society 79, 1959, 267-270.
D. Pingree, "A Greek Linear Planetary Text in India," Journal of the American Oriental Society 79, 1959, 282-284.
D. Pingree, "Astronomy and Astrology in India and Iran," Isis 54, 1963, 229-246.
D. Pingree, The Thousands of $A b \bar{u}$ Ma'shar, London 1968.
P. C. Sengupta, "Aryabhata, the Father of Indian Epicyclic Astronomy," Journal of the Department of Letters, University of Calcutta 18, 1929, article 3.
K. S. Shukla, "On Three Stanzas from the Pañcasiddhāntikā," Gaṇita 5, 1954, 129-136.
H. von Stieteneron, Indische Sonnenpriester. Samba und die Sākadvīpīya-Brāhmaṇa, Wiesbaden 1966.
G. Thibaut, "Notes from Varāha Mihira's Panchasiddhāntikā," Journal of the Asiatic Society of Bengal 53,1, 1884, 259-293.
V. Thiruvenkatacharya, "Ayanamsa and Indian Chronology. The Age of Varahamihira, Kalidasa, Etc.," Journal of Indian History 28, 1950, 103-110.
B. Tuckerman, Planetary, Lunar, and Solar Positions. A.D. 2 to A.D. 1649, American Philos. Soc., Memoirs 59, Philadelphia 1964.
B. L. van der Waerden, "Das Grosse Jahr und die ewige Wiederkehr," Hermes 80, 1952, 129-155.
Det Kongelige Danske Videnskabernes Selskab
Historisk-filologiske Skrifter
Hist. Filol. Skr. Dan. Vid. Selsk.
Bind 1 (kr. 208.-)

1. Sander-Hansen, C. E.: Das Gottesweib des Amun. 1940 44.-
2. Lange, H. O., und Neugebauer, O.: Papyrus Carlsberg No. 1. Ein hieratisch- demotischer kosmologischer Text. 1940 104.-
3. Sander-Hansen, C. E.: Über die Bildung der Modi im Altägyptischen. 1941 30.-
4. Danstrup, John: Esgruserhaandskriftet, en Adam af Bremen-Afskrift af Otto Sperling den Yngre. Mit deutscher Zusammenfassung. 1943 30.-
Bind 2 (kr. 120.-)
5. Hansen, C. Rise, og Steensberg, Axel: Jordfordeling og Udskiftning. Under- søgelser i tre sjællandske Landsbyer. Med et Bidrag af Werner Christensen. With a Summary in English. 1951 120.-
Bind 3 (kr.67.-)
6. Fussing, Hans H.: Stiernholm len 1603-1661. Studier i krongodsets forvaltning. With an English Summary. 1951 52. -
7. Iversen, Erik: Papyrus Carlsberg Nr. VII. Fragments of a Hieroglyphic Dictio- nary. 1958 15.
Historisk-filosofiske Skrifter Hist. Filos. Skr. Dan. Vid. Selsk.
Bind 4 (kr. 175.-)
8. Erichsen, W.: Die Satzungen einer ägyptischen Kultgenossenschaft aus der Ptole- mäerzeit. Nach einem demotischen Papyrus in Prag. 1959 15. -
9. Neugebauer, O.: The Astronomical Tables of Al-Khwārizmī. Translation with Com- mentaries of the Latin Version edited by H. Suter supplemented by Corpus Chri- sti College MS 283. 1962 80.-
10. MacKenzie, D. N.: The Dialect of Awroman (Hawrāmān-i Luhōn). Grammatical Sketch, Texts and Vocabulary. 1966 45. -
11. Peter, H. R. H. Prince of Greece and Denmark, Edelberg, L., Jørgensen, J. Balslev, Paludan, K., and Sifger, H.: Anthropological Researches from the 3rd Danish Expedition to Central Asia. 1966 35. -

Bind 5

(uafsluttet/in preparation)

1. Riss, P. J.: Sūkās. I. The North-East Sanctuary and the First Settling of Greeks in Syria and Palestine. 1970

3. In preparation.

Bind 6
 (uafsluttet/in preparation)

1. Neugebauer, O., and Pingree, D.: The Pañcasiddhāntikā of Varāhamihira. Part I. 1970... 70.-

Part II. 1971 80.-

GUNHILD PLOUG

SŪKĀS

II

The Aegean, Corinthian and Eastern Greek Pottery and Terracottas

Det Kongelige Danske Videnskabernes Selskab Historisk-Filosofiske Skrifter 6, 2

Kommissionær: Munksgaard København 1973
Det Kongelige Danske Videnskabernes Selskab udgiver felgende publikationsrækker:
The Royal Danish Academy of Sciences and Letters issues the following series of publications:

Bibliographical Abbreviation

Oversigt over Selskabets Virksomhed (8°) (Annual in Danish)

Historisk-filosofiske Meddelelser (8°)
Historisk-filosofiske Skrifter (4°) (History, Philology, Philosophy, Archeology, Art Hislory)

Matematisk-fysiske Meddelelser (8°) Matematisk-fysiske Skrifter (4 ${ }^{\circ}$) (Mathematics, Physics, Chemistry, Astronomy, Geology)

Biologiske Meddelelser (8°)
Biologiske Skrifter (4°) (Botany, Zoology, General Biology)

Overs. Dan. Vid. Selsk.

Hist. Filos. Medd. Dan. Vid. Selsk. Hist. Filos. Skr. Dan. Vid. Selsk.

Mat. Fys. Medd. Dan. Vid. Selsk. Mat. Fys. Skr. Dan. Vid. Selsk.

Biol. Medd. Dan. Vid. Selsk. Biol. Skr. Dan. Vid. Selsk.
Selskabets sekretariat og postadresse: Dantes Plads 5, 1556 København V.
The address of the secretariate of the Academy is:
Det Kongelige Danske Videnskabernes Selskab, Dantes Plads 5, 1556 Köbenhavn V, Denmark.
Selskabets kommissionær: MunksgaArd's Forlag, Nørre Søgade 35, 1370 København K.
The publications are sold by the agent of the Academy:
Munksaandd, Publishers,
35 Nörre Sögade, 1370 Köbenhavn K, Denmark.

GUNHILD PLOUG

SŪKĀS

II

The Aegean, Corinthian and Eastern Greek
Pottery and Terracottas

Det Kongelige Danske Videnskabernes Selskab

Historisk-Filosofiske Skrifter 6, 2

Kommissionær: Munksgaard København 1973

CONTENTS

Pages
I. Introduction 5
II. Minoan (?) and Mycenaean Vases and Plastic Figures 6
III. Cycladic Geometric Vases 11
IV. Cycladic Orientalizing Vases 14
V. Al-Mina Ware 16
VI. Protocorinthian and Corinthian Vases 17
VII. Imitations of Protocorinthian and Corinthian Vases 22
VIII. East Greek Wares with Wave/Band Decoration 23
IX. Ionian Cups 27
X. One-Handled (?) East Greek Bowls 38
XI. Other Hemispherical East Greek Bowls 41
XII. Vases of Wild Goat and Derivative Styles 43
XIII. Chian Vases 69
XIV. Vroulian Cup 73
XV. Vases in Fikellura Style 73
XVI. Other East Greek Black-Figured Vases 74
XVII. Unclassified East Greek Vases 80
XVIII. Local Ware 84
XIX. Lamps 87
XX. Archaic Plastic Figures 88
XXI. Other Objects 90
XXII. Conclusion 90
Appendix: List of Provenances 101

LIST OF PLATES

at the End of the Volume (small numbers on the plates refer to the catalogue)
I. Aegean pottery. 1:2.
II. Aegean terracottas, Cycladic pottery, Al-Mīna ware and Corinthian pottery. 1:2.
III. Corinthian pottery and imitations of Corinthian pottery. 1:2.
IV. East Greek pottery. 1:3.
V-XVIII. East Greek pottery. 1:2.
XIX. East Greek pottery, lamps and terracottas. 1:2.
XX. Local ware. 1:3 and 1:15.

[^18]MH——Middle Helladic.
MM—Middle Minoan.
LM—Late Minoan.
Myc-Late Mycenaean.
MG-Middle Geometric.
LG-Late Geometric.
PC-Protocorinthian (EPC and LPC—Early and Late PC).
TR-Transitional.
C-Corinthian (EC, MC and LC—Early, Middle and Late C).
CypArc-Cypro Archaic.
CypClas-Cypro Classical.
Besides the above-mentioned terms, only easily understood abbreviations occur.

Introduction

For information on the progress of the excavations undertaken throughout five seasons on Tall Sūkās in Syria, see the introduction by P. J. RiIs, Sūkās I, 7-20. The material treated in Sūkās II is the Aegean and Greek pottery of the Late Bronze Age, the Geometric and Archaic periods, with the exception of the Attic exports, which are to be dealt with in a forthcoming volume. Only very few non-Attic Archaic terracottas appeared on Tall Sūkās-they too are included in the catalogue. All Greek sherds were registered during the excavation, but only about one third, roughly a thousand fragments, were registered in detail (TS-numbers) and photographed. The objects in the present catalogue were selected from this category, whereas some sherds without TS-number and enumerated by inventory number only are mentioned in Sūkās I on account of their particular importance for the interpretation of the contexts. Of the sherds with TS-numbers, about eight hundred figure in the catalogue, but descriptions are given for half of them only; the other half consisting of repeats arranged in respective, similar groups, included in order to give a more complete representation of datable Greek finds on the tall. A list of provenances for all the sherds in the catalogue is given in the Appendix. The writer took part in two of the campaigns, but did not have the opportunity to make a systematic and thorough examination of all the fabrics of the pottery dealt with in this volume. Thus it was found preferable to publish the descriptions of clay and paint reported by the registrars working in the field (cf. Sūkās I, 14-15). On this background it has been impossible to contribute to distinctions of workshops when an ascription is based mainly on the nature of the clay, as for instance with the Ionian cups and the Waveline Ware. The bulk of Greek Archaic pottery from Tall Sūkās is East Greek and only two mainland categories, Corinthian and Attic, occurred, a situation very similar to that known from the Greek sites in the Pontic area, whereas the Laconian pottery, so frequent in the Greek cities of North Africa, is totally absent. In 1972 the Syrian Directorate General of Antiquities, according to existing regulations, offered to the Danish National Museum a certain number of objects found by the Carlsberg Expedition during the campaigns of 1958-63. The Museum is gratefully looking forward to receiving the said objects.

The writer wishes to express her deep gratitude to Mr. P. Christensen, who made the final drawings and arranged the photographic material. Furthermore, I am indebted to the architects, photographers, and draughtswomen of the Expedition, see Sūkās I, 14-15 and to Mrs. J. Dupuis Starcke who patiently revised the English text. To Professor P. J. RiIs, the director of the Expedition, I extend my sincere thanks for help and encouragement both during the excavations and during the preparation of this volume.

Minoan (?) and Mycenaean Vases and Plastic Figures

The Greek Bronze Age pottery from Tall Sūkās is not abundant, little more than fifty fragments having been registered; a few of the sherds are of special interest as they exhibit features both earlier and later than the greater mass of Greek pottery from the Levant ${ }^{1}$. The earliest example is 6 ; in the preliminary report it is mentioned as Myc I, and it should thus be the earliest Mycenaean fragment from the Levant. ${ }^{2}$ It is decorated with a white spiral laid on brownish or blackish paint, but in Myc I no superimposed spirals seem to occur on pottery, white is used only as an accessory colour on the dark spirals. ${ }^{3}$ White spirals on dark ground were very popular in Crete during all phases of MM^{4}, and the technique was still in use in LM I but was to some degree overtaken by the "reserved" technique. ${ }^{5}$ Superimposed white spirals were frequent on MH pottery too, ${ }^{6}$ but it is very unlikely that MH was exported to the Middle East. ${ }^{7}$ Furthermore, though the painting of 6 is indistinct, the spiral is said by the registrar to be "rather rashly painted", a fact which should point to a Cretan origin. ${ }^{8}$ MM II-III pottery is known from Syria, ${ }^{9}$ whereas there is no evidence up till now of Cretan connections with Syria in LM. ${ }^{10} 6$ may be MM, but an origin of the vase in the succeeding period cannot be excluded. ${ }^{11}$

The bulk of Mycenaean material from Tall Sūkās can be assigned to Myc III A; ${ }^{12}$

[^19]the following are ascertained to belong to III A 2: 1; ${ }^{13}$ 2: might come from a vase similar to $1,{ }^{14}$ but perhaps just as well from a pyxis; ${ }^{15} 5$: the diameter of the flat disk is so small that it must belong to the earliest of the Myc III stirrup-jars; ${ }^{16}$ the small piriform jar with three handles, the stirrup-jar and the pyxis are the shapes most frequently found in the Levant; $;^{17} 7 ;{ }^{18} 8:{ }^{19}$ the upright position of the flowers in the shoulder field exclude the stirrup-jars as the possible origin of $8,{ }^{20}$ it is rather from a larger vase with a more complicated composition; ${ }^{21} 24$: one of the flowers on the krater sherds has an appearance in which Minoan influence is detected ${ }^{22}$ - the sherds might have come from an amphoroid krater with a chariot scene; ${ }^{23} 26$: from a cup either with a running spiral ${ }^{24}$ or a curtailed form. ${ }^{25} 9^{26}$ and $13{ }^{27}$ can only be understood as Myc III A, 9: curved flower stems are frequent on alabastra. ${ }^{28}$ Only one potsherd can with some certainty be regarded as Myc III B (for the figurines, see later), this is 23 presumably Cypriote and from a bell krater, the most common krater shape of III B. The exact stylization of the bull as on 23 does not occur among any of the known pictorial representations, but the scene which is illustrated may be the same as on the Enkomi bull krater, on which a cattle egret perches on a bull. ${ }^{29}$ Though the head of 23 is in contour, the fragment is perhaps to be ascribed to the same master, i.e. the "Enkomi Bull Painter": inside the silhouette of the Enkomi bull's head are traces, which suggest that originally only the contours of the head were indicated, including the double lines between head and neck, which occur too on the Sūkās bull. ${ }^{30}$ Another fragment is the only one which can be assigned to the latest phase, III C, not often represented in the Levant: ${ }^{31} 16$ decorated with a pair of "tongue-

[^20]shaped antitheticals'". ${ }^{32}$ Only approximate datings can be given for the rest of the material. The disk of $\mathbf{4}$ is larger than that of 5 and thus probably later; ${ }^{33} \mathbf{1 0}$ and $\mathbf{1 5}$ might belong to pilgrim flasks; ${ }^{34}$ the casually drawn stripes of $\mathbf{1 1}$ could be part of a simple line spiral, i.e. without the usual horizontal connecting lines; ${ }^{35}$ the stemmed lozenge of 14 cannot be earlier than III B-the interior of the sherd is not described, so it is included in the group of closed vases in the catalogue, but the motive is very often connected with pictorial representations on kraters, and $\mathbf{1 4}$ might perhaps have belonged to an open vase. ${ }^{36}$ The very close-set band groups of 19 might indicate an early dating; ${ }^{37}$ the sloping curved line of 20 has perhaps encircled the side spout of a "tea pot". ${ }^{38} \mathbf{2 5}, 27-29$ are all fragments of cups: the earliest one is 25 with part of what is possibly a lily with curved stem; ${ }^{39}$ the empty area above the band group of 27 is fairly large and the cup might have been undecorated on the upper half. ${ }^{40}$ The cup to which 29 belonged was most likely decorated with bands only; ${ }^{41}$ in the description of 28 the concentric circles are said to be on the exterior, but there are no traces of a foot, which should be expected. ${ }^{42}$ The "group" looks earlier than III C, and among the determinable sherds there are no obvious counter-parts to the vases in the so-called Rude Style of Cyprus or to the wares reported from Tall Ashdod and Beth Shan. However a stirrup-jar was found in the South Harbour of Tall Sūkās, the decoration much corroded, but in shape very similar to the one from Beth Shan. ${ }^{43}$ As on nearly all sites where Mycenaean pottery has appeared, Mycenaean figurines occur too on Tall Sūkās. ${ }^{44}$ All the fragments of female figurines, 31-33 b presumably represent the -type, which is usually assigned to Myc III B. ${ }^{45}$ On 31 the waistline of the torso is placed very high, a feature showing that the figure is one of the earliest of the Ψ-type. ${ }^{46}$ The animal fragments all belong to Blegen's type "c", and both varieties of type "c"

[^21]are represented. ${ }^{47}$ The Sūkās fragments are suggested to be Myc III B ${ }^{48}$ and the type represented by $34-35 \mathrm{~b},{ }^{49}$ i.e. Blegen's first variety, is now dated to the beginning of III B; ${ }^{50}$ the second variety, with transversal stripes on the body, is known from the Argive Heraion in a Myc III A 2/III B context. ${ }^{51}$

Small piriform jar.

1. TS 5601. Sūkās I 29 no. 33, 31 fig. 8 b pl. 2. Neck/shoulder sherds with root of handle. G 15 NE. $10.0 \times 7.5 \mathrm{~cm}$, diam. of rim 9.5 cm . Fine grey brown clay, greenish grey slip, brown glaze. Broad cylindrical neck with horizontal offset rim; small horizontal loop-handle, on shoulder frieze of U-patterns enframed by narrow bands. Pl. I.

Pyxis?

2. TS 569. BSA 62 1967, 114.2. Neck/shoulder sherd, handle. G 11 SW. $5.1 \times 3.7 \mathrm{~cm}$. Light buff clay, pink in core, yellowish slip, reddish brown to chocolate glaze. Small horizontal loop-handle. Neck glazed, in handle zone frieze of small vertical stripes enframed by narrow bands. Handle glazed. Pl. I.

Stirrup-jars.
3. TS 4657. Shoulder sherd with spout. G 10 NE. H. of spout 3.2 cm , diam. of rim 2.5 cm , w. 5.0 cm . Light yellowish clay, darker core, brownish glaze. Band on interior of rim and another round root of neck; on shoulder, one broad and two or three narrow horizontal bands. Pl. I. Similar: TS 1676 P 11 SW.
4. TS 2055. Disk and part of handle of false-neck. J 8 SE. $4.6 \times 2.9 \mathrm{~cm}$. Yellow clay, dark brown to olive glaze. Disk: large central dot and concentric circles. Handle: glazed except for triangle at top. Pl. I. Similar: TS 4792 G 10 NE, TS 3572 G 13.
5. TS 600. Disk and part of handles of false-neck. G $11 \mathrm{SW} .5 .9 \times 2.7 \mathrm{~cm}$. Light buff gritty and micaceous clay, greenish in core, light reddish brown glaze. Flat disk with central dot and concentric circle. Handles glazed, except for irregular, reserved field at top. Pl. I.

Other closed vases.

6. TS 663. AASyr $8 / 9$ 1958/59, 131-32, BSA 62 1967, 113.1. Neck/shoulder sherd. G 11 SW. $7.2 \times 10.1 \mathrm{~cm}$. Light drab, very gritty and slightly micaceous clay, brownish to black glaze. Shoulder not distinctly offset from neck. Glazed all over; on neck, running spiral between two horizontal bands all added in white which is very worn. Pl. I.
7. TS 5515. Side sherd. G $15.3 .0 \times 4.0 \mathrm{~cm}$. Light brownish clay, light brownish glaze. Part of voluted flowers. Pl. I.
8. TS 4752. Neck/shoulder sherd. Surface, Eastern Spur. $4.5 \times 2.9 \mathrm{~cm}$. Light brown clay, creamy slip, brown glaze. Neck glazed; on shoulder, part of voluted flowers. Pl. I.
9. TS 2721. Neck/shoulder sherd. L 8 SE. $3.0 \times 3.0 \mathrm{~cm}$. Very fine light clay, greenish slip, brown lustrous glaze. Horizontal rib between neck and shoulder. Neck glazed; on shoulder, curved narrow stripe and two parallel zigzag lines. Pl. I.
10. TS 3716 . Side sherd. G $14.3 .5 \times 3.3 \mathrm{~cm}$. Light buff clay, yellowish slip, brown to black glaze. Part of three concentric bands. Pl. I.
11. TS 5585 . Side sherd. G 16 NW. $3.0 \times 2.0 \mathrm{~cm}$. Fine light brownish clay and slip, red glaze. Part of irregular spiral overlapping broad band. Pl. I.
${ }^{47}$ Blegen, Prosymna, 363-364, BSA 66 1971, 151-153 fig. 11.
${ }^{48}$ BSA 62 1967, 114.3.
${ }^{49}$ Similar in Ras Šamra, C. F. A. Schaeffer, Ugaritica II, Paris 1949, 230 fig. 97.9, 20.
${ }^{50}$ Deshayes, Deiras, 201 DM 73 pl. 82.5, the bull from Deiras does not have exactly the same decoration as the Sūkās fragments, but see ibid, note 2, for a bull like those from Sūkās. BSA 66 1971, 155-56.
${ }^{51}$ Deshayes, Deiras, 201 note 4 DM 86 pl. 92.2 . See further BSA 66 1971, 156-57.
12. TS 1734. Side sherd. P 11 NW. $2.5 \times 2.0 \mathrm{~cm}$. Fine buff clay, yellow buff slip, brownish to black glaze. Composition of dots and stripes. Pl. I.
13. TS 3038 . Side sherd. G $15.3 .0 \times 3.7 \mathrm{~cm}$. Buff clay, buff slip, red lustrous glaze. Frieze of broken wavy line; at bottom, band and indefinable rounded design. Pl. I.
14. TS 4522 . Side sherd. G 10 SE. $5.7 \times 3.3 \mathrm{~cm}$. Buff clay, reddish brown glaze. Stemmed lozenge with groups of semicircles. Pl. I.
15. TS 1385. Side sherd. G 11 SW. $4.5 \times 2.5 \mathrm{~cm}$. Light reddish buff clay, creamy slip, red glaze. Banded. Pl. I. Similar: TS 1537 E 8 SE, TS 3481 G 15.
16. TS 812. AASyr $8 / 91958 / 59,131$. Shoulder sherd. G 11 SW. $6.9 \times 4.5 \mathrm{~cm}$. Fine light buff clay with white and dark grits, red to brown glaze. Pair of hatched tongue-shaped antitheticals, below broad and narrow bands. Pl. I.
17. TS 1390, 1391. Shoulder/side sherds. G 11 SW. $4.5 \times 4.0 \mathrm{~cm}$. Light buff somewhat porous clay, red glaze. Narrow and broad bands, "sling'" in field. Pl. I.
18. TS 641. Side sherd. G 11 SW. $2.1 \times 1.6 \mathrm{~cm}$. Light greenish clay with some grits and mica, brown glaze. Four narrow bands enframed by two broad ones. Pl. I. Similar (three to nine narrow bands): TS 364 Surface, TS 365 Surface, TS 1198 G 11 SW, TS 1893 H 11 NW, TS 1957 G 7 SE.
19. TS 3489. Side sherd. G 15. $2.0 \times 3.5 \mathrm{~cm}$. Red to buff clay, buff in core, buff slip, red glaze. Broad and narrow bands. Pl. I. Similar: TS 4910 G 14 NE, TS 5553 H 11 NE.
20. TS 5658 . Shoulder sherd with root of spout(?). G 15 NE. C. $5.0 \times 5.0 \mathrm{~cm}$. Light greyish clay, black glaze. Band round root of spout(?), at bottom horizontal band. Pl. I.
21. TS 5586 . Side sherd. G 16 NW. $2.5 \times 3.0 \mathrm{~cm}$. Fine reddish clay, yellowish slip, brownish glaze. Vertical, irregular, slim stripe; below, horizontal band with small pendant stripe. Pl I.
22. TS 3826. Handle fragment. H 11 NW. $3.6 \times 1.2 \mathrm{~cm}$. Reddish somewhat micaceous clay, yellowish slip, red brown glaze. Transversal stripes. Pl. I.

Kraters.
23. TS 2314. AASyr 10 1960, 128 fig. 18, AA 1962, 374 fig. 90 . Shoulder sherd with root of neck. G 16 NW. $4.3 \times 5.7 \mathrm{~cm}$. Buff clay with few grits, greyish buff slip, red glaze. Exterior: neck glazed; on body, part of neck and head with probably the long toes of a bird perched on the neck of the bull. Interior: no description. Pl. I.
24. TS 483, 484, 497. AASyr 8/9 1958/59, 131 fig. 18. Rim/neck/shoulder/side sherds with strap-handle. E 8 SW, SE and NW. L. $2.8-9.4 \mathrm{~cm}$, w. $1.8-5.5 \mathrm{~cm}$. Fine light yellowish buff clay with small grits and mica, black to brown glaze. Flat rim, broad vertical strap-handle, three holes through top of handle. Rim: groups of transversal stripes limited along the inward edge by horizontal band. Handle: glazed, except for vertical stripe. Exterior: voluted and unvoluted flowers, vertical row of quirks. Interior: glazed. Pl. I.

Other open vases.
25. TS 988. Side sherd of cup(?). G 15 SE. $3.1 \times 1.9 \mathrm{~cm}$. Yellow clay with some white grits, red mat paint, burnished! Exterior: part of lily(?). Interior: horizontal bands. Pl. I.
26. TS 3078. Rim/side sherd of cup(?). G $14.2 .8 \times 2.1 \mathrm{~cm}$. Light brown clay, yellow slip, red glaze. Slightly everted rim. Exterior: rim glazed, below three curved lines. Interior: slipped, rim glazed. Pl. I. Similar: TS 2606 H 11 NW.
27. TS 1773. Bottom sherd of cup(?). F 8 NW. $4.0 \times 3.5 \mathrm{~cm}$. Red clay with white grits, red glaze. Exterior: group of broad and narrow concentric circles. Interior: two concentric bands. Pl. I.
28. TS 1735. Bottom sherd. P 11 NW. $1.5 \times 2.0 \mathrm{~cm}$. Light buff clay, red slip, brown glaze. Exterior: three concentric circles. Interior: slipped. Pl. I.
29. TS 1355. Side sherd of cup(?). G 8 SE. $3.0 \times 2.0 \mathrm{~cm}$. Fine yellow clay, yellow slip, red glaze. Exterior: banded. Interior: glazed. Pl. I.
30. TS 5621. Fragmentary stem. H 12. $4.7 \times 3.7 \mathrm{~cm}$. Fine light brownish clay, darker in core, yellow slip, red glaze. Broad and narrow horizontal bands. Pl. I.
Ψ-figurines.
31. TS 5561. Sūkās I 36 no. 51 fig. 8 d pl. 2. Columnar stem with part of torso. G 16 NW. W. $3.2 \mathrm{~cm}, \mathrm{~h} .5 .7 \mathrm{~cm}$, diam. below 3.0 cm . Fine light red-brown clay, yellowish slip, red-brown glaze. Above waistline short vertical stripes, on stem three vertical stripes. Pl. II.
32. TS 563. AASyr 8/9 1958/59, 131 fig. 17, NMArb 1961, 123-24 fig. 5, AA 1962, 374-75 fig. 89, BSA 62 1967, 114.3. Fragmentary columnar stem. G 11 SW. $2.6 \times 4.7 \mathrm{~cm}$. Light buff clay with white and dark grits, brownish red glaze. Three vertical stripes. Pl. II .

33a. TS 4516. Sūkās I 34 no. 49 fig. 8 f pl. 2. Arm. G 16 SW. $2.4 \times 2.0 \mathrm{~cm}$. Buff clay, buff slip, reddish glaze. Band along edge, on both sides vertical stripes. Pl. II. Similar: TS 4679 G 16 SW.

33b. TS 4533 . Sūkās I 29 no. 36 fig. 8 e pl. 2. Arm. G 15 SE. $2.3 \times 1.5 \mathrm{~cm}$. Buff clay, buff slip, brownish glaze. Band along edge, vertical stripes on both sides. Pl. II .

Animal figurines.

34. TS 561. AASyr $8 / 9$ 1958/59, 131 fig. 17, NMArb 1961, $123-34$ fig. 5, AA 1962, 374-75 fig. 89. Fragmentary bull. G 11 SW. L. $10.8 \mathrm{~cm}, \mathrm{~h} .6 .9 \mathrm{~cm}$. Light yellowish to reddish clay with some white and dark grits, brownish to black glaze. Forelegs and outer part of horns are missing. Banded longitudinally, end of muzzle glazed; small transversal stripes on top of muzzle and front of horns. Pl. II. Similar head: TS 4484 G 15 SW. Similar bodies: TS 4080 G 15 SE , TS 5542 G 15 NE .

35a. TS 562. AASyr $8 / 9$ 1958/59, 131 fig. 17, NMArb 1961, 123-24 fig. 5, AA 1962, $374-$ 75 fig. 89. Fore- and hind-part of bull. G 11 SW. $4.2 \times 9.1 \mathrm{~cm}, 2.0 \times 4.9 \mathrm{~cm}$. Light yellowish to reddish clay, with some white and dark grits, brownish to reddish glaze. Banded longitudinally, end of muzzle glazed, small transversal stripes on top of muzzle. Pl. II. Similar horn: TS 4680 b G 16 SW. Similar legs: TS 3858 G 12 NE, TS 4604 H 11 NE, TS 4680 a G 16 SW, TS 5584 G 16 NW.

35b. TS 4532. Sūkās I 29 no. 35 fig. 8 c pl. 2. Fragmentary fore-part of bull. G 15 SE. $4.1 \times 6.1 \mathrm{~cm}$. Buff clay with grey grits, yellowish slip, dark brownish lustrous glaze. Banded longitudinally, transversal stripes on horns. Pl. II.
36. TS 2295. Fragmentary trunk. G 16 NW. $6.2 \times 2.8 \mathrm{~cm}$. Red brown clay with few white grits, yellowish slip, red glaze. Close-set vertical stripes crossed by a horizontal stripe along back. Pl. II.

III

Cycladic Geometric Vases

Only five sherds have been determined as Geometric, $37-41$, all presumably Cycladic. Though the description of the clay is sparse, it does not disagree with that of Cycladic fabrics. 37 and 38 are from skyphoi with pendent-semicircles. ${ }^{52}$ The exact

[^22]profile of 38^{53} is not known, and so little is left of the sherd that there are no traces of another intersecting circle group; the decoration is unusual, the semicircles describe more than half a circle, and innermost is a full circle. ${ }^{54}$ The body of 37 is rather deep, the rim distinctly offset from the shoulder and clearly swept back. Among the skyphoi found in Syria the greatest similarity in profile to 37 is found in the fragmentary cup from Tall Ta'yināt, on which the number of semicircles is considerable too, i.e. ten, ${ }^{55}$ and in the Tall Halāf skyphos which has eleven semicircles ${ }^{56}$ like $\mathbf{3 7}$. Recently J. N. Coldstream has thoroughly dealt with the pendent-semicircle skyphoi, including the category to which the sherds from Tall Sūkās belong. ${ }^{57}$ According to Coldstream the skyphoi from Tall Ta'yināt and Tall Ḥalāf date to the second half of the 9 th century, i.e. MGI, and the Hama cups are assigned to the early 8th century, i.e. MG II. ${ }^{58}$ The Heama cups, which have never been fully published, are now dealt with by P. J. Rus. ${ }^{59}$ For two of the cups a date is proposed earlier than that of MG II: 8 A $189,{ }^{60}$ found in a cinerary urn, is safely dated to the late 9 th century or around 800 B.C., ${ }^{61}$ while L 941^{62} is suggested to be even earlier, it is compared with EG cups. ${ }^{63}$ The two remaining cups are held to be later: ${ }^{64}$ on account of its occurrence in deposits of the 4th period of the cremation necropolis, one of them, 6 A 290 , is dated within 800-720 B.C. ${ }^{65}$ According to P. J. Rirs, the latest of the Hama cups should be contemporary with the cups from Tall Ta'yināt, Tall Halāf, Tall Sūkās and some of the Al-Mina cups. ${ }^{66}$ However, the profiles of the later Hama cups show features rather different from those of the cups from Tall Ta'yināt, Tall Ḥalāf and Tall Sūkās: the concavity of the rim is more pronounced on the Hama cups, the bodies are shallower and with straighter sides, whereas the profile of the earlier Hama cup, dated by P. J. Riss not later than 800 B.C., i.e. MG I, ${ }^{67}$ comes closer to the three cups in question.

[^23]The similarity of the cups from Tall Ta'yināt and Tall Halāf to the MG I cup from Hama seems to confirm J. N. Coldstream's ascription of the Ta'yināt and Halāf cups to the 2 nd half of the 9 th Cent. B.C. ${ }^{68}$ It is not possible to judge if 38 can be assigned to the 9 th Cent. B.C. like $\mathbf{3 7} .38$ is too small and the course of its profile is not known. No profile drawings have been published of the sherds from Al-Mina, and the range within the sherds is still confusing, but the early MG type is represented among them. ${ }^{69}$ The skyphos is described as unusually deep, ${ }^{70}$ probably not unlike the ones from Tall Ta'yināt, Tall Halāf, Tall Sūkās and the early one from Hama. Three other fragments are distinguished by Coldstream as belonging to late and degenerate skyphoi with extremely shallow bodies and only few semicircles which often overlap the glaze; ${ }^{71}$ they are understood as Late Geometric. Two of these fragments are mentioned by P. J. Rirs as contemporary with the skyphoi from Tall Ta'yināt, Tall Halāf and Tall Sūkās together with the two latest Hama cups. ${ }^{72}$ As shown above, we cannot talk about stylistic contemporarity in connection with the three former cups-and even in connection with the two latest Hama cups it is questionable. The latter are of a decidedly better quality than the Al-Mina sherds and the Late Geometric skyphoi from Cyprus, ${ }^{73}$ and might have been produced earlier, i.e. in MG II, ${ }^{74}$ but they may of course have been in use as late as 720 B.C. ${ }^{75}$ Only a corner of a hatched meander is left on 39. Though the description of the clay does not reveal it, the sherd is most likely Cycladic as at least some of the early ceramics from Al-Mina; the sherd might belong to a skyphos with window panel, which is a normal Atticizing MG type in the Cyclades. ${ }^{76}$ Though the clay is not termed micaceous, the slip betrays the Cycladic origin of the sherds $\mathbf{4 0}-\mathbf{4 1 ; ~}{ }^{77}$ kraters of this sort are already known in the Levant. ${ }^{\mathbf{7 8}}$ The type is LG. ${ }^{79}$

Skyphoi.

37. TS 2018. Sūkās I 50 with note 143 , pp. 142, 152 figs. 53 b, 54 a. Rim/shoulder/side sherd. F 8 NW. $7.0 \times 5.2 \mathrm{~cm}$. Fine pale buff clay with tiny white grits and a little mica, black to light brown glaze. Exterior: rim glazed, eleven pendent-semicircles, centre marked by dot and compass-point, faint traces of six other pendent-semicircles intersecting the outer nine ones of the former group. Interior: glazed, except for band at top of rim. Pl. II. Fig. a.
${ }^{68}$ Concerning Tall Ta'yināt, J. N. Coldstream notes that "the evidence for this date is not stated" Geometric, 311 note 3.
${ }^{69}$ JHS 60 1940, 3 figs. 1 d, j and another fig. 1 b is suggested to be early by P. J. Riis, Sūkās I 152 note 619.

70 Coldstream, Geometric, 312.
${ }^{71}$ Coldstream, Geometric, 312, 157 note 6.
${ }^{72}$ Sūkās I 152 figs. 48 a, d.
${ }^{73}$ Coldstream, Geometric, 157 notes 4-5.
${ }^{74} 6$ A 290 is very similar in shape to a Cypriote skyphos from: A "Royal" tomb at Salamis, AA 78 1963, 177 fig. 35.46, found with MG II, see Coldstream, Geometric, 157 note 3.
${ }^{75}$ However, even this is doubted by J. N. Coldstream, Geometric, 311; see further Sūkās I 148-150. For the group see Sūkās I 156, Emporio, 117, Gnomon 42 1970, 497.
${ }^{76}$ JHS 60 1940, 2-3 fig. 1.1, Sūkās I 146 fig. $47 \mathrm{l}-\mathrm{j}$, Coldstream, Geometric, 312 B1 (MG I), see pl. 34 k .
${ }^{77}$ Coldstream, Geometric, 172.
${ }^{78}$ Sūkās I 148 notes $598-599$, 154 notes 629 , 631 (with references); for the Delos Krater Bc 8, see Coldstream, Geometric, 172-174 no. 3 (the Cesnola Painter).
${ }^{79}$ See preceding note: Coldstream.
38. TS 1012. AASyr 10 1960, 123 fig. 13, Sūkās I 50 with note 143, pp. 142, 152 figs. 53 c, 54 b . Shoulder/side sherd with root of rim. H 5 SE. $2.5 \times 2.1 \mathrm{~cm}$. Fine buff clay, black to light brown glaze. Exterior: root of rim glazed, four pendent-semicircles and one small full circle, centre marked by dot and compass-point. Interior: glazed. Pl. II.
39. TS 3520. Side sherd. G 5 NE. $1.8 \times 2.3 \mathrm{~cm}$. Grey brown clay, brown to black glaze. Exterior: part of meander with diagonal hatching. Interior: one broad and two narrow bands. $P l . I I$.

Kraters.
40. TS 1394. Rim sherd. G 15 NE. $3.0 \times 3.0 \mathrm{~cm}$. Rather fine light reddish clay with few white grits, creamy slip, black to reddish glaze. Flat rim. Exterior and interior: glazed. Topside: group of four transversal stripes, broad band along edge. Pl. II.
41. TS 969. Rim sherd. F 6 NW. $1.6 \times 2.7 \mathrm{~cm}$. Dark reddish clay, greenish slip, black glaze. Groove on underside. Exterior, interior and underside: glazed. Topside: two groups of transversal stripes, broad band along edge. Pl. $I I$.

IV

Cycladic Orientalizing Vases

Only two Cycladic sherds belong to this phase. 42 is from "a big jar", and the metope-circle decoration points to the still not located Linear Island group, ${ }^{80}$ which consists mainly, of large amphorae, frequently with a funeral purpose. So far these vases have appeared only within Greece itself, and of the pieces without known finding places, only one has an Eastern provenance, i.e. the one in Leyden which was acquired in Smyrna. ${ }^{81}$ On this basis it is strange to find a fragment in a remote Syrian location, thus P. J. Rirs has attempted to connect 42 with other and more widespread Cycladic vase shapes, as kraters and krateriskoi. In addition to Eastern Greece these have been found further afield in Asia Minor. ${ }^{82}$ However 42 presumably does not belong to an open vase, as the interior of the sherd was apparently unglazed. Though none of the circle schemes of the known Linear Island amphorae are absolutely identical to 42, nor the later ones, ${ }^{83}$ it cannot be denied that the group in general is that with which 42 has the greatest affinity. 43 is totally without slip, thus connecting it with Dugas's A-groups, ${ }^{84}$ where friezes of "running dog" are usually found on the Ad vases. ${ }^{85}$ The latter look geometric, and are suggested to date to the 1 st quarter of the 7 th century; ${ }^{86}$ it has recently been argued that they may last into the second quarter of the 7 th Cent. B.C. ${ }^{87}$ Three sherds of this category are reported from Al-Mina. ${ }^{88}$
${ }^{80}$ The different points of view summed up by I. Strøm, ActaArch 33 1962, 243-246; add P. Bocci, Ricerche sulla ceramica cicladica, Rome 1962,5-8 and Fondation Hardt pour l'étude de l'antiquité classique, entretiens X 1964, 57-58 (N. M. Kontoleon). P. J. Riis, Sūkās I 50 note 145 Pl. III no. 37 fig. 16 g, described the sherd as unslipped, i.e. without the thick yollowish slip; the slip of the Linear Island vases is extremely thin and sometimes yellowish brown, see ActaArch 331962,224 note 8 , and this sort of slip may correspond to the slip registered as yellowish to brown.
${ }^{81}$ ActaArch 33 1962, 222-223.
${ }^{82}$ Sūkās I 50 note 145 . On 42 see further Sūkās II 94.
${ }^{83}$ Sūkās I 50.
${ }^{84}$ ActaArch 33 1962, 271.
${ }^{85}$ Délos XV 39-48 pls. 20-25, ActaArch 33 1962, 267-278, Bocci, Ricerche cicladica, 8-10 pl. 5.
${ }^{86}$ ActaArch 33 1962, 269.
${ }^{87}$ See preceding note.
${ }^{88}$ BSA 52 1957, 6 note 25 a.

1:2

Fig. a.

Closed vases.
42. TS 4183. Sūkās I 50 no. 37 fig. 16 g pl. 3. Shoulder sherd. H $14.7 .6 \times 7.8 \mathrm{~cm}$. Light yellowish to brown clay with numerous dark and white grits and a few mica, yellowish to brown slip, orange glaze. In metope field, one half of concentric group of four circles, faint traces of four triglyphs. Pl. II.
43. TS 1027. Side sherd. G 5 SE. $2.7 \times 2.1 \mathrm{~cm}$. Buff clay with some white grits and a few mica, red glaze. Frieze of "running dog" (no band above/below). Pl. II.

V

Al-Mina Ware

The ware demonstrated by J. Boardman as possibly manufactured by Greek potters in Syria ${ }^{89}$ is represented on Tall Sūkās by five sherds, 44-4\%. Only one of the sherds, 44 , is in the bichrome technique, one of the hallmarks of the group, which is most fully represented in Al-Mina, the suggested centre for the production. 44 perfectly matches one of the Al-Mina sherds except for a greater number of triglyphs on the Sūkās sherd. ${ }^{90}$ Though the description of the interior of 44 is not clear, the sherd must belong to Boardman's first class, because of the elaborate decoration on the exterior, ${ }^{91}$ whereas 45 with its simple linear decoration belongs to the second class. ${ }^{92}$ The other sherds $\mathbf{4 6 - 4 7}$ are small and not very characteristic. ${ }^{93}$ In addition to Al-Mina, Tall Sūkās and Cyprus, ${ }^{94}$ the ware is now reported from farther south at Byblos ${ }^{95}$ and in the Hhalda necropolis at the Beirut airport. ${ }^{96}$ Some fragments from Tarsus have a very similar decoration, but G. M. A. Hanfmann points out that the technique is different, and he suggests an Ionian origin for the Tarsian pieces. ${ }^{97}$ The type and decoration which the Al-Mina cups copy is that of LG skyphoi, Euboean(? ${ }^{98}$ and the ware is supposed still to have been made in the 8 th century B.C. ${ }^{99}$ For the stratification of 47 see conclusion p. 93 .

Skyphoi.

44. TS 4044. Sūkās I 50 no. 36 fig. 15 c pl. 3. Shoulder/side sherd with root of rim. H 14. No measurements. Pink clay with numerous black and white grits and mica, creamy slip. Exterior: on rim, lower part of vertical zigzags in orange matt paint, below two black glazed bands with black (or dark grey) matt painted stripes added; on shoulder/side: five triglyphs, the outer four in black (or dark grey) matt paint, the innermost in red matt paint; in metope field: four-leaved flower with contours and hatches in black (or dark grey) matt

[^24]paint and interior of central dot in red matt paint, two tongues with contours in black (or dark grey) matt paint and interiors in red matt paint, dot-fillers in black (or dark grey) matt paint. Interior: 'brown paint on creamy slip". Pl. II.
45. TS 1387. Rim/shoulder sherd. G 11 SE. $3.0 \times 2.5 \mathrm{~cm}$. Fine dark buff clay, light buff slip, brown matt paint. Exterior: banded rim, vertical wavelines made by at least a sextuple brush on shoulder. Interior: two broad bands on rim. Pl. II.
46. TS 3828. Rim/shoulder sherd with root of handle. G $15.2 .4 \times 2.3 \mathrm{~cm}$. Light buff clay, creamy slip, light red brown matt paint. Exterior: glazed rim, narrow band and two vertical stripes on shoulder. Interior: glazed, except for band at top of shoulder. Pl. II. Similar ? TS 3834 G 15 SW.
47. TS 4438. Sūkās I 48 no. 29 fig. 15 e pl. 3 , 49-50. Side sherd. G 16 SW. $1.8 \times 1.3 \mathrm{~cm}$. Reddish clay with grey grits, creamy slip, orange matt paint. Exterior: vertical stripes. Interior: no description. Pl. II.

VI

Protocorinthian and Corinthian Vases

The amount of pottery from Corinth is not overwhelming on Tall Sūkās, altogether about fifty sherds have been registered, mostly Middle and Late Corinthian. Only four of the sherds can be regarded as Protocorinthian $49,62,64$ and 70.49 is from a kotyle; in the handle zone only a few vertical stripes are left and above the handle only one band. At this particular place EPC kotylai usually have two bands, only very few have one. ${ }^{100}$ The latter are all rather early, but the indistinct and restricted decoration of 49 does not permit a date closer than the later part of the 8 th Cent. B.C. or the beginning of the 7th Cent. B.C. Numerous concentric circles, the uppermost ones with very small diameters, indicate that 62 cannot belong to an aryballos or another small closed vase; ${ }^{101}$ the fragment is more likely to originate from a pyxis-lid. The registrar termed the sherd a shoulder sherd, a fact which might point to a domed lid rather than to a flat one; especially on the tall domed lids the uppermost circles have small diameters. ${ }^{102} \mathrm{PC}$ pyxides with tall lids are descendants of a Late Geometric shape, ${ }^{103}$ the former are rare and seem to disappear in the EPC period. ${ }^{104}$ The writer only knows the fragment catalogued as similar to 62 (TS 4717) from a photograph and cannot determine if it is from a domed or flat lid. The bottom sherd, 64, is decorated in the EPC linear fashion ${ }^{105}$ and the sherd is from a closed vase with small foot diameter. ${ }^{106} 70$ is from a vertical neck with distinctly offset rim triangular in section; it
${ }^{100}$ CVA Louvre fasc 13, pl. 35.1,4 (740-30), BSA 48 1953, 283.685 fig. 10 (c. 700), BSA 53/54 1958/59, 139 pl. 21.15 (730), CVA Heidelberg fasc 1, pl. 7.10 (early 7 th century).
${ }^{101}$ The stripe decoration on smaller closed vases never covers the shoulder.
102 K. Friis Johansen, Les vases sicyonien, Copenhague 1923, 32 pl. 11.3 (Thera), BSA 431948,28 pl. 6.77 (Ithaka).
${ }^{103}$ From the so-called Thapsos class, see Coldstream, Geometric, 102-104, pl. 20 e (Ithaka).
${ }^{104}$ Perachora II 119; the domed lids from Perachora are all significantly lower, i.e. the circles have larger diameters, ibid. $119-122.1201-1226 \mathrm{pl} .54$, they range from EPC to LPC/TR; on the Thera pyxis, see further Coldstream, Geometric, 107 note 2 pl .21 g .
${ }^{105}$ For the same decorative system, see BSA $481953,296.793$ pl. 48 (krater); 300.827 fig. 21 (pyxis); Corinth XIII 38 S-1, S-2 pl. 10, 43-47 (kraters).
${ }^{106}$ AJA 62 1958, 270 pl. 69 fig. 35.5: Cretan aryballos.
Hist. Filos. Skr. Dan.Vid.Selsk. 6, no. 2.
might have belonged to an amphoriskos, a shape not usual in the PC series, but well known in LG. ${ }^{107}$

The Corinthian pottery from Tall Sūkās represents shapes of the probably mass-produced wares usually exported eastwards, ${ }^{108}$ and perhaps more or less accidentally carried overseas. ${ }^{109}$ Among the exported vases kotylai and aryballoi are very frequent and on Tall Sūkās they constitute the largest Corinthian group. 48 is from a smaller open vase, which might be a kotyle, and if so it is outstanding among the other more ordinary kotylai from Tall Sūkās. The shield could be part of an elaborate decoration resembling that on the MC kotyle in Boston, ${ }^{110}$ and the vase might have been carried to Syria as an "objet d'art". Perhaps with the exception of 52 , none of the other kotylai seem to be earlier than MC, several are LC. True blackfigure technique is employed only on two of the sherds, $50-51$; the bodies of the beasts are elongated with rather neat incisions and this-together with the close-set, large, deformed filling-ornaments and the small dot-fillers-shows that the sherds still belong to MC. ${ }^{111}$ Of the bottom fragments, 52-54, 52 with the broader rays might be EC, ${ }^{112}$ while $53-54$ cannot be earlier than MC; they may have belonged to kotylai like $50-51 .{ }^{113}$ Silhouette technique alone is used on $55-56$; the animals are the so-called stick-legged ones, on 55 probably a goat, surrounded by plenty of dot-fillers "hailstorm". They date from the beginning of LC. ${ }^{114}$ Like 49, the rimsherds 57 and 59 have only one band above the handle, but neither of them are as early as 49; the wavelines of 57 might indicate a PC date, but the wavelines are shorter on PC kotylai. ${ }^{115}$ The short, broad strokes of 58 are found on small kotylai of rather poor quality. ${ }^{116}$ On 59 there is a narrow and a broad band below the tiny wavelines, this combination is known from both MC and LC. ${ }^{117}$ Kotylai with stripes round the foot

[^25]instead of rays are not supposed by H. G. G. Payne to be common until LC. ${ }^{118}$ The only krater fragment is the rim sherd 61 ; the diagonal zigzags assign the krater to MC or LC. ${ }^{119}$ Of the closed vases the fragments of the aryballoi are the best recognizable. 65-66 belong to a common and very widespread class, aryballoi with marching warriors; ${ }^{120}$ they are mainly MC and early LC. ${ }^{121}$ The inserted dot-rosettes assign 65 to the early phase of MC , the rosettes are known on aryballoi from P. N. Ure's group "b graves". ${ }^{122} 66$ has no filling-ornaments and the "helmet-like" faces are characteristic of the latest phase in the degeneration of the motive. ${ }^{123}$ Floral motives decorate the two aryballoi, $67 \mathbf{a}-\mathrm{b}$, but they are not contemporary. On 67 a the slender arch which is connected with the leaf by two transversal stripes is a lotus leaf of the debased form of the horizontal pair of cross-hatched lotuses represented on aryballoi regarded as forerunners of the later and very popular quatrefoil aryballoi. ${ }^{124}$ Though the decoration of 67 b is very sparse, it is obvious that it is not slender and refined as on $\mathbf{6 7}$ a; the sherd must belong to a typical quatrefoil aryballos. ${ }^{125}$ The latter are late MC or early LC, ${ }^{126}$ while the forerunners are considered EC. ${ }^{127}$ The description given of the clay of 69 does not seem to approximate to Corinthian clay, and the fragment might be an East Greek imitation of a MC amphoriskos. ${ }^{128}$ Vases with dotted friezes like 71 are known already early in the PC series, ${ }^{129}$ but were not common until the later phase, were very frequent in EC, and MC vases with similar linear decoration do occur. ${ }^{130}$ The sparsely decorated sherd, 72 , is rather C than PC ; below the band groups is a wide empty area, which occurs especially on the later Corinthian vases, ${ }^{131}$

[^26]whereas the PC linear decoration is scattered regularly all over the belly. ${ }^{132}$ Fragments of closed vases with black-figure decoration are only few; 73-77 are decorated with nothing but uncharacteristic parts of animals and filling-ornaments; still on 75 and 76 the latter point to a MC date. Double vertical incisions framing polychrome panels are known on both larger and smaller vases from LPC until LC. ${ }^{133}$ It is most likely that 78 belongs to the latter category, perhaps to a flat-based aryballos. ${ }^{134}$ Of the two plate fragments $81-82,81$ is certainly MC , and according to the study of D. Calli-politis-Feytmans it belongs to the middle of the period, ${ }^{135}$ but whether $\mathbf{8 2}$ is MC or LC cannot be decided.

Indeterminate open vase.

48. TS 232. AASyr $8 / 91958 / 59$, 129 fig. 13 . Side sherd. G 11 SE. $3.1 \times 2.5 \mathrm{~cm}$. Pale yellowish clay, black glaze. Exterior: whirligig on circular shield with alternating black and added red spikes, and bordering band framed by incisions. Interior: glazed. Pl. II.

Kotylai.
49. TS 517. Sūkās I 50 with note 144. Rim sherd with handle. P $11 \mathrm{SW} .5 .5 \times 2.8 \mathrm{~cm}$. White clay with greenish tinge, yellow to brown glaze. Exterior: one band at rim; in handle zone, groups of c. five vertical stripes set close to the handle, below banded, traces of glaze on handle. Interior: glazed. Pl. II.
50. TS 2151. Side sherd. P 11 NW. $5.5 \times 3.7 \mathrm{~cm}$. Light yellow clay, black glaze. Exterior: hindpart of marching beast, with red stripes added, straight tail and faint traces of horizontal band above. Interior: glazed. Pl. II.
51. TS 2498. Side sherd. P 11 NW. $3.5 \times 3.7 \mathrm{~cm}$. Fine light buff clay, light creamy slip(!), black glaze. Exterior: hindpart of marching beast with red stripes added, faint traces of horizontal band above. Interior: glazed. Pl. II .
52. TS 1513. Bottom sherd with ring foot. G 5 SE. H. 6.0 cm , diam. of foot c. 11.0 cm . Fine light buff clay with few mica, red to black glaze. Exterior: rays, at top of sherd glazed field with two added red bands, foot glazed, inside of foot banded. Interior: glazed. Pl. II. Similar: TS 1024 G 5 SE, TS 1068 G 8 SW, TS 1100 G 8 SW.
53. TS 1042. Bottom sherd with ring foot. G 7 SE. $5.8 \times 2.3 \mathrm{~cm}$, diam. of foot 4.6 cm . Fine light greenish clay, brownish glaze. Exterior: at top, two or three bands, numerous rays; foot glazed, inside of foot banded. Interior: glazed. Pl. II.
54. TS 1088. Bottom sherd with ring foot. G 8 SE. $7.3 \times 3.2 \mathrm{~cm}$, diam. of foot 6.3 cm . Fine light reddish to buff clay with some mica, black, brown and red glaze. Exterior: numerous rays, foot glazed, inside of foot: black-red-brown-black-brown bands. Interior: glazed. Pl. II.
55. TS 644. Side sherd. G 5 NE. $2.4 \times 1.7 \mathrm{~cm}$. Light brownish clay with mica, black to red glaze. Exterior: forepart of stick-legged goat, "hailstorm", red bands superimposed on the dots which frame the frieze. Interior: glazed. Pl. II.
56. TS 2746. Side sherd. J 8 SE. $4.5 \times 3.0 \mathrm{~cm}$. Fine light clay, brown glaze. Exterior: body of elongated animal with hindleg and nearly horizontal tail; at bottom, two narrow bands crossed by stripes radiating from the foot. Interior: glazed. PI. III.
${ }^{132}$ See for instance Perachora II pl. 2.18 passim.
${ }_{133}$ Perachora II 80-81.713 pl. 31 (LPC), Mégara Hyblaea 2, 51 pl. 33.2-3 (TR), $55 \mathrm{pl} .38 .9,12$ (TR), 63 pl. 48.6 (EC), D. A. Amyx, Corinthian Vases in the Hearst Collection at San Simeon, University of California Publications in Classical Archaeology I no. 9 1943, 221-223 pl. 30 a-c (MC), Payne, Necrocorinthia, 321-322 C 1294 fig. 162 (LC).
${ }^{134}$ Délos X 114.335-336 pl. 27, CVA Frankfurt am Main fasc 1, pl. 17.2 with text; on the EC football aryballoi single incisions seem to be the rule, see CVA Frankfurt am Main fasc 1, pl. 15.1-2 with text.
${ }^{135}$ BCH 86 1962, 132-133 fig. 8, 152.28 fig. 16.28.
57. TS 1059. Rim sherd. G 8 SE. $3.8 \times 1.9 \mathrm{~cm}$. Light greenish clay, brown to black glaze. Exterior: band at rim, several vertical wavelines, two(?) bands below. Interior: plain, except for broad band at rim. Pl. III. Similar (interior glazed): TS 2728 J 8 SE.
58. TS 3436. Rim sherd. H 11 NW. $1.5 \times 1.2 \mathrm{~cm}$. Yellowish clay, brown glaze. Exterior: vertical stripes, two(?) bands below. Interior: glazed, except for band at top. Pl. III.
59. TS 3614. Rim sherd. G $13.2 .4 \times 2.5 \mathrm{~cm}$. Yellow clay, brown glaze. Exterior: band at rim, vertical stripes, narrow and broad band below. Interior: glazed, except for band at top. Pl. III. Similar: TS 1064 G 8 SW, TS 1442 P 11 SW, TS 3615 G 13.
60. TS 3505. Bottom sherd with ring foot. G 5 NE. Pr.h. 2.1 cm , diam. of foot 3.5 cm . Buff clay, brown to black glaze. Exterior: banded, foot glazed, inside of foot banded. Interior: glazed. Pl. III. Fig. a.
Krater.
61. TS 1131. Rim sherd. G 11 SW. $4.2 \times 2.5 \mathrm{~cm}$. Smooth, light yellow to green clay, darker in core, lustrous black glaze. Diagonal zigzags on topside and outer edge. Interior: glazed. Pl. III.
Pyxis-lid.
62. TS 520. AASyr $8 / 91958 / 59$, 129 fig. 13. Fragment from upper part. E 8 SW. 4.0×3.0 cm. Fine greyish to buff clay with many grits but few mica, black to brown glaze. Numerous concentric "circles". Pl. III. Similar: TS 4717 G 15 SE.
Lekane.
63. TS 1346. Rim fragment with root of handle. G 8 SE. $4.5 \times 2.0 \mathrm{~cm}$. Smooth light buff clay, black glaze. Glazed all over. Pl. III. See Tocra, 24 note 5.
"Globular" aryballos?
64. TS 4416. Sūkās I 49-50 no. 35 fig. 15 h pl .3 . Bottom sherd with ring foot. G 15 SW . $6.7 \times 1.6 \mathrm{~cm}$, diam. of foot 3.8 cm . Light brownish clay, reddish glaze. Five narrow bands enclosed by two broad bands, one above the foot and one at the top of the sherd, foot glazed. Pl. III. Fig. a.

Spherical aryballoi.

65. TS 623. AASyr 8/9 1958/59, 129 fig. 13. Side sherd. H 5 NW. C. $7.4 \times$ c. 1.7 cm. Light red-grey clay with some grits, black to brown glaze. Three marching warriors, fragmentary, inserted dot-rosettes. Pl. III.
66. TS 3545. Shoulder/side sherds. G 5 NE. H. c. 5.0 cm , diam. of shoulder c. 6.0 cm . Buff clay, black to brown glaze. On shoulder, radiating leaves and three bands, marching warriors below, incisions used for the helmet-like faces, added red central dot encircled by incision on the shields, and perhaps faint traces of white dots along the border of the shields, at the bottom, two bands. Pl. III.

67a. TS 4786 . Side sherd. J 13 NE. $2.6 \times 1.7 \mathrm{~cm}$. Fine light yellowish clay, light brownish glaze. Lotus leaf with added red on interior and glazed outlines, attached by two slim bands to curved line. Pl. III. Fig. a.

67b. TS 5665 . Side sherd. H 12. $3.0 \times 1.8 \mathrm{~cm}$. Fine light brownish clay, dark brown glaze. Dots and part of leaf. Pl. III.
68. TS 1317. Vertical handle. Surface. $2.5 \times 2.5 \mathrm{~cm}$. Reddish to buff clay, light slip, red glaze. Vertical zigzag. Pl. III. Similar: TS 2841 L 8 SE (rim collar, no handle), TS 3393 H 11 NW, TS 3540 G 5 NW.
Amphoriskos.
69. TS 1038. Neck with roots of handles. G 7 SE. H 4.1 cm , diam. of rim 3.1 cm . Light greyish to buff clay, dark reddish glaze. Bands and wave-line. Pl. III.

Other closed vases.
70. TS 5551. Sūkās I 46 no. 26 fig. 15 f pl. 3, 49-50. Rim/neck sherd. G 15 SW. 2.3×1.9 cm , org. diam. c. 8.0 cm . Fine very light brownish clay, black glaze. Exterior: on rim, one broad and two narrow bands; on neck, broad and narrow band. Interior: broad band. Pl. III.
71. TS 631. Side sherd. P 11 NW. C. $2.5 \times 2.4 \mathrm{~cm}$. Light greyish to green clay with few mica, black glaze. Three bands dividing two zones with 'hailstorm", Pl. III. Similar: TS 624 P 11 SW, TS 3006 G 19.
72. TS 612 . Side sherd. G 5 SE. $1.9 \times 2.7 \mathrm{~cm}$. Greyish clay with few mica, black to brown glaze. At top glazed zone or bands, below three bands. Pl. III. Similar: TS 1077 G 8 SW.
73. TS 1382. Shoulder/side sherd. G 7 SE. $3.5 \times 3.7 \mathrm{~cm}$. Light creamy-greenish clay, very worn black glaze. On shoulder, radiating stripes, four bands below; at bottom, traces of obscure figure. Pl. III.
74. TS 306. AASyr $8 / 91958 / 59$, 129 fig. 13. Shoulder/side sherd. F 5 SE. $3.0 \times 1.8 \mathrm{~cm}$. Yellowish to grey clay, black glaze. At top, three or four bands; below, several incisions belonging to a single figure. Pl. III.
75. TS 1078. Side sherd. G 8 SW. $4.9 \times 3.1 \mathrm{~cm}$. Greenish clay, black glaze. At bottom, broad band; above, tail of animal(?) next to it irregularly shaped filling-ornament. Pl. III.
76. TS 359. AASyr $8 / 91958 / 59$, 129 fig. 13. Side sherd. Surface. $4.1 \times 2.2 \mathrm{~cm}$. Greenish to grey clay, black glaze. Dot-rosette in interstice between neck and wing of bird(?), parallel incisions on "wing". Pl. III.
77. TS 1376. Side sherd. G 5 SE. $3.0 \times 3.0 \mathrm{~cm}$. Light buff to greyish clay, black glaze. Hindpart of sitting(?) beast with added red stripes. Pl. III.
78. TS 3829. Side sherd. G 5 NE. $2.2 \times 2.1 \mathrm{~cm}$. Light buff clay, dark brown shining glaze. Two groups of vertical double incisions enframing two added red dots. Pl. III.
79. TS 2842. Shoulder?/side sherd. L 8 SE. $3.8 \times 3.0 \mathrm{~cm}$. Fine light clay, brown glaze. Banded, with white stripes added. Pl. III. Similar: TS 3613 G 13 (no white stripes).
80. TS 4434. Side sherd. G 12 NW. $5.4 \times 4.2 \mathrm{~cm}$. Pale greenish clay, brownish glaze. Three narrow, one broad and four narrow bands. Pl. III.

Plates.

81. TS 1. Rim/side sherd. Surface. $12.2 \times 6.0 \mathrm{~cm}$. Pale greenish clay, brownish glaze. Suspension-hole through rim. Exterior: plain rim, except for narrow band on outer and inner edge, leg of feline on floor. Interior: rim plain except for bands on outer and inner edge, hindleg of feline on floor, dot-fillers, and rosettes with incisions. Pl. III.
82. TS 1868. Rim/side sherd. G 5 NE. $4.0 \times 3.5 \mathrm{~cm}$. Light buff, somewhat porous clay, red to black glaze. Rim: everted with rib on exterior and groove on interior. Both sides plain except for the edge. Pl. $I I I$.

VII

Imitations of Protocorinthian and Corinthian Vases

A few sherds can perhaps be distinguished from the true Protocorinthian and Corinthian imports as imitations maybe made somewhere in Eastern Greece. The decoration of the kotylai, $83-85$, is good-not clumsy-and the exclusion is mainly based on the clay which, according to the registrar's description, seems foreign to the clay from Corinth. On 83 , moreover, a creamy slip is applied. ${ }^{136} 86$ is from a fairly
${ }^{136}$ The Corinthian section of the catalogue includes two pieces which might also be imitations, 68 (which appears to have a light slip) and 69.
large vase on which the scales are rendered by single incisions. In PC and C^{137} it is unusual to find this sort of scales, there double incisions seem to have been the rule; but on the most well known imitations, the Italo-Corinthian ware, single ones are very frequent. ${ }^{138}$

Kotylai.
83. TS 2882. Bottom sherd with low foot. J 8 SE. $5.0 \times 1.0 \mathrm{~cm}$, diam. of foot 4.2 cm . Fine buff clay, creamy slip, red glaze. Exterior: numerous radiating rays, foot glazed, band and central dot under foot. Interior: glazed. Pl. III.
84. TS 4565. Sūkās I 82 no. 91 fig. 25 h pl. 4. Bottom sherd with low foot. H 13 SW . H. 1.8 cm , diam. of foot c. $7.0 \times 8.0 \mathrm{~cm}$. Rather fine brown micaceous clay, black to brown glaze. Exterior: short radiating rays, glazed field with added red stripe above. Interior: glazed. Foot: glazed on both sides, two bands under foot. Pl. III.
85. TS 4701. Bottom sherd with low foot. H $13 \mathrm{SW} .2 .7 \times 1.2 \mathrm{~cm}$, diam. of foot 7.0 cm . Brownish clay with some grits, black glaze. Exterior: radiating, probably short rays. Interior: glazed. Foot: glazed on both sides, red band under foot. Fig. a.

Closed vase.
86. TS 3416. Side sherd. H 11. $7.0 \times 5.2 \mathrm{~cm}$. Grey clay, black glaze. Glazed field with four rows of incised scales, bottom of sherd plain. Pl. III.

VIII

East Greek Wares with Wave/Band Decoration ${ }^{139}$

These wares, which include several shapes of vase, had a wide distribution in Eastern Greece and the colonies from the late 8th century until well into the 5th. ${ }^{140}$ The fabric varies considerably, and it is obvious that the wares were produced in many places, but so far only few workshops have been distinguished: on Samos and Rhodes, probably in Cilicia, in Old Smyrna, and Nymphaion in the Crimea. ${ }^{141}$ On Tall Sūkās these wares are few, the greatest group constitute the fragments of closed vases, most of them probably belonging to waveline amphorae and hydriae, while a smaller group represents the red glaze and other related kraters and krateriskoi. Because of the homogeneity of the decorative system on waveline vases, the nature of clay and slip is the only indicator for an attribution to a possible workshop. As men-

[^27]tioned previously, ${ }^{142}$ the writer is not able to comment on the description of the clay given in the catalogue, but the clay is not Syrian, so there was no local production-as for instance in the colony of Nymphaion. ${ }^{143}$ In 1956 G. M. A. Hanfmann wrote ${ }^{144}$ that one of the three waveline varieties in Tarsus and Al-Mina was Samian, and later on ${ }^{145}$ that the pieces found in Tarsus, Mersin and the Antioch region were made by immediate pupils of the Samian potters, but that one or the other fragment might be Samian. In all probability the sherds from Tall Sūkās should be grouped with the other fragments from North Syria and the Antioch region. ${ }^{146}$ To judge by the treatment of the surface of the sherds, at least two different wares were represented on Tall Sūkās. The largest group, $8 \mathbf{7}-\mathbf{9 2}$, is unslipped; two of these sherds are said to have a self-slip, and it cannot be excluded that the others have had a similar "slip" which was overlooked. ${ }^{147}$ On two sherds, $93-94$, is found the real slip, which is described as creamy and white. ${ }^{148}$ On the unslipped fragments the glaze is usually brownish to black and very often matt; ${ }^{149}$ the manner of painting is not clumsy, but slender and precise, and the frequently streaky, diluted glaze does not undermine the effect of competence. The same resolute style is used on a Samian hydria from a bothros south of Hekatompedon II, dated $625-600$ B.C. $;^{150}$ the band combination on the belly is similar to that of 88 , but there is no S-loop on the shoulder. This particular shoulder design is found only on the "later" vases, ${ }^{151}$ i.e. on vases from the later part of the 7 th century until well into the 5 th century. ${ }^{152} 88$ has a comparatively large empty field below the

142 See introduction.
143 Hanfmann, Aegean, 179-180 note 43.
144 Hanfmann, Aegean, 180.
145 Tarsus III 324.
146 The hydriae from Al-Mīna are unpublished. Hanfmann, Aegean, 178 (Antioch), Tocra, 66 note 5 (Oxford).

147 Most of the waveline from Tarsus are slipped (orange/orange-peach or light yellow), and the "local" ware, thought to have been manufactured around the Bay of Iskenderun, has a "poor slip", Tarsus III 326-327; but a few are said to have only self-slip, Tarsus III 324 note $4,326.1618$ fig. 150 : ". . . a factory . . . perhaps in one of the Greek colonies of Cilicia Tracheia or North Syria. Similar or same ware was found in Al-Mina-Posideon', 326.1623 fig. 108 (Regional Greek). The waveline vases supposed to be Rhodian, see Hanfmann, Aegean, 176-178, never seem to have a real slip; see further a Rhodian waveline amphora from Tocra no. 587 (see above note 140), which is specifically noted to be unslipped. Some of the sherds from Istros are listed as unslipped, Histria 2, 104-105.536-557, 106.569-573.

148 The Samian slip is sometimes described as yellowish or yellow-white, but more often as "weisslicher', AM 83 1968, 266-268.46-47, usually with a greyish tone, Tarsus III 326 V "local" and Samos V. passim. A yellow slip is noted on some fragments from Tarsus, Tarsus III 319.1585 figs. 106, 149 (perhaps from a Greek colony near Tarsus), 326.1620-21 fig. 108 (Regional Greek).

149 Without having had the opportunity of comparing all the sherds, the writer distinctly recalls the predominance of this sort of glaze and usually on a resounding and very hard burnt fabric.
${ }^{150}$ AM 741959 28, Beilage 48.2.
${ }^{151}$ Hanfmann, Aegean, 180 note 48; for the origin of the motif see note 152: Emporio.
152 The motif is used already as shoulder decoration on Late Mycenaean vases, see Popham \& Sachett, Excavations at Lefkandi, Euboea 1964-66, 16 fig. 29; for a possible relation of Mycenaean with the "later" vases see Emporio, 105 note 2 . S-loops on shoulders are not met with on any of the published Samian waveline vases from the 7th century. The earliest Archaic waveline vases with S-loops are: the Tocra amphora/ hydria Tocra, 66.843 pl. 48, which has affinities with 7th century Samian waveline, the Al Mfna hydria in Oxford, see above note 146, a hydria from Chios, Emporio, 137.508 fig. 88, which is assigned to the 7th century (it is listed as unslipped). On the white slip wine amphorae the S-loop appears too in the later part of the 7th century, see BSA $491954,168-170$, BCH $681964,137-140$. The S-loop decoration is almost lacking among the waveline ware from Tarsus, where the bulk of the Greek material is from the 7th century; only one of the published fragments, Tarsus III 317.1568 fig. 105, has a design interpreted as a S-loop; it is found exclusively with 6th century material, and it is probably this sort of waveline G. M. A. Hanfmann refers to as similar to the Al-Minna hydria in Antioch, see above note 146.
band group; this is unusual on the 7 th century waveline, which is decorated in a subgeometric manner with more and closer-set band groups; ${ }^{153}$ the exception is the hydria from the bothros. ${ }^{154}$ In the 6th century there are several varieties of band groups; among them the system on the hydria from Tell Defenneh, dated to the third quarter of the 6th century, ${ }^{155}$ is very similar to 88 . Nevertheless the Sūkās fragment is certainly not so late, it is too stylistically related to the bothros hydria. The shoulder field of 88 gives the impression of being more extensive than on vases of the 7th century and perhaps a date in the early 6th century is preferable to a date in the late 7th century. The other sherds are very small and exhibit no datable features. However, as previously mentioned all the unslipped fragments are united technically and should probably be of the same date as 88 . The only exception could be 91 , which differs from the rest in having a waveline of considerable thickness. The opposed hooks of 89 are either parts of two S-loops ${ }^{156}$ or endings of two horizontal wavelines. ${ }^{157}$ The shoulder sherd 93 does not belong to the waveline ware distinguished by G. M. A. Hanfmann, ${ }^{158}$ but the same simple decorative system is found on several other vases during the 6th century B. C., for instance on certain other amphorae and hydriae, ${ }^{159}$ and perhaps more frequently on jugs. ${ }^{160}$ Some fragments from Smyrna are found in levels of the second half of the 6th century, ${ }^{161}$ but the shape of 93 is more similar to vases from the first half of the 6th century. ${ }^{162}$ The class of red glaze kraters and krateriskoi, the decoration of which is shared by $95-98$, is not as widespread as the waveline ware. So far it is represented on Samos, in Asia Minor, Syria and Palestine; only the pieces from Tarsus, ${ }^{163}$ Mersin, ${ }^{164}$ Samos, ${ }^{165}$ and Palestine ${ }^{166}$ have been published, but the ware is reported, too, from Ephesus, Old Smyrna and Al-Mina. ${ }^{167}$ G. M. A. Hanfmann distinguished at least two workshops; he declares the pieces from Tarsus, Mersin and Al-Mīna to be produced in a workshop different from the Samian one. ${ }^{168}$ The shape and decoration certainly connect all the fragments from Sūkās with the kraters and krateriskoi in question, but only two, 95-96, have the red glaze supposed to be the hallmark of the class. $97-\mathbf{9 8}$ have a brownish matt glaze most
${ }^{153}$ See the 7 th century vases cited in note 152 , and Samian waveline AM 74 1959, 21 Beilage 46-48
(Well G), 83 1968, 266-268.47-48 fig. 17 Beilage 103.1-2.
${ }^{154}$ See above note 150.
${ }^{155}$ CVA Brit. Mus. fasc 8, II D p, pl. 4.1.
${ }^{156}$ ClRh IV 361 fig. 408.
${ }^{157}$ CIRh IV 240 fig. 271.
${ }^{158}$ However, the category is perhaps included in the red glaze ware see, Tarsus III 316 note 3.
${ }^{159}$ BSA 53/54 1958/59, 29 pl. 4 c.
${ }^{160}$ BSA 53/54 1958/59, 29 pl. 4 b, J. Sieveking, R. Hackl, Die Königliche Vasensammlung zu München, München 1912, 47.471-472 pl. 17, CVA Leipzig fase 1, pl. 51.5-6, CVA München fasc 6, pl. 305.4 with text. 161 See above note 159.
${ }^{162}$ ClRh IV 46.5 fig. 13, an amphora dated $600-580$ B.C. by G. M. A. Hanfmann, Aegean, 176.
${ }^{163}$ Tarsus III 316-18.1569-1579 figs. 105-106, 148.
${ }^{164}$ LAAA 26 1940, $123-124$ pls. 51.5, 76.1-2, J. Garstang, Prehistoric Mersin, Oxford 1953, 258.10 fig. 161.
${ }^{165}$ AM 54 1929, 33 fig. 24.4. On the Samian red glaze krater the waveline on the neck is incised and not painted; an incised waveline is found too on a Samian krater type, which was introduced in LG and continued all through the 7 th century, Samos V $33-35$ fig. 17 d pls. $21-25 ; 52$ pls. $62.363,63.366,64.369$, 74.406 fig. $33 \mathrm{a} ; 70 \mathrm{pl} .110 .565-567$.
${ }^{166}$ IEJ 12 1962, 106.14, 16 fig. 7.
167 Hanfmann, Aegean, 182.
${ }_{168}$ Tarsus III 316.
similar to the glaze on the unslipped sherds, $87-92$, belonging to the waveline amphorae and hydriae. The group including the red glaze ware from Tarsus has a distinctive slip, whereas there is no report of slip on any of the Sūkās sherds. Though we cannot regard the registrar's description of the fragments, $95-\mathbf{9 8}$, as exhaustive, the writer is not disinclined to regard $\mathbf{9 7} \mathbf{- 9 8}$ as unslipped (but perhaps with self-slip) on account of the resemblance of the glaze to that of $87-92 .{ }^{169}$ Therefore $97-98$ should not strictly belong to the class of red glaze kraters and krateriskoi, but might represent a variety, perhaps manufactured in the same region as the unslipped waveline vases referred to above. ${ }^{170} 95$ is reconstructed as a fairly deep krater not unlike the Samian krater which, together with a krater from Smyrna, ${ }^{171}$ has tilted loop-handles like 95. However, the decoration as on 95 does not occur among any of the published pieces of the red glaze kraters. Most of the Tarsian kraters and krateriskoi are round-bottomed and were put on stands, but the krater from Smyrna has a low foot ${ }^{172}$ which occurs, too, on the very deep krateriskos, 98 . The same restricted decoration consisting of bands only and a slim slow waveline, as on $\mathbf{9 7}$, is found on some of the krateriskoi from Tarsus and on one of the Palestinean pieces. ${ }^{173}$ Unfortunately the stratification for the red glaze ware in Tarsus is not good, it is dated only within the second half of the 7th century and the early part of the 6th century. The Palestinean fragments are dated more closely to the fourth quarter of the 7th century, but the everted neck profile of the two Palestinean kraters differs from the tall, steep neck of the Sūkās fragments. The latter are more related to two Tarsian kraters, one of them from a level of the earliest 6th century. ${ }^{174}$ The Sūkās kraters and krateriskoi themselves are found in later contexts. The hemispherical cup, 99 , is, as far as size, shape and interior decoration is concerned, very similar to 137 , which has however thicker walls. ${ }^{175}$ Only one vertical strap-handle is preserved, and the type might have been a one-handler; the red glaze and the waveline decoration might connect 99 with the red glaze ware. ${ }^{176}$

Indeterminate closed vases.
 Without slip.

87. TS 1173. Side sherd with root of handle, hydria. G $11 \mathrm{SW} .7 .0 \times 10.0 \mathrm{~cm}$. Fine brown clay with few black grits, brownish to black, rather matt glaze. Above, broad and narrow band; below, broad band, end of waveline and sloping handle-band in handle zone. Pl. IV.
88. TS 1279. Shoulder/side sherds with root of neck. P 11 SW. $16.0 \times$ c. 18.0 cm . Red, gritty clay, black in core, some mica, brownish glaze. Root of neck glazed, S-loop on shoulder, group of bands below. Pl. IV. Similar: TS 1109 G 8 SW (no S-loop), TS 1797 F 16 SW.
${ }^{169}$ See note 149.
170 See G. M. A. Hanfmann's observations on red glaze kraters and krateriskoi, Tarsus III 316 notes 3-4; note too one of the Palestinian kraters which has no slip and only brown decoration, IEJ 12 1962, 106.16 fig. 7.
${ }^{171}$ For references see Tarsus III 317 and no. 1569 fig. 105.
172 Hanfmann, Aegean, 182 ; on the Samian krater the foot is a reconstruction, which follows an identical but undecorated krater.
${ }^{173}$ Tarsus III 318.1574-1576 figs. 106, 148, IEJ 12 1962, 106.16 fig. 7.
174 Hanfmann, Aegean, 182, IEJ 12 1962, 97-99. The Tarsian kraters with necks similar to our 95 and 98 are: Tarsus III 317.1569 (1570), 1571 figs. 105, 148.
${ }^{175}$ See p. 38-41.
${ }^{176}$ Hanfmann, Aegean, 173, Tarsus III 316.
89. TS 356. Shoulder sherd. Surface. $3.9 \times 8.2 \mathrm{~cm}$. Buff clay with white grits, light buff self-slip, black glaze. Opposed hooks. Pl. IV. Similar: TS 1515 G 5 SE.
90. TS 1481. Neck sherd with root of rim and shoulder. G 11 SW. $5.2 \times 6.0 \mathrm{~cm}$. Red to buff, very micaceous clay, light buff self-slip, brown glaze. Probably offset rim, piercing-hole at upper part of neck. Narrow band immediately below rim; quick waveline on neck. Pl. $I V$.
91. TS 1177. Shoulder sherd with root of neck. G 11 SE. $5.0 \times 4.2 \mathrm{~cm}$. Dark buff clay with some grits, black glaze. Root of neck glazed, thick waveline on shoulder. Pl. IV.
92. TS 1066. Bottom sherds with ring foot. G 8 SW. $15.2 \times 6.6 \mathrm{~cm}$. Reddish to buff clay with some white and black grits, black glaze. Band at lower part of belly as well as on foot and at junction with foot. Pl. IV. Similar: TS 1292 P 11 NW, TS 1300 P 11 NW.

Slipped.

93. TS 4843. Shoulder/side sherd. H 11 SE. C. $14.5 \times$ c. 10.0 cm . Fine, somewhat porous brownish clay, creamy slip, brownish lustrous glaze. Horizontal frieze of close-set U's, broad band enframed by narrow ones below. Fig. a.
94. TS 332. Side sherd, probably from hydria. G 8 SW. $5.4 \times 5.2 \mathrm{~cm}$. Red clay with white grits and mica, white slip, brownish rather matt glaze. Slow waveline, enframed by narrow band and glazed field. Pl. IV. Similar: TS 12 E 8 NW.

Krater.
95. TS 4847. Rim/neck/shoulder/side sherds, loop-handle. H 11 SE. Diam. of rim c. 30.5 cm . Horizontal groove on the vertical edge of the rim. Fine brownish clay with som grits, reddish glaze. Exterior: rim and handle glazed, remnants of perhaps two wavelines on neck and one on shoulder; at junction with neck, narrow band; banded belly. Interior(?). Pl. IV. Fig. a.

Krateriskoi.

96. TS 1065. Shoulder sherd with root of neck and horizontal handle. G 8 SW. 8.0×6.5 cm . Red, very gritty clay with few mica, red glaze. Exterior: narrow band at junction with neck, end of waveline on shoulder, below handle level broad band; root of handle glazed. Interior(?). Pl. IV.
97. TS 1075. Rim/neck/shoulder/side sherds. G 8 SW. $10.2 \times 9.0 \mathrm{~cm}, 8.5 \times 12.8 \mathrm{~cm}$. Reddish to buff clay with white and black grits, brownish glaze. Ledge rim, low cylindrical neck. Exterior : rim glazed, broad band enframed by narrow ones on neck, slow, thin waveline on shoulder; below band. Interior(?). Pl. IV .
98. TS 4846. Neck/shoulder/side sherds, low foot. H 11 NE. $17.0 \times 20.5 \mathrm{~cm}$, diam. of foot c. 10.0 cm . Low cylindrical neck. Fine brownish clay with some grits, red to brown, rather matt glaze. Exterior: banded, on neck two bands, on shoulder, two others, belly banded and foot partly glazed. Interior(?). Pl. IV. Fig. a.
One-handled(?) cup.
99. TS $97,531,534,568,930$. Rim/side/bottom sherds, vertical strap-handle, low foot. P 11 SW, E 8 NE. Diam. $16.0 \mathrm{~cm}, \mathrm{~h} .7 .0 \mathrm{~cm}$. Reddish clay with white grits, red glaze. Exterior: banded; below rim, quick waveline, glazed handle, unglazed foot. Interior: at top, broad and narrow band, small and large concentric circle in central field. Pl. IV.

IX
 Ionian cups

Black-glazed, two-handled drinking cups usually with a prominent rim are represented on nearly all Eastern Greek and overseas sites from Geometric until

Classical times. ${ }^{177}$ Of the Archaic cups the greater part are of East Greek origin, ${ }^{178}$ only few examples of the very similar cup-series from the mainland are found eastward. ${ }^{179}$ In spite of the multitude of cups, the bulk of the material seems to originate in only two places, Rhodes, ${ }^{180}$ where probably several workshops were employed, ${ }^{181}$ and Samos; ${ }^{182}$ minor and not yet differentiated workshops might occur. ${ }^{183}$ Though many of the cups from Tall Sūkās match several of the Rhodian types classified among the Tocra finds, the original and vague name "Ionian" should be preferred for all the Sūkās cups ${ }^{184}$ as nothing definite can be said about the place of manufacture. A conclusive determination depends on the nature of the clay, and it has not been possible to examinate it systematically. ${ }^{185}$ Beside the sherds of Wild Goat style, the cup sherds constitute the greatest amount of the Greek import on Tall Sūkās. About 250 sherds were fully registered, mostly rim and shoulder sherds, and at least twice as many side sherds were perfunctorily registered during the excavation. The material represents most of the ordinary types; they have been thoroughly dealt with by G. M. A. Hanfmann, G. Vallet-F. Villard and J. Hayes, ${ }^{186}$ and the Sūkās cups are as often as possible adapted to the typology arranged by these scholars.

Group 1. Exterior and interior glazed

The type represented by $\mathbf{1 0 0}$ is shallow, thick-walled, with short, steep rim and offset shoulder. It has affinities with a cup assigned to the 1 st half of the 8 th century ${ }^{187}$ but the shallowness of 100 connects it closer with LG vases, for instance a Samian skyphos with waveline on the rim; ${ }^{188}$ the lower limit is established by another Samian

177 Hanfmann, Aegean, 167-173 figs. 1-15. G. M. A. Hanfmann demonstrates the relation of the Archaic cups to the MG black-glazed skyphos from the Greek Mainland.

178 Samian: see note 182, Rhodian: see note 180 ; Emporio, 135.456-459, 171.860-868 figs. 83, 118, pl. 65, ÉThas 7, 28-30.6-15 pls. 8, B, Hommel, Panionion und Melie, 149-153.1-37 pls. III-V, 2-3, Tarsus III 282-291.1385-1414 figs. 95-97, 144, C. H. E. Haspels, Phrygie III, La cité de Midas, céramique et trouvailles diverses, Paris $1951,31-32$ pl. 8 c.1-5, Histria 2, $78-85.245-260,262-307$ pls. 15-17, Fabricius, Arch Karta 1, pl. 7.5, Materiali 25 1952, 239 fig. 8.1, 50 1956, 227 fig. 5.6, 56 1957, 185 fig. $2 \mathrm{~B} .7,69$ 1959, 161 fig. 6 a-b, 167 fig. 16, 170 figs. 23, 25, Berytus 11 1955, 107-108.87-95 pl. 22.1-7, IEJ 12 1962, 106.1-12 fig. 7, Villard, Marseille, $43-44$ pls. 21-23, $45.6-9,46.1-3$, R. Naumann \& F. Hiller \& E. Naumann, Palinuro I, Topographie und Architektur, RM, Ergh III 1958, 36-38 figs. 1-2. R. Naumann \& B. Neutsch, Palinuro II, Nekropole, Terrassenzone und Einzelfunde, RM, Ergh IV 1960, 106-109 note 2 (with references to the finds from Tarent and Sicily) fig. 65 Beilage 2 pls. $32-33$, Xanthos IV $43-46$ pls. $9-11$ fig. 3.

179 Tocra, 119 notes $1,4$.
180 Mél 67 1955, 14-34, Tocra, 111-115.1192-1297 figs. $55-57 \mathrm{pl} .87$, AM 59 1934, 89 note 2, Hanfmann, Aegean, 173: "I consider it likely that the largest group of "Ionian" cups found in Tarsus, those made of brown clay with matt glaze, came from Rhodes", see further Tarsus III 283.
${ }^{181}$ Hanfmann, Aegean, 172.
182 Tocra, 115-116.1298-1300 fig. 55, add: AM 72 1957, 41-42, 46, 48-50 figs. 4-5, Beilage 54.3-4, $67.3-4,69.3,72.1,3-4,74.4,741959,19,28$ Beilage 33.3-4, 38.1-3 (Well G), 61.4-5, 62.1-2 (Bothros), 83 1968, 257.18-23, 275-279.72-74 figs. 8-9, 27 pls. $95.3-6,107.3,5$.
${ }^{183}$ Tocra, $116.1301-1306$ fig. 58 pl .88 . Some of those found in Smyrna are suggested to be local, see Hanfmann, Aegean, 171 note 21, 172. A few cups found in Tarsus are thought to come from the so-called "red glaze area" in Western Asia Minor, see Hanfmann, Aegean, 173, Tarsus III 283.
${ }^{184}$ The term is certainly wrong, the cups are not only produced in Eastern Greece, as was supposed earlier, see Chr. Blinkenberg, Lindos I, Les petits objects, Berlin 1931, 289; for mainland centres see Tocra, 111, 116-120; for the Attic cups see Agora XII 88-90 fig. 4 pl. 18.

185 See introduction.
${ }^{186}$ See notes $178,180$.
${ }^{187}$ Sūkās I 175 fig. 64.
188 AM 72 1957, 41 Beilage 53.3: "späteres achtes Jahrhundert".
cup said to be Subgeometric. ${ }^{189}$ The profile of 101 is not known but the rim is described as low, slightly everted and offset; the registrar suggested 2nd or 3 rd quarter of the 7 th century. ${ }^{190}$

Group 2. Red and white bands added on both sides
(Hanfmann, Type I, Vallet \& Villard, Type A_{1}, Tocra, Type III). ${ }^{191}$
The minute sherd, $\mathbf{1 0 2}$, is the only one definitely representing the well known type of cup with polychrome bands from the last third of the 7th century; it is considered Rhodian by some, ${ }^{192}$ but other centres are suggested too. ${ }^{193}$

Group 3. Exterior glazed, except band at handle level

 (Tocra, Type II). ${ }^{194}$Apparently the rim of 103 is a little steeper than that of the Tocra cup, which is assigned to the late 7 th century. Some Samian cups belong to the same period, ${ }^{195}$ whereas a Tarsian piece is found with late 7 th and 6th century material. ${ }^{196}$

Group 4. Exterior glazed, red bands added

The type of 104 is a fairly deep cup with nearly steep rim; it is totally glazed, and the misfired glaze is metallic in appearance; the profile looks early. The type does not occur among the Tocra finds, nor are similar cups published from Samos. A cup of perhaps the same sort is known from Tarsus; ${ }^{197}$ the 7 th century is suggested by G. M. A. Hanfmann.

Group 5. Exterior glazed, except rim and band at handle level; low foot
(Hanfmann, Type IV, Vallet \& Villard, Types A_{2} and B_{2}, Tocra, Types VIII-IX). ${ }^{198}$
Not unexpectedly the "standard cup" is the sort of cup most fully represented on Tall Sūkās. All the material covering the first half of the 6 th century has been divided into three main types, exemplified by $\mathbf{1 0 5}-\mathbf{1 0 7}$ and the feet $\mathbf{1 0 8} \mathbf{- 1 0 9}$. The fragments listed as $\mathbf{1 0 7}$ are the most numerous and show the most diversified profiles. Generally the "standard cup" is glazed all over on the interior, with the exception of a narrow band reserved at the top of the rim, but soon after the development of the shape a

189 AM 54 1929, 34 fig. 28.2.
190 AM 72 1957, 46 Beilage 67.3-4: 2nd quarter of the 7th century, 48 Beilage 70.1:3rd quarter of the 7 th century, 49 Beilage $72.1,3: 4$ th quarter of the 7 th century, 741959 , 19 Beilage 38.1, 3 : Well G, 28 Beilage 61.5 : Bothros.

191 Hanfmann, Aegean, 168, Tarsus III 284-285, Mél 67 1955, 15-18, 29, Tocra, 112, 114.
${ }^{192}$ See preceding note: Mél and Tocra, further AM 59 1934, 89 note 2 and Boardman, GO, 72 fig. 10 d .
193 CVA Frankfurt a.M. fasc 1, pl. 11.1 with text. They are frequent on Samos, see AM 741959,28 Beilage 62.1-2. For the type, see further Berytus 11 1955, 108.88-90 pl. 22.1, 3-4, NSc 1960, 152 fig. 2 b, BCH 86 1962, 384 fig. 79 and CVA München fasc 6, pl. 293.1 with text.

194 Tocra, 112, 114.
195 AM 72 1957, 49 Beilage 72.1, 3.
196 Tarsus III 289.1403 figs. 96, 144.
${ }^{197}$ Tarsus III 288.1394 fig. 96, unfortunately without profile drawing.
${ }^{198}$ Hanfmann, Aegean 170, Tarsus III, 285-286, Mél 67 1955, 18-19, 21-23 figs. 3 a-b, 29, Tocra, 113-115.
variety with a banded interior appeared. ${ }^{199}$ This variety is represented on Tall Sūkās by 106, of which no profile drawing is available; but one of the fragments, catalogued as similar to 106, is from a deep cup with a rather steep rim, i.e. 106.1. This fragment most likely belongs to an early version of the type, ${ }^{200}$ whereas 106 , with as it seems a more everted rim, should fall later in the first half of the century. ${ }^{201} \mathbf{1 0 5}$ and $\mathbf{1 0 7}$ represent the true "standard cup", and the most obvious reason for a distinction between them is that 107 and the fragments similar to it have a taller and more overhanging rim than $\mathbf{1 0 5}$. The latter is a rather shallow type, and like one of the fragments of its similar group, 105.2, it is thick-walled, the rim only moderately everted, and the foot, which is incomplete, low and conical-still not much flaring at the bottom. 105 and $\mathbf{1 0 5 . 2}$ might range among the early "standard cups" from the first quarter of the 6th century. ${ }^{202}$ Early versions with thin walls like $\mathbf{1 0 5 . 1}$ are known too, ${ }^{203}$ but the writer is not quite certain if $\mathbf{1 0 5 . 1}$ is to be included among them. 107 and its similar group together with the feet 108-109 are all of the same sort as Tocra, Type IX, dated to the first half of the 6th century. The greater part of the Sūkās cups are probably from the later phase, i.e. contemporary with Vallet \& Villard, Type $\mathrm{B}_{2} ;{ }^{204}$ for instance $\mathbf{1 0 7}, \mathbf{1 0 7 . 4 , 7}$ which belong to smaller cups like some of the Tocra cups dated in the second quarter of the 6th century. ${ }^{205} \mathbf{1 0 7 . 3}$ and $\mathbf{1 0 7 . 5}$ are from fairly large cups with shallow bodies, the latter very much like a Tocra cup. ${ }^{206}$ 107.6 has a very overhanging rim and should be related to the early lip-cups. ${ }^{207} 107.1$ is apparently of bad potting, but with the very flaring rim the shape does not seem early. ${ }^{208}$

Group 6. Exterior glazed, except rim (sometimes with leaf-wreath), band at handle level and band on lower part of side; stemmed foot
(Hanfmann, Type III, Vallet \& Villard, Type B3, Tocra, Types X-Xi). ${ }^{209}$
The group is nearly as numerous on Tall Sūkās as the preceding one. The East

[^28]Greek lip-cup is usually assumed to start about the middle of the 6th century and to culminate in the third quarter of the century, ${ }^{210}$ but J. Hayes suggests an earlier date for the East Greek "probably Rhodian" cups found in Tocra. ${ }^{211}$ The profile can be ascertained only for few of the Sūkās cups; one, that of 121, is not unlike Tocra, Type X^{212} which is connected with other groups of East Greek vases, including cups with thin lines on the interior of the rim, like our 111-112 $\mathbf{2}^{213}$-these groups are thought by J. Hayes to belong to the second quarter of the 6th century. The only other recognizable profiles are those of $\mathbf{1 1 3 - 1 1 4} \mathbf{1 4 4}^{\mathbf{2 1 4}}$ and $\mathbf{1 2 4}$, which all have a distinct, carinated shoulder; none of these cups are as deep as any of the East Greek cups from Tocra, ${ }^{215}$ but a cup from the necropolis of Orvieto has a shallow body very similar to 113. ${ }^{216}$ The Orvieto cup is dated c. 560 B. C. Cups with leaf-wreaths bearing white dots like 122-23 are included too in the early cup series; ${ }^{217}$ apart from Tocra this category of cups is not frequent on the sites where it has been found. ${ }^{218}$ The cups are thought to have been manufactured in different places, and Samos might have been a very significant one. ${ }^{219}$ The Tocra cups are supposed to be Rhodian, they are mostly miniatures, like the only two published specimens from Rhodes. ${ }^{220}$ Most of the lip cups from Tall Sūkās are glazed on the interior, except for smaller or larger central tondi, for instance $\mathbf{1 1 0}, 116$ and 119, while only two fragments, 125-126, have the more refined decoration, usually connected with Ionian Little Master cups. On 125 the major part is decorated with thin lines, ${ }^{221}$ on $\mathbf{1 2 6}$ these are separated by broader bands. ${ }^{222}$

Group 7. Exterior glazed, except broad band at handle level
The shape of 127 b is that of a band cup, with slightly everted rim. From the

[^29]description of the clay it is not possible to say whether the fragment is Attic or East Greek, the glaze is not termed metallic, but said to have "a greenish tinge". ${ }^{223}$

Group 8. Exterior(?); low foot

A classification of 127 a is uncertain. The registrar describes it as a "bowl or cup"; the decoration on the interior is not consistent with any of the species usually regarded as bowls and 127 a is more likely from a cup. A low foot and a large reserved tondo is known on 6th century cups, see for instance below, 129-131, group 9 .

Group 9. Exterior unglazed, except rim and shoulder (sometimes band below handle level); low foot

With the exception of 129-131, the fragments included in group 9 are very small, all rim sherds. Two sorts of profiles can be distinguished 1) low, everted rather flaring rim, rounded shoulder: 128a-c, 128c.2, 129-131, 131.1-3, 2) low, upright rim, angular shoulder: $128 \mathrm{c} .1,4-8$. Below the glazed shoulder all the small rim sherds have a fairly large undecorated field, larger than the usual reserved band found on cups of which the exterior is otherwise glazed. ${ }^{224}$ Because of the similarity in profile of the first group of rim sherds to the well preserved cups 129-131, it is proposed that the rim sherds might have belonged to similar cups, i.e. with an unglazed exterior. 129-131 have a reserved tondo on the interior and this is usually a 6th century feature, seen first on the variety of the standard cup and the early lip-cups; ${ }^{225} \mathbf{1 3 0}-\mathbf{1 3 1}$ have the largest tondi and their feet are very similar to those of the latest bird and rosettebowls, which were not made earlier than 580 B.C. ${ }^{226}$ Some of the small rim sherds 128 a-c have been suggested to be early (see catalogue), i.e. from the late 7th century, and one of them, 128a, may be as early. This specimen differs from the others in having a band below the handle level and in being glazed all over on the interior, a decorative system very much like that found on some early cups from Vroulia. ${ }^{227}$ On the interior the other rim sherds and the cups, 129-31, have a reserved band at the top of the rim, a feature which together with their profiles and unglazed exteriors makes this group resemble a class of cups dated usually $620-580$ B.C., but the type presumably continued a little longer-these are the low-footed cups with red and white bands added on both sides. ${ }^{228}$ However, none of the rim sherds have any added bands

[^30]slanting on 157 ; the latter represents the typical illustrating of the fast running goat on the late vases. ${ }^{296}$ The goats on $\mathbf{1 5 8}-\mathbf{1 5 9}$ might have been of this type too. ${ }^{297}$ Small and not very characteristic fragments of grazing goats occur on 160-164; on $\mathbf{1 6 3}$ the filling-ornaments are very crowded as is usual on vases from the first quarter of the 6 th century, ${ }^{298}$ whereas there is no sign of ornaments between the goat-legs on 161, and the fragment may be late like the oinochoe $\mathbf{1 5 4} .^{299}$ On 160 there are remnants of what may be a St. Andrew cross, ${ }^{300}$ and on 164 there is a four-leaf flower. ${ }^{301} \mathbf{1 5 5}$, and $\mathbf{1 6 5 - 1 6 7}$ have pure black-figured decoration. On the shoulder sherd, $\mathbf{1 5 5}$, is part of a sphinx ${ }^{302}$ or a siren $;{ }^{303}$ the incised line which curls into a spiral indicates the border of the hair, the ear or an ear disk. ${ }^{304}$ A stripe may be incised on the deer's ear on 165, but V-shaped horns are not the usual black-figured type; ${ }^{305}$ the closest parallel is found
${ }^{296}$ BCH 86 1962, 407 fig. 100 a, Blinkenberg, Lindos I 282.985 pl. 46 (Kardara, A, 208.7, Schiering, notes 267, 268, 276, Rumpf, 78 II k 10), CVA Oxford fasc 2, II D, pl. 2.5 (Kardara, A, 208.1 (see above 282), CVA Rodi fasc 2, II Dh, pl. 7.1 (Kardara, A, 208.2 (see above note 281), CVA Copenhague fasc 2, II D, pl. 77.3 (Kardara, A, 208.3 (see above note 279), Lambrino, Vases, 256.12 figs. 218-221 (Kardara, A, 210.1, Schiering, notes 318, 319, 322, 617), JdI 1 1886, 139-140.2939 (Kardara, A, 208.4 (see above note 282), Homann-Wedeking, Vasenornamentik, 17.7: Gruppe R).
${ }^{297}$ For the pendent hook, see AJA 59 1955, 51H-J, Kardara, A, 269 fig. 257 below, CVA Oxford fasc 2, II D, pl. 4.9 (Kardara, A, 216.5 (see above note 285) and AA 32 1917, 101.25 fig. 25 (Kardara, A, 181.4, Schiering, notes $151,152,373,408,668,716,773$, Rumpf, 78 II f 2).
${ }^{298}$ CVA Oxford fasc 2, II D, pl. 4.31 (Kardara, A, 231.12, Schiering, note 151, Rumpf, 80 III a 22), ActaArch 6 1935, 191 fig. 15 (Schiering, notes $115,336,344,361,383,472,479,536,624,687,734,739,778$, Rumpf, 80 III b 1), Kinch, Vroulia, pl. 15 (Kardara, A, 217.2 (see above note 280).
${ }^{299}$ See above, notes 284, 291.
${ }^{300}$ BCH 861962 , 407 fig. 100 a, 881964 , 329 fig. 60. For varieties on Fikellura vases and "Clazomenian" sarcophagi, see ActaArch 13 1942, 30 note 55.
${ }^{301}$ CVA Copenhague fasc 2, II D, pl. 77.3 (Kardara, A 208.3 (see above note 279).
${ }^{302}$ CVA Oxford fasc 2, II D, pl. 4.32 (Kardara, A, 226.2, Schiering, note 151, Rumpf, 80 III a 23), JHS 44 1924, pl. 8.16 (Kardara, A, 230.1, Schiering, notes 151, 756, Rumpf, 80 III a 31), BCH 861962 , 406 fig. 100 b .
${ }_{303}$ Naukratis II pl. 11.3 (Kardara, A, 235.1, Schiering, notes 308, 309, 316, 317, 455, 472, 778, Rumpf, 80 III d 1).
${ }^{304}$ Females on Corinthian vases seldom wear jewellery in their ears, the ear itself is usually distinctly rendered, see AJA $651961,3 \mathrm{pl} .4 \mathrm{c}, 5 \mathrm{pl} .5$, but on less carefully drawn Corinthian figures a stylization of the ear similar to that of 155 occurs, CVA Frankfurt am Main fasc 1, pl. 16.13-15. The sphinx on a Late Rhodian plate wears a disk in her ear, Naukratis II pl. 12 (Kardara, A, 236.1, Schiering, notes 246, 451, Rumpf, 82 IV a 5), and on a fragment of an oinochoe, likewise from Naukratis, the stylization may indicate an ear as well as an ear disk, CVA Oxford fasc 2, II D, pl. 4.51 (Kardara, A, 226.4, Schiering, note 151, Rumpf 80 III a 29); otherwise ear disks are not used on sphinxes etc., in the earlier or in the later Wild Goat Style. They appear from time to time on Chian; on Animal Style chalices, CVA Heidelberg fasc 1, pl. 3.12, and on Simple Figure Style chalices, BSA 60 1965, 141.10 pls. 42,44 ; not usually on Chian Black-Figure, but see JHS 44 1924, pl. 12.16 ; sometimes the stylization is so pronounced that it is difficult to decide if it is all ear or if a disk is attempted, ibid. pl. 12.8; in the "Grand Style" the ear itself is carefully rendered, and ear disks occur, ibid, pl. 6.1. See furthermore the remarks of R. M. Cook on the ear types on "Clazomenian', CVA Brit. Mus. fasc 8, 28 Postscript.
${ }^{305}$ Black-figured: AA 29 1914, 228-231 fig. 43 (Kardara, A, 210.1 (see above note 286). The Corinthian version of horns is different from 165, CVA Bruxelles fasc 1, III C, pl. 3.4 a. On a bowl from Naukratis the deer might have had a pair of horns similar to $\mathbf{1 6 5}$, but in the drawing published by Chr. Kardara the horns look reconstructed, Kardara, A, 245. 4 fig. 198 (Schiering, notes 267, 277, 365, 776, Rumpf, 81 III f 2), see further JHS 81887 , 121 pl. 79 above (the sketch here is probably not reliable); J. M. Cook compares the bowl to the Miscellaneous East Greek Black-Figure from the second quarter of the 6th century, BSA 60 1965, 120 , and our fragment may belong to these, the latest of the Orientalizing East Greek vases; on the group, see below p. 74. In the Wild Goat Style deer rendered in silhouette and outline often have the double horns, CIRh VI/VII 85.1 figs. 91-93, 95 (Kardara, A, 101.1, Schiering, notes 120, 125, 127, 371, Rumpf, 71 III D 13), Samos V $75-76.616$ pl. 125 (Kardara, A, 68.13 , Schiering, note 200 , pp. $10,45,50$), Schiering, Werkstätten, 49 note 371, and the black-figured deer in question may be of the same type as the one illustrated on these 7 th century Wild Goat vases rather than the one favoured on the Corinthianizing Wild Goat vases.

Hist.Filos.Skr. Dan.Vid. Selsk. 6, no. 2.
in the fragments of a dinos in Cambridge, possibly related to "Clazomenian". ${ }^{306}$ On 166 the raised leg looks like a paw of a beast, and the upright position of the animal, the lack of differentiation between head and neck, and the stylization of the head are features usually connected with a lion with frontal head. ${ }^{307}$ The leg is raised to an uncertain angular design, which may perhaps be interpreted as a meander, or a most unusual version of a tail of a bull. ${ }^{308}$ The slim and somewhat elongated body on 167 belongs either to a crouching griffin ${ }^{309}$ or to a sphinx. ${ }^{310} 168-169$ are rim and neck fragments; 168 has a white rosette on the interior, ${ }^{311} 169$ a white painted eye on the exterior; eyes with slender contours like those of $\mathbf{1 6 9}$ are found mainly on Late Wild Goat vases, frequently on those in mixed technique. ${ }^{312}$ The handle-rotelle, 170 a, probably belonged to a vase from the last quarter of the 7th century. ${ }^{313} 171$ 191 are ascribed to amphorae, a shape not met with among the Wild Goat vases until the late phase. ${ }^{314}$ Of $\mathbf{1 7 1}$ nearly one half is preserved; the large goats which occupy the shoulder field of a great many of the amphorae are not usually rendered with their heads pointing straight forwards and in marching posture as on 171. ${ }^{315}$ In other respects too $\mathbf{1 7 1}$ differs from the other amphorae: it has several filling-ornaments, ${ }^{316}$ vertical panels with meanders ${ }^{317}$ and four narrow bands below the shoulder
${ }^{306}$ CVA Cambridge fasc 2, II D, pl. 19.1-5, BSA 47 1952, 138. F1 a-c, 139 note 64 (139: "They are, I think, to be dated a little before the middle of the sixth century, earlier than any of the pieces listed above. If so, they mark an early - probably experimental stage in the Clazomenian b.f. style"), BSA 60 1965, 131.
${ }^{307}$ For a lion with frontal head, see BSA $601965,120.32 \mathrm{pl}$. 26 . The latter has whiskers like our lion -the frontal lions without mane are still conventionally called panthers, but see below note 378 .
${ }^{308}$ For a lion "attacking" a bull from behind, see CVA Cambridge fasc 2, II D, pl. 18.38 (Kardara, A, 223.2), ActaArch 13 1942, 26 fig. 15 (Kardara, A, 211.1 (see above note 286).
${ }^{309}$ Like CVA Oxford fasc 2, II D, pl. 4.30 (Kardara, A, 227.10, Schiering, note 151, Rumpf, 80 III a 21), CVA Cambridge fasc 2, II D, pl. 18.32 (Kardara, A, 224.17, Schiering, notes 420, 439).
${ }^{310}$ Like Délos X 38-39.59 pl. 12 (Kardara, A, 208.5 (see above note 282), Homann-Wedeking, Vasenornamentik, 17.5).
${ }^{311}$ Otherwise white rosettes are found on the exterior of the rim of Wild Goat oinochoai; but see a Fikellura oinochoe in Paris which has white lotus flowers and buds painted on the interior of the trilobe rim, CVA Louvre fasc 1, II Dc, pl. 5.12, Zervos, Rhodes, 143 fig. 336, BSA 34 1933/34, 39.S1, 41 : 'continue the Rhodian tradition", dated c. 550 B.C.
${ }^{312}$ CIRh III $76-77.14$ fig. 67 pl. A (Kardara, A, 208.2 (see above note 281, Homann-Wedeking, Vasenornamentik, 14, 17.4: Gruppe R), CVA Copenhague fasc 2, II D, pl. 77.3 (Kardara, A, 208.3 (see above note 279); on late vases in silhouette and contour technique, see CVA Torino fasc 2, II D, pl. 3.2, Kardara, A, 182.6 fig. 149 (Schiering, notes 152, 155, 174, 472, 608, 654, 774, Rumpf, 78 II f 5), 236.1 fig. 196 (see Schiering, pl. 6.4), 237.2 fig. 197. Late oinochoai with only floral decoration have the same sort of eye, Tocra, 42.591 pl . 30. On Classical Camiran vases the contours are usually broader, CVA Louvre fasc 1, II D, pl. 5.1 (= Zervos, Rhodes, 32 fig. 45, 133 fig. 304, pl. 26 fig. 500 (Kardara, A, 104.1, Schiering, notes 120, 130, 133, 135, 428, 433, 445 a, 461, 724, 733, 743 a, Rumpf, 70 III A 4), CVA München fasc 6, pl. 275 "Sub-Camiran" (Kardara, A, 190.2, Schiering, notes 126, 133, 136, 147, 460, 571, Rumpf, 72 III D 43).
${ }^{313}$ ArchRep 1962/63, 41 fig. 17; for the same motif used as filling-ornament, see CIRh VI/VII 218-219 pls. 6-7 (Kardara, A, 104.2, Schiering, notes $6,120,123,133,349,367,424,433,499,635,637,724,736,744$, 746, Rumpf, 70 III A 2), BSA 61 1966, 153.1 pl. 31.
${ }^{314}$ BSA 34 1933/34, 55, Schiering, Werkstätten, 27-28.
${ }^{315}$ Only the sphinx on the amphora in the Louvre has the same appearance, Zervos, Rhodes, 52 fig. 94 (Kardara, A, 189.1, Schiering, notes 182, 424, 433, 616, 630, 644, Rumpf, 72 III d 1).
${ }^{316}$ On the Louvre amphora (see preceding note) filling-ornaments occur in similar numbers, but they seem related to the Classical Camiran Style, whereas the filling-ornaments on $\mathbf{1 7 1}$ are similar to those employed on vases in mixed technique; the latter type of filling-ornament occurs on most of the other amphorae, but here the trend is towards larger and fewer ornaments, see for instance Délos XVII 58-59.4-7 pl. 39. Note some fragments from Istros on which the filling-ornaments are still small and rather crowded, Histria 2, 59.29 pl .3 , the vase is listed as an oinochoe, but might be an amphora.
${ }^{317}$ The panels are usually filled with dots: JdI I 1886, 140. 2944 (Kardara, A, 209.2, Schiering, note 185, Rumpf, 78 II g 3), AA 7 1892, 170.175 (Kardara, A, 210.3, Schiering, notes 185, 525 , Rumpf, 78 II g 2), Délos XVII 60.14 pl. 41 (Schiering, note 537).
field. ${ }^{318}$ These features suggest an origin early in the first quarter of the 6 th century. ${ }^{319}$ The filling-ornaments on $\mathbf{1 7 2 - 1 7 3}$ look identical, and the fragments may belong to shoulder fields, A and B, of the same vase. On 172 one of the forelegs is stretched forwards, the other one is nearly kneeling ${ }^{320}$ - on 173 the goat is marching, its legs perhaps rendered like those of the goat on $\mathbf{1 7 1}$. There are no traces of pendent tongues above the goat on 172 , and the filling-ornaments were probably sparse, so the vase should be classed among the latest amphorae from c. $580-60$ B.C. ${ }^{321}$ The same may hold good for $\mathbf{1 7 5}-\mathbf{1 7 7}$ on which the goat type canonic for the amphorae is shown. ${ }^{322}$ The goat's head on $\mathbf{1 7 4}$ is not turned backwards, and, as mentioned above, this is strange on amphorae; ${ }^{323}$ the fragment may be connected with the earliest of the amphorae from Delos/Rheneia. ${ }^{324} \mathbf{1 7 8 - 1 8 4}$ belong to amphorae with exclusively large floral motives in the shoulder fields, a group not strictly regarded as belonging to the Wild Goat style, but to be derived from the latest Wild Goat vases. ${ }^{325}$ On 178 the inner part of a pair of large volutes occurs, ${ }^{326}$ on 181 the root of the neck is preserved, and the small leaf should thus illustrate the upper leaf of a similar pair of volutes; ${ }^{327}$ remnants of large, nearly horizontal handle-palmettes occur on 179-180, and they too can be combined with large volutes. ${ }^{328} 183$ is obscure; the motive resembles that of the handle-palmettes, but the wheel-marks seem to make the usual placement in the shoulder field impossible. Sherds with part of a vegetable motif nearly identical to 182 have been found in Istros ${ }^{329}$-linked circles with buds between as on 184 occur on the shoulder of an amphora from Tocra. ${ }^{330}$ On 185-186 are remains of probably short neck-cables like those usually found on amphorae. The leaf of $\mathbf{1 8 6}$ is rounded-on

[^31]185 it is pointed like the one on $172 ;{ }^{331}$ open cables as on 187 are connected with the latest Wild Goat vases and the amphorae with exclusively floral ornaments. ${ }^{332}$ Red and white stripes added on dividing bands were introduced on the Late Wild Goat oinochoai ${ }^{333}$ and they still occur on the broad bands of a great many of the late amphorae, like the ones to which 188-189 belonged ${ }^{334}$-but accessory colours are surely excluded on some, perhaps the later ones. ${ }^{335}$ Our 191 belongs to the latter category. A large group of sherds, 192-253, has been catalogued as belonging to indeterminate closed vases; most of them are tiny side sherds which mainly belong to the Late Wild Goat style. The goats on $192-197$ probably all represent the late type with its head turned backwards. ${ }^{336}$ It is not possible to talk about a uniform style of drawing in the goats represented on the fragments from Tall Sūkās, but generally a certain similarity to the material from Istros may be noted. ${ }^{337}$ The ear of 198 is apparently drawn exclusively in silhouette and the goat might have been in black-figured technique. 199 perhaps has a broad neck collar and the fragment might thus be connected with a one-piece amphora. ${ }^{338}$ For the S-loop on 200 , see above. ${ }^{339} 202$ may have belonged to one of the latest Wild Goat amphorae on which the original panels are provided by only one or two vertical stripes. ${ }^{340}$ On 204-206 three different versions of black-figured birds are represented: 204 probably with raised wings, ${ }^{341}$ 205-206 apparently marching; ${ }^{342}$ other black-figured animals occur on 207-210. ${ }^{343}$ Most of the filling-ornaments on 212-226 are to be included among the stock of ornaments em-
${ }^{331}$ Both varieties occur on the latest amphorae, see Tocra, pl. 28.580-581.
${ }^{332}$ Délos XVII 58.2-4 pls. 38-39 (amphorae, see above note 326), 60.15 pl. 42 (flat-bottomed oinochoe, Schiering, note 171).
${ }^{333}$ BSA $341933 / 34$, 71 fig. 10, Vroulia, 228. R. M. Cook, Greek Painted Pottery, London 1966, 122.
${ }_{34}$ Délos XVII 58-60.2-3, 5-8, 10-11 pls. 38-40 (see above notes 320, 326).
${ }^{335}$ Délos XVII 58.4, 59.9 pls. 39-40, (see above note 326), Tocra, 46.580 pl. 28.
${ }^{336}$ This posture is to be accepted, too, for 192, 196-197, as the heads of the goats seem to be raised.
${ }^{337}$ Compare 176 for instance, with Lambrino, Vases, 256.12 figs. 218-221 (Kardara, A, 210.1 (Schiering, notes 318-22). Eyebrows and nose-wrinkles never seem to occur on our goats, whereas these features are very frequent in the material from Naukratis, CVA Oxford fasc 2, II D, pl. 4 passim, CVA Cambridge fasc 2, II D, pl. 18.12 and passim; the same features are found only on few of the goats from Istros, Lambrino, Vases, 251.11 fig. 217 (Kardara, A, 109.1), 256.13 fig. 222 (Kardara, A, 274.2), Histria 2, 57.4 pl. 1.
${ }^{338}$ Tocra, 41-42.588 pl. 29 (goat), Lambrino, Vases, 243-244.2 figs. 205-207 (floral motif, Schiering notes 185, 544, 547).
${ }^{339}$ See note 285.
${ }^{340}$ Tocra, $41-42.581$ pl. 28.371 catalogued as "Unclassified East Greek" may have belonged to a similar amphora.
${ }^{341}$ Compare CVA Oxford fasc 2, II D, pl. 4.33 (Kardara, A, 230.2, Schiering, note 151, Rumpf, 80 III a 24). The type occurs in Corinthian, Corinth VII.1, 65.251 pl . 34, but usually the Corinthian birds do not have raised wings, NSc 1960, 144 fig. 9; the latter type prevails too on the Late Wild Goat vases on which black-figured technique was employed, JHS 44 1924, pl. 8.13 (Schiering, notes 267, 268, 277, 343, Rumpf, 81 III f 15), CVA Oxford fasc 2, II D, pl. 4.37A, 47 (Kardara, A, 234.25, Schiering, notes 267, 277, Rumpf, 81 IIIf 9 , Kardara, A, 248.9, Schiering, note 200, Rumpf, 81 III h 11).
${ }^{342}$ 205: CVA Oxford, fasc 2, II D, pl. 4.47 (Kardara, A, 248.9 (see above note 341); 206: the fragment is rather large and the stylization is not equal to that of the usual Wild Goat birds or sirens; the polychromy might point to "Clazomenian" pottery, but the slip of 206 seems to contradict this-the sherd is perhaps to be connected with the so-called "Indeterminate East Greek Black-Figure", BSA 60 1965, 120, Gnomon 1965, 506, see below p. 74.
${ }^{343}$ 207: possibly a boar, compare Naukratis I pl. 6.3 (see above note 281); 208: see Naukratis I pl. 13.2 (Schiering notes $267-8$, Rumpf 81 f 29); 209: for the filling-ornament, see NSc 1960, 148 fig. 13 b , ActaArch 13 1942, 49 fig. 30 (Kardara, A, 233.11, Schiering, notes 409, 778, Rumpf, 83 IV e 1), BCH 86 1962, 407 fig. $100 \mathrm{~b} ; \mathbf{2 1 0}$: the white-spotted animal might have an incised belly-line and below the abdomen part of a filling-ornament. For this type, see a lid from Smyrna not of the ordinary Late Wild Goat Style, but assigned to the "Indeterminate East Greek Black-Figure", BSA 60 1965, 120.32 pl. 26.
ployed on vases in mixed technique, only one fragment, 216, might belong to the last quarter of the 7 th century. ${ }^{344} \mathbf{2 2 7} \mathbf{- 2 3 4}$ have only linear decoration which occasionally represents floral motives; ${ }^{345} \mathbf{2 3 5}, \mathbf{2 3} 7-239$ have meanders as dividing bands, ${ }^{346} \mathbf{2 4 0}$ a waveline. ${ }^{347}$ Chequers, which occur on 242 , are only seldom found on Wild Goat vases ${ }^{348}$ and the writer only knows of one example where the chequers are placed immediately above the rays radiating from the foot. ${ }^{349}$ The motif is more frequent on later vases as "Clazomenian" ${ }^{350}$ and other East Greek Black Figure. ${ }^{351}$ The neck-cable, 244, may have belonged to an amphora or to an oinochoe. ${ }^{352} \mathbf{2 4 3}, \mathbf{2 4 5} \mathbf{- 2 5 0}$ are bottom sherds and fragments of the lower part of the belly, on which only bands and rays appear; ${ }^{353} 251$ is perhaps an amphora handle. ${ }^{354} \mathbf{2 5 2 - 2 5 3}$ are from vases either
${ }^{344}$ 212: compare BCH 88 1964, 329 fig. 60 ; 213: might be from a late amphora, see note 340; 214: see CVA Oxford fasc 2, II D, pl. 2.5 (Kardara, A, 208.1 (see above note 282), but probably 214 did not belong to a vase on which the filling-ornaments were so crowded. It is rather from a more sparsely decorated specimen, as for instance, Tocra, $41-42.580 \mathrm{pl} .28$; 215: CIRh III $76-77.14$ fig. 67 pl . A (Kardara, A, 208.2 (see above note 281); 216: the ornament is well known on 6 th century vases with very crowded filling-ornaments, Naukratis II pl. 8.1 (Kardara, A, 244.3, Schiering, notes $267,268,277,279,343,395,546,547,592,594,605,608$, 776, 778, Rumpf, 81 III f 1), AJA 63 1959, 183.5 pl. 48 fig. 8 (Kardara, A, 247.1). However on 216 the ornament seems to be the only one between the legs, as found frequently on vases of the later Classical Camiran Style, ClRh VI/VII 85.1 figs. 91-93, 95 (Kardara, A, 101.1 (see above note 305), on which the bodies of the goats are horizontal like that of $\mathbf{2 1 6}$. The remnant of the leg on $\mathbf{2 1 6}$ indicates that our goat was not marching, but running fast like the goats on an oinochoe from Camiros, see Zervos, Rhodes, 44 fig. 77 (Kardara, A, 95.5 , Schiering, notes $120,134,349,397,472,474,580,704,708,736$, Rumpf, 70 III C 4); compare the typical running position of the 6 th century goat, Blinkenberg, Lindos I 282.985 pl .46 (Kardara, A, 208.7 (see above, note 296) - our fragment may have belonged to a vase from the 7th century; 217: CVA Oxford fasc 2, II D, pl. 2.5 (Kardara, A, 208.1, (see above note 282); 218: the fragment is described as a side sherd, but might rather have been from the shoulder of an amphora, compare Délos XVII 60.14 pl. 41 (see above note 317); 219-220: see Histria 2, 59.26 pl .2 and Tocra, $41-42.580 \mathrm{pl} .28 ; \mathbf{2 2 1}$: see CVA Oxford fasc 2, II D, pl. 2.4-6 (Kardara, A, 208.1 (see above note 282), but our sherd belonged to a vase with more sparse filling-ornaments; 222: Tocra, 41-42.588 pl. 29; 225: BCH 86 1962, 407 fig. 100 a; 226: the rosette is very large, compare Naukratis I pl. 6.5 (Schiering, notes 267, 268, 277, Rumpf, 81 III f 26), Kinch, Vroulia pl. 15 (Kardara, A, 217.2 (see above note 280); 224: the fragment is strange, but compare the late amphorae with horizontal handles on the shoulder, Schiering, Werkstätten, 28 with references.
${ }^{345}$ 227-229: probably all shoulder sherds, compare Kardara, A, 237.2 fig. 197, ArchRep 1962/63, 46 fig. 26, Délos XVII 58.3 pl. 38 (see above note 326), CIRh VI/VII 508 figs. 33, 35 (Schiering, notes 69, 188, 525 , Rumpf, 78 II h $7-8$), AA 7 1892, 170.174 (Schiering, notes $69,142,143,377,422,441,568,572,585$, 624,633), 170.175 (see above note 317); 231: perhaps part of a large pair of volutes, like Délos XVII 58.2 pl. 38, but the fragment might possibly be Chian, see Lambrino, Vases, 126.7 fig .68 c ; 233: graffito, see Kardara, A, pl. A, Lambrino, Vases, 211-229 figs. 168-202 and Histria 2, pl. 64.
${ }^{346} \mathbf{2 3 5}, 237-238$: broken meanders like Délos XVII 58-59.5-7 pl. 39 (see above note 334); 239: hook meanders very often on oinochoiai in mixed technique CVA Copenhague fasc 2, II D, pl. 77.3 (Kardara, A, 208.3 (see above note 279), Délos X 38-39.59-60 pl. 12 (Kardara, A, 216.1 (see above note 273), 208.5 (see above note 282).

347 240: ClRh VI/VII 495-496.1 fig. 22 (Kardara, A, 283.5, Schiering, notes 69, 142, 387, 573, 619, 645, Rumpf, 75 I c 3), D. M. Robinson, Catalogue of Greek Vases, Toronto 1930, 66-67.205-C259 pl. 18 (Kardara, A, 100.5); 241: compare the late amphorae, Tocra, 41-42.580, 588 pls. 28-29.
${ }_{348}$ Kardara, A, 67.3 (Schiering, note 188); on a stand, see Vroulia, 191-192 fig. 73 (Kardara, A, 274.1, Schiering notes $93,282,291,348,731$, Rumpf, 79 II 1.1), see too Naukratis II pl. 11.3 (Kardara, A, 235.1 (see above note 303).
${ }^{349}$ Fairbanks, Catalogue, 105.315 pl. 33 (Schiering, notes 267, 268, 277, 278, 534, 621, Rumpf, 81 III f 20).
${ }_{350}$ BSA 47 1952, 144, BSA 60 1965, 128-132.64-84 pls. 34-36.
${ }^{351}$ BSA 60 1965, 121.37 pl. 28.
${ }^{352}$ Délos XVII 59.10 pl. 40 (see above note 334), Kardara, A, 237.2 fig. 197.
${ }^{353}$ Distinguishing between the bottom fragments on the basis of the number of the rays is not quite safe-but in general the early amphorae seem to have rather close-set rays, AA $71892,170.175$ (Kardara, A, 210.3 (see above note 317), and there is a tendency towards fewer rays on the later amphorae, Délos XVII 58.2 pl. 38 (see above note 326) and Tocra, $41-42.588 \mathrm{pl} .29$. For the red dipinto under the foot of 247 , see Tocra, 46 fig. 22.

354 AA 7 1892, 170.175 (Kardara, A, 210.3 (see above note 317).
totally glazed or with glazed friezes on which the decoration is incised. ${ }^{355}$ Several fragments, 254-282, have been ascribed to larger open vases, i.e. kraters or dinoi. The krater shape most frequently represented is the MC low-necked column krater; ${ }^{356}$ black-figured technique prevails, only 254 could perhaps be assigned to a krater on which the old Ionian technique is employed. ${ }^{357}$ On $\mathbf{2 5 5}$ the meander band is placed immediately below the metope. ${ }^{358} \mathbf{2 5 6} \mathbf{2 5 8}$ and perhaps 264 have a frieze of pendent tongues above the metope, ${ }^{359}$ on $\mathbf{2 5 9}$ it is abandoned. ${ }^{360} \mathbf{2 5 \%} \mathbf{- 2 5 8}$ have only Corinthian filling-ornaments; ${ }^{\mathbf{3 6 1}}$ the griffin, $\mathbf{2 5 \%}$, has an extraordinarily tall neck, and it might be that only a protome was intended, ${ }^{362}$ the rounded design below the corner-palmette is placed much too low to be interpreted as a wing. ${ }^{363}$ Representations of large waterbirds are very popular in the metope of Corinthian kraters, ${ }^{364}$ and likewise on the Eastern versions of the column krater: 260-261 are to be ascribed to kraters with such scenes. ${ }^{365}$ The double incisions, the stylization of the mane, the heart-shaped ear and the nearly circular eye are features which connect the lion on 262 with the Wild Goat tradition. ${ }^{366}$ The animal on 263 might be a bull. ${ }^{367}$ The letters on 265 are assigned to the 1 st half of the 6 th century. ${ }^{368}$ Rim fragments decorated with meanders, continuous like $\mathbf{2 6 6}$ or broken like $\mathbf{2 6 \%}$, may come from column kraters as well as
${ }^{355}$ Lambrino, Vases, 275-278.46-51 (assigned to oinochoai). Dark friezes with incised floral motifs, lotuses (like 252) are frequent on dinoi and kraters in mixed technique, CVA Oxford fasc 2, II D, pl. 4.29 (Kardara, A, 225.30, Schiering, notes 287, 297, 409, 484, 587, 594, 778, Rumpf, 80 III c 21), Kinch, Vroulia, pl. 15 (Kardara, A, 217.2 (see above note 280). A group of amphorae and situlae together with the Vroulia cups display the same technique, CVA Karlsruhe fasc 2, pl. 47.5 with text, CVA Brit. Mus. fasc 8, II Dm, pls. 2-8 Appendix A VIII, Kinch, Vroulia, 174-194 figs. 58-72 pls. 10-12, 46.
${ }^{356}$ Schiering, Werkstätten, 40-41. See furthermore BSA $601965,122-123$ and Payne, Necrocorinthia, 300-301. Some of our fragments have no description of their interiors, and the writer is aware of the fact that they might have belonged to closed vases. When catalogued as belonging to kraters, it is mainly because of the large dimensions of the figures represented and the vertical, glazed panels, which seem broader than is usual on oinochoai.
${ }^{357}$ Like that of a krater in Leningrad, Kardara, A, 250.1 fig. 199. For the corner-palmette on 254 compare Histria 2, 62.64 pl. 5.
${ }^{358}$ This is seldom seen, but occurs on an Aeolic krater from Pitane, ArchRep 1964/65, 36 fig. 5.
${ }^{359}$ The same sort of tongues appear on some of the North Ionian kraters, too, for instance BSA 60 1965, 121.34 pl. 27.
${ }^{360}$ This is strange on Wild Goat kraters; nevertheless see-a fragment in the Hague assigned by W. Schiering to the Vlastos group, Werkstätten, 40 note 308.
${ }^{361}$ For a corner-palmette similar to that of $\mathbf{2 5 7}$, see the krater in Bonn, ActaArch 13 1942, 24 fig. 12 (Schiering, notes $308,314,317,409,468,588$, Rumpf, 83 IV d 1) ; the other side of the same krater is published in AA 51 1936, 378-379.27 fig. 30.
${ }^{362}$ Protomes of griffins on Late Wild Goal vases usually have very long and rather powerful necks: JHS 44 1924, 200 fig. 31 (Kardara, A, 228.4 fig. 237, Schiering, notes 437, 439, Rumpf, 80 III e 9), CVA Oxford fasc 2, II D, pl. 4.36 (Kardara, A, 224.20 fig. 238, Schiering, notes 287, 437, 542, 755, Rumpf, 80 III e 4), Tocra, 41.590 fig. 23 pl. 30, Kardara, A, $235.4,237.2$ fig. 197 and Schiering, Werkstätten note 437 with further references. See furthermore CVA München fasc 6, p. 20 text to no. 3.
${ }^{363}$ For regular wings, see AM 541929,20 , 22, fig. 15.3, Beilage 10.2 (Kardara, A, 218.6, Schiering, note 294, Rumpf, 80 III e 1), R. Lullies, Griechische Kunstwerke Sammlung Ludwig, Aachen, Aachen Kunstblätter 37 1968, 21-22.8, Kinch, Vroulia, pl. 15 (Kardara, A, 217.2 (see above note 280).
${ }^{364}$ CVA Altenburg fasc 1, pls. 2-3, Corinth XIII 172 grave 135.3 pls. 18, 89.
${ }_{365}$ AA 51 1936, 378-379.27 fig. 30, ActaArch 131942,24 fig. 12 (see above note 361).
${ }^{366}$ Kardara, A, 232.2 fig. 229; ActaArch 13 1942, 24 fig. 12 (see above note 361).
${ }^{367}$ Kardara, A, 211.1 fig. 225 (see above note 286), AA 27 1912, 334 fig. 20 (Schiering, notes 185, 186, Rumpf, 82 IV b 1).
${ }^{368}$ See the catalogue. For inscriptions on vases in Rhodian Wild Goat Style, see Kardara, A, pl. A.
from kraters with ring-handles. ${ }^{369}$ The fragmentary handle plates, 268-274, display both geometrical and "floral" decoration. ${ }^{370} \mathbf{2 7 5 - 2 8 3}$ can be ascribed to kraters or to dinoi. The profile of 275 is not known, but the fragment possibly comes from a dinos. ${ }^{371}$ On the rim fragment, $2 \boldsymbol{2 7 6}$, a quatrefoil is inserted in the meander. ${ }^{372}$ The shoulder sherd 277 is from a dinos or a krater which is slipped on the exterior except for a glazed zone on the shoulder decorated with an incised floral frieze. ${ }^{373}$ The bottom fragment, 278, is very similar to a fragment from Lindos. ${ }^{374}$ Wavelines as on 279 are seldom on kraters/dinoi ${ }^{375}$ - more frequent on bowls ${ }^{376}$. Open vases with pendent tongues and very degenerated filling-ornaments as on 280 occur in Kardara's Late Rhodian I, which apparently includes some of the vases later excluded as Aeolic by E. Walter-Karydi. ${ }^{377}$ The stylization of the lion with frontal head 282^{378} looks similar to MC lions. ${ }^{379}$ 283-284 have been catalogued as belonging to bowls: the rounded design behind the marching beast on 283 is perhaps the point of the leaf from a handle palmette; ${ }^{380}$ the drawing of the bull on 284 faithfully copies the Corinthian tradition. ${ }^{381}$ 285-309 are fragments of fruit-stands or dishes, and many of them are paralleled by the Rhodian types from Tocra, where they are found mainly in Deposits II-III which cover the second and third quarters of the 6th century. ${ }^{382}$ The fragmentary foot-stems identify 285-288 as fruit-stands. $\mathbf{2 8 5}$ and $\mathbf{2 8 6}$ display the same sort of inner, central decoration; ${ }^{383}$ on 287 the buds alternate with tongues instead of leaves; ${ }^{384}$ wavelines often occur on fruit-stands with a low vertical rim as on 288. ${ }^{385}$ 289-293

[^32]are side sherds of which $\mathbf{2 8 9}-291$ are to be connected with fruit-stands, the others may equally well have belonged to dishes. Examples with outer friezes like those on 289 do not occur among the material from Tocra, but among that from Naukratis. ${ }^{386}$ Friezes with "geometrical" decoration used as dividing bands between the central decoration and the outer frieze, like on $\mathbf{2 9 0}-\mathbf{2 9 1}$, still occur early in the 6 th century. ${ }^{\mathbf{3 8 7}}$ 294 is the earliest Wild Goat fragment found on Tall Sūkās. According to the registrar it is from a plate which has a low ring-foot divided by a deep furrow; this is not the ordinary shape for plates in Wild Goat Style. ${ }^{388}$ Only in the first half of the 7th century
${ }^{386}$ Fairbanks, Catalogue, $112-113.323 .2-3,13$ pl. 35, F. Robert, Trois sanctuaires sur le rivage occidental, Délos XX, Paris 1952, 39 fig. 34.3.
${ }^{387}$ See, for instance, Kardara, A, 191.1-5 (Rumpf, 73 III g 12 (Schiering, 200, 231), Rumpf, 74 III i 24 (Schiering, notes 200, 648), i 45 (Schiering, notes 200, 618, 648), i 59 (Schiering, notes 200, 214, 568, 648), i 56 (Schiering, notes $200,213,568,648$) and Tocra, 43 note 7 ; but they are far from being as frequent as in the 7 th century, see Kardara, A, 121-124 (121.3 (Schiering, note 200, Rumpf, 74 i 43), 121.4 (Schiering, note 200, Rumpf, 74 III i 38), 121.5 (Schiering, note 200), 122.1 (Schiering, notes 200, 205, 460, 627, Rumpf, 74 III i 35), 123.7 (Schiering, notes 200, 211, 566, 648, Rumpf, 75 III i 68), 123.10 (Schiering, notes 200, 648, Rumpf, 75 III i 75-77), 123.6 (Schiering, notes 200, 552, 648, Rumpf, 74 III i 42), 124.12 (Schiering, note 200), 124.16 (Schiering, notes 200, 648,780 , Rumpf, 75 III i 71); usually on the later 6 th century dishes and fruit-stands the tondo is enlarged, the outer frieze abandoned and supplied by broad bands, Tocra, pls. 34-36. For motives similar to our 290-291, but for the outer frieze, see Délos X 39.62 pl. 13 (Kardara, A, 241.8, Schiering, notes 200, 224, 227, Rumpf, 81 III h 31), Naukratis I pl. 7.1 (Schiering, note 200, Rumpf, 82 III h 74); for the squares, see CVA Cambridge fasc 2, II D, pl. 18.28, Fairbanks, Catalogue, 114.324 .10 pl. 35.
${ }^{388}$ This is the totally flat-bottomed type provided with different numbers of furrows, established already from the middle of the 7 th century and living on into the 6 th century : for the early group, see Kardara, A, 81-85 (83.1 (Schiering, notes 244, 256), 83.2 (Schiering, notes 244, 441, Rumpf, 76 II d 21), 84.3 (Schiering, notes $74,80,244,252,255,494,799$, Rumpf, 76 II d 2), 84.4 (Schiering, notes 75, 244, 472, Rumpf, 77 II d 40), 84.5 (Fairbanks, 35.323.7, Rumpf, 77 II e 4), 84.6 (Schiering, notes 244, 251, 353, 433, 749 b, Rumpf, 77 II d 36), 84.1 (Schiering, notes 47, 106, 652, Rumpf, 69 I a 6), 85.2 (Schiering, notes 107, 652, Rumpf, 69 I a 7), 85.3 (Schiering, note 318 , Rumpf, 79 II m 7), for the profile, see Kinch, Vroulia, pl. 35 (Kardara, A, 83.1, Schiering, notes 244, 256), the Gorgon group, see Kardara, A, 204-207 (207.1 (Schiering, notes $71,244,252,253,467,607,622,786,787$, Rumpf, 76 II d 18), 207.2 (Schiering, notes $69,71,79,244$, 254, 564, 624, 633, 792, 794, 795, 796, 797, 799, Rumpf, 76 II d 1), 207.3 (Schiering, notes 71, 75, 244, 262, 451, 792, Rumpf, 76 II d 5), the Thasian group, see BCH 85 1961, $98-122$ figs. 2, 5-7, 13-14; 6th century plates: Kardara, A, 284-289 (284.1 (Schiering, notes 244, 257, 259, 377, Rumpf, 76 II d 9), 284.2 (Schiering, notes 257, 259, 337, 354, 710), 284.1 (Schiering, notes 244, 245, 251, Rumpf, 77 II d 46), 284.2 (Schiering, note 244 , Rumpf, 77 II d 48), 284.3 (Schiering, note 244, Rumpf, 77 II d 47), 284.4 (Schiering, notes 244, 387, 568, Rumpf, 77 II d 49), 284.5 (Schiering, note 244, Rumpf, 77 II d 54), 285.6 (Schiering, note 244, Rumpf, 77 II d 50), 285.7 (Schiering, note 244 , Rumpf 77 II d 51), 285.8, 285.9, 288.12, 288.2, 289.1 (Schiering, notes $150,244,422,525,567$, Rumpf 77 II d 29, 37, 52, 53, 67), 286.10 (Schiering, notes 244, 251, 386, Rumpf 77 II d 45), 286.11 (Schiering, notes 244,386 , Rumpf 77 d 55), 286.12 (Schiering, notes 73, 76), 286.1 (Schiering, notes 244, 257, 411, 422, 585, Rumpf, 76 II d 12), 286.3 (Schiering, notes 244, 394, Rumpf, 76 II d 20), 287.4 (Schiering, notes 244, 415, Rumpf 76 II d 19), 287.5 (Schiering, notes 244, 415), 287.1 (Schiering, notes 244, 251, 422, Rumpf, 76 II d 24), 287.2 (Schiering, notes 244, 251, 254, 422, Rumpf, 76 II d 23), 287.3 (Schiering, notes 76, 244, 251, 254, 422, Rumpf, 77 II d 32), 287.4 (Schiering, notes $244,251,422,662$, Rumpf, 77 II d 30), 287.5 (Schiering, note 244, Rumpf, 77 II d 31), 287.6 (Schiering, notes $78,244,422$, Rumpf, 76 II d 22), 287.7 (Schiering, notes $76,244,422$, Rumpf, 77 II d 34), 287.8 (Schiering, notes 244, 422, Rumpf, 77 II d 26), 287.9 (Schiering, notes 244, 422, Rumpf 77 III i 33), 287.10 (Schiering, notes 244,411 , 422 , Rumpf 77 II d 27), 288.11 (Schiering, notes 244, 411, 422, Rumpf, 77 II d 28), 288.12 see above, 288.13 (Schiering, notes $244,257,411,422,585,618$, Rumpf, 76 II d 13), 288.14 (Schiering, notes $244,257,411,422,585,618$, Rumpf, 76 II d 14), 288.2 (Schiering, notes 244, 485, Rumpf, 77 d 43), 288.3 (Schiering, pp. 35, 73, 74, Beil. 9.7), 288.1 (Schiering, notes 244, 257, 338, 585, Rumpf, 76 II d 15), 288.2 see above, 288.1 (Schiering, notes 244, 487,802 , Rumpf, 77 II d 57), 288.2 (Schiering, notes 244,487 , Rumpf, 77 II d 56), 289.1 (Schiering, note 490), 289.1 see above, 289.2 (Schiering, notes 244, 252, 258, 548, 585, Rumpf, 76 II d 17), 289.3 (Schiering, notes $244,252,258,548,585$, Rumpf, 76 II d 16), 289.1 (Schiering, note 200 , Rumpf, 82 III h 80), for the profile, see Kinch, Vroulia, 221 fig. 109 (Kardara, A, 284.1, Schiering, notes 244, 245, 251, Rumpf, 77 II d 46). Only the shallow dishes with floral decoration from the late 7 th and the 6 th century have a ring foot: Kardara, A, 128-129 (128.2 (Schiering, notes 231, 232, 237, 548, 623, Rumpf, 73 III g 5), 128.1 (Schiering, notes 231,
does a type with low ring foot divided by a furrow occur; ${ }^{389}$ its sparse decoration is geometric in character-and our fragment is clearly connected with the Wild Goat tradition, though the decoration of it has an early look. Palmettes with double contours are known all through the second half of the 7th century, ${ }^{390}$ but the irregularity of the palmette on 294 may be accepted as a sign of early experimentation. It is not obvious which sort of bird is represented on $\mathbf{2 9 4}$; there is no real similarity to the famous Wild Goat swallows - not even the earliest ones, or the waterbirds. ${ }^{391}$ Whatever species the very geometrical birds of the first half of the 7th century represent, ${ }^{292}$ our bird seems related to them, not only by the painting, but also by the these birds' rather casual position in the field, quite different from the very deliberate and charming way in which the Wild Goat birds are placed. 294 may possibly belong to the early Wild Goat style, emerging during the end of the first half of the 7th century. ${ }^{393} \mathbf{2 9 5 - 3 0 4}$ are all fragments of dishes with floral decoration, 305-309 of plain ones. The earliest fragment is 295 which probably belongs to a late 7 th century dish with cutaway rim. ${ }^{394}$ $\mathbf{2 9 6}-\mathbf{3 0 4}{ }^{395}$ and the banded dishes, $305-308$, are late, matched by the Rhodian dishes from Tocra, dated c. $580-60$ B.C. ${ }^{396}$

Oinochoai.

150. TS 1170. Shoulder/side sherds with root of neck. G 11 SW . No measurements. Fine reddish clay with few grits, creamy slip, red to black glaze. Small codron at junction of shoulder and neck. Frieze of pendent tongues, gat with head turned backwards. Pl. VII.
151. TS 1193. Shoulder/side sherds with root of neck. G 11 SW. No measurements. Red to buff clay with some grits and mica, creamy slip, red glaze. Small codron at junction of neck and shoulder. Part of two friezes, upper one: pendent tongues, grazing goat(s?), lower one: buttocks (of goat?); white-red-white stripes added on the broad band between the friezes; in field furthermore rosette with several petals, alternatingly glazed(?). Pl. VII.
152. TS 4467. Shoulder sherd with root of vertical handle. H 11 NE. $8.1 \times 10.1 \mathrm{~cm}$. Light brownish clay with grits, white slip, brownish to black glaze. In field to the right of handle, head of grazing goat, in the opposite field group of short strokes. Handle enframed by two

237, 551, 582, Rumpf, 73 III g 7), 129.5 (Schiering, notes 231, 232, 234, 237, 558), 129.4 (Schiering, notes 231, 232, 237, 558), 129.6 (Schiering, notes 231, 233, 237, 582, 623, Rumpf, 73 III g 6), 129.7 (Schiering, notes 231, 232, 237, 558, 582, 623), 129.9 (Schiering, notes 231, 237, 515, 558, 560, 582), 129.8 (Schiering, notes $231,237,515,560,623$, Rumpf, 73 III g 2), Tocra, $50-52.631-680$ fig. 26 pls. $34-36$. A small and isolated group of plates from Tocra alone displays a low ring foot (without grooves), Tocra 43, 49.607-611, fig. 24 , pls. $31-33$: late seventh to early sixth century. On the Tocra group see further, BSA 61 1966, $153-154$.
${ }^{389}$ Samos V 57.440-441 pl. 80, AM 57 1933, 111 fig. 54 c.
${ }^{390}$ Schiering, Werkstätten, Beilage 6, Samos V 68 fig. 42 pl. 107.560.
${ }^{391}$ Swallows: Samos V pls. 105, 123.609, 610 (Kardara, A, 68.8-9, 93.5, Schiering, notes 399, 745, Rumpf, 70 III B 6). Waterbirds: BCH 89 1965, 971 fig. 5, Kinch, Vroulia, pl. 35 (Kardara, A, 83.1, Schiering, notes 244, 256), JHS 60 1944, pl. 1.1 (Kardara, A, 70.2), m-n (Kardara, A, 73.15-16), p (Kardara, A, 70.1), r (Kardara, A, 70.3).
${ }^{392}$ Samos V 62.483 pl. 85.
${ }^{393}$ Gnomon 1965, 506, Samos V 63.
${ }^{394}$ Kardara, A, 128-129 pl. 11 (see above note 388), Tocra, 43 note 13.
${ }^{395}$ From the picture it is difficult to decide if the hook meander of 298 is placed on a broad flat rim like on $296-297$ and $301-303$. However, if located on the side, then 298 is rather from a fruit-stand; the same may be the case for two of the fragments from the similar group of 297 i.e. TS 304 and TS 3465.
${ }^{396}$ Tocra, 43-44.633-672, 681-709 pls. 35-37. For the differing decoration of 301, see Histria 2, 63.71 pl. 6. The decoration of 304 is paralleled by Tocra no. 654 , except for the fact that our dish has bands on the rim, not a hook meander. 381 catalogued as "Unclassified East Greek" may possibly be from a dish.
vertical lines, one nearly straight and one slightly waved; root of handle glazed, vertical band hanging from handle. Pl. IX.
153. TS 1378. Shoulder/side sherd. G 5 SE. $7.0 \times 6.0 \mathrm{~cm}$. Dark brown clay with some grits, white slip, brownish to black glaze. Exclusively silhouette technique. Faint traces of pendent leaf above, marching animal with head turned backwards (ram?), rosette. Pl. IX.
154. TS 274. AASyr 8/9 1958/59, 129 fig. 12. Fragmentary half of oinochoe. G 8 SW. H. c. 28.0 cm . Pink clay, creamy slip, g lden brown to black glaze. Upper frieze, bla ck-figured: two groups of confronted sphinxes, between them, 1) owl, 2) large palmette, furthermore tail possibly belonging to a similar confronted group; red added on sphinxes' hair, bands on wings and owl's breast; lower frieze, outline and silhouette technique: running goats with heads turned backwards, red added on shoulders and buttocks, filling-ornaments; broad bands with red-white-red stripes added, enframed meander in which boxes and quatrefoil are inserted, frieze of pendent tongues on shoulder, rays radiating from the foot. Pl. VIII.
155. TS 4641. Shoulder sherd with root of neck. H 10 NE. $3.7 \times 4.3 \mathrm{~cm}$. Grey clay with some grits, greyish slip (slip and clay blackened by fire), brownish glaze. Black-figure. Traces of pendent tongues at top and below back of head with border of hair(?) curling into a spiral with central dot, part of wing; sphinx or siren(?), rosette. Pl. IX.
156. TS 4642 . Side sherd. G 10 SE. $5.8 \times 6.0 \mathrm{~cm}$. Light red-brown clay with some grits, yellowish slip, dark brown glaze. Running goat with head turned backwards. Pl. IX. Similar: TS 1494 G 11 SW.
157. TS 1087. Side sherd. G 8 SW. $4.3 \times 5.1 \mathrm{~cm}$. Buff clay with grits and mica, white slip, brown to red glaze. Goat, head turned backwards, trace of filling-ornament, white stripe added on broad band above. $P l$. $I X$.
158. TS 640. Side sherd. G 8 SW. $4.4 \times 3.5 \mathrm{~cm}$. Reddish clay with mica, creamy slip, black to red glaze. Goat's head lifted and turned backwards(?), pendent hook in front of nose, part of meander(?) above band. Pl. IX.
159. TS 1520. Side sherd. G 7 SE. $3.5 \times 2.8 \mathrm{~cm}$. Light brown clay, creamy slip, brown glaze. Part of goat's head with pendent hook(?) in front, red stripe added on the broad band above. Pl. IX.
160. TS 4648. Side sherd. G 10 SE. $8.2 \times 5.6 \mathrm{~cm}$. Brown gritty and micaceous clay, (slip not mentioned), brownish glaze. Forepart of grazing goat, between legs perhaps St. Andrew cross, red added on goat's neck. Pl. IX.
161. TS 541. Side sherd. F 5 SE. $7.1 \times 8.1 \mathrm{~cm}$. Light brown to pinkish clay with dark core, white slip, dark brown glaze. Part of two grazing goats, red-white-red stripes added on band above meander. Pl. IX.
162. TS 1099. Side sherd. G 8 SW. $3.1 \times 4.1 \mathrm{~cm}$. Reddish clay with some grits, (slip not mentioned), red glaze. Two friezes: upper, part of neck or leg of grazing goat; lower, end of indefinable design, white stripe added on the broad dividing band. Pl. IX.
163. TS 671. Side sherd. G 16 SW. $9.0 \times 4.1 \mathrm{~cm}$. Reddish, gritty clay, grey in core, white slip, black to brown glaze. Fore- and hindlegs of goat marching left, very close-set fillingornaments, white-red-white stripes added on the broad band below. PI. IX.
164. TS 651. Side sherd. G 11 SW. $7.2 \times 6.2 \mathrm{~cm}$. Reddish clay with few grits and mica, white slip, black to brown glaze. Hind-part of marching animal (goat?); part of four-leaf flower between legs. Pl. IX.
165. TS 3845 . Side sherd. G 15 SW. $8.8 \times 7.2 \mathrm{~cm}$. Light brownish clay, yellowish slip, red brown glaze. Above, trace of narrow horizontal band; below, horns of deer, perhaps an incised stripe in the middle of its ear. Pl. IX. Similar: TS 4635 H 10 NE.
166. TS 677. Side sherd. F 5 SE. C. $5.0 \times 3.0 \mathrm{~cm}$. Reddish clay with grits and mica, creamy slip, black glaze. Black-figure. Forepart of lion with frontal head and whiskers, its leg raised to angular design, trace of narrow band above. Pl. IX.
167. TS 658. Side sherd. P 11 SW. $7.2 \times 7.3 \mathrm{~cm}$. Light buff clay with grits and mica, white slip, black glaze. Black-figure. Two friezes: upper, abdomen and wing of crouching griffin or sphinx with red added alternately on the wing-feathers, rosette and below the narrow horizontal band part of the empty field of the second frieze. Pl. IX.
168. TS 1449. Rim sherd, i.e. fragmentary lobe. P 11 NW. $2.5 \times 2.5 \mathrm{~cm}$. Reddish to buff clay, red glaze. Exterior: no description, interior: glazed with part of added white dot-rosette. Pl. IX.
169. TS 2652 . Neck sherd. L 8 SE. $3.3 \times 2.0 \mathrm{~cm}$. Fine red clay, red glaze. Small codron at bottom. Exterior: glazed with one half of added white eye, interior: no description. Pl. IX.

170a. TS 2270. Handle-rotelle with neck sherd. G 7 SE. Diam. 3.5 cm , w. 2.5 cm . Dark buff clay with some grits, whitish slip, black glaze. One side of neck sherd glazed, the other slipped(?). Edge of rotelle glazed, rosette on topside. Pl. IX.

170b. TS 1959. Shoulder/side sherds with root of neck. G 7 SE. No measurements. Light red clay, reddish to black glaze. Totally glazed. Pl. IX. Similar: TS 1202 G 11 SW, TS 1974 G 7 SE, TS 2099 P 11 NW.

Amphorae.
171. TS 2247. AASyr 10 1960, 119 fig. 7, NMArb 1961, 126, 128 fig. 9, Archaeology 14 1961, 215. Fragmentary half of amphora. G 15 NW, G 15 SE, G 15 NE. H. 21.2 cm , w. 19.8 cm . Light reddish clay with grits and few mica, light brown somewhat greenish slip, brown to black glaze. Small codron at junction of neck and shoulder. Frieze of pendent tongues. Marching goat, vertical panels with meanders, several filling-ornaments, red-white-red-white-red stripes added on the broad band of the belly, rays radiating from the foot. Pl. $I X$.
172. TS 2880. Rim/neck/shoulder/side sherds. J 8 SE. $11.5 \times 11.0 \mathrm{~cm}$, w. of rim 10.3 cm . Fine light brown clay, thin white slip, black glaze. Small codron at junction of neck and shoulder. Neck: part of cable, shoulder: fast running goat (one of the forelegs nearly kneeling), rosette in front, two narrow and one(?) broad band below. Pl. X. Cf. no. 173.
173. TS 2879. Shoulder/side sherd. J 8 SE. $12.5 \times$ c. 6.0 cm . Fine brown clay with some grits, (slip not mentioned), red to brown glaze. Hindpart and one of the forelegs of marching goat, rosette. Pl. X. Might possibly belong to no. $\mathbf{1 7 2}$.
174. TS 3632 . Shoulder sherd. G $13.6 .2 \times 6.6 \mathrm{~cm}$. Red clay with grits, whitish slip, brown to black glaze. Small codron at junction of neck and shoulder. Goat with raised head and very slanting body, red added on chest and back. Pl. X.
175. TS 1836. Shoulder sherds. G $15 \mathrm{SE} .7 .0 \times 7.0 \mathrm{~cm}, 8.5 \times 7.0 \mathrm{~cm}$. Fine reddish brown clay, white slip, black glaze. Running goat with its head turned backwards, very slanting body, dot-rosette in front, half-rosette on ground line, white stripes added on band at bottom of sherd. Pl. X.
176. TS 954. Neck/shoulder sherd. G 12 SW. $8.2 \times$ c. 6.5 cm . Buff clay with few grits, creamy slip, brown to red glaze. Small codron at junction of neck and shoulder. Goat with its head turned backwards and very slanting body. Pl. X.
177. TS 2297. Shoulder sherd with root of neck. G 16 NW. $5.0 \times 2.7 \mathrm{~cm}$. Brownish clay with few white grits, yellowish slip, red to brown glaze. Goat with its head turned backwards and very slanting body, group of pendent strokes above. $P l . X$.
178. TS 512. Shoulder sherd. Surface. F 5 w-slope. $5.1 \times 5.0 \mathrm{~cm}$. Light brown pinkish clay, core grey, white slip, dark brown glaze. Central part of large volute pair with inserted dot above and below. Pl. X.
179. TS 1514. Shoulder/side sherd. G 5 SE. $2.0 \times 4.5 \mathrm{~cm}$. Light buff clay, creamy slip, brown glaze. Lower part of volute with stalks of two palmette leaves curling upwards, white stripes added on the horizontal band below. Pl. X.
180. TS 1523. Shoulder/side sherd. G 8 SW. $6.0 \times 4.5 \mathrm{~cm}$. Reddish clay, creamy slip,
black to red glaze. Lower part of volute with stalks of two palmette leaves curling upwards, two narrow and one broad band below. Pl. X.
181. TS 3405. Shoulder sherd. H 11 NW. $3.5 \times 2.8 \mathrm{~cm}$. Light brown clay, whitish slip, brown glaze. Small glazed codron at junction of neck and shoulder. Part of big volute pair with inserted leaf. Pl. X.
182. TS 1516 . Shoulder/side sherd. G 5 NE. $5.4 \times 6.0 \mathrm{~cm}$. Dark buff clay with some grits, white slip, black glaze. Central part of large volute pair(?) rising from ground line, inserted leaf. Pl. X.
183. TS 1448. Shoulder or side sherd. P 11 NW. $5.0 \times 4.3 \mathrm{~cm}$. Light buff clay with numerous grits, whitish slip, red glaze. Part of probably asymmetric volute pair with inserted leaf, traces of horizontal band. $P l . X$.
184. TS 5622 . Shoulder or side sherd. H $12.3 .5 \times 4.0 \mathrm{~cm}$. Dark brownish clay, dark brown glaze. Linked circles with inserted buds. Pl. X.
185. TS 1058. Rim/neck/side sherds. G 8 SE. $7.7 \times 2.4 \mathrm{~cm}, 11.3 \times 7.0 \mathrm{~cm}$, c. $8.5 \times 5.5 \mathrm{~cm}$. Buff clay, with white and black grits, white slip, brown glaze. Rim glazed, on neck upper part of cable, at side two broad and one narrow band, below rays radiating from the foot, between them blob-rosette. $P l . X$.
186. TS 1997. Rim/neck sherd. G 13 SE. $4.5 \times 5.0 \mathrm{~cm}$. Red clay with white grits, white slip, black glaze. Rim glazed, part of cable. Pl. X. Similar: TS 3709 G 14, TS 1343 G 11 SW.
187. TS 4912. Rim/neck sherd. G 14 NE. $4.5 \times 5.4 \mathrm{~cm}$, org. diam. of rim c. 12.0 cm . Reddish clay with some grits, whitish slip, red glaze. Rim glazed, part of open cable. $P l . X$. Similar: TS 1286 P 11 SW.
188. TS 289. Side sherd. G 8 SW. $14.0 \times 9.6 \mathrm{~cm}$. Light brown clay, greyish-white slip, black glaze. Broad band with white-red-white stripes added; above, traces of two narrow bands; below, one narrow band and point of ray. Pl. X. Similar: TS 647 G 11 SE.
189. TS 1122. Side sherd. G 8 NW. $6.4 \times 8.8 \mathrm{~cm}$. Dark brownish clay with some white grits, white slip with pinkish tinge, brown to red glaze. Group of small dots in field, below narrow bands and one broad band with red and white stripes added. Pl. X. Similar: TS 829 G 11 SE, TS 1084 G 8 SW, TS 1138 G 11 SE, TS 2594 H 11 NW, TS 2884 J 8 SE, TS 3237 J 15 (Sūkās I, 83 no. 107 pl. 4).
190. TS 3523. Side sherd. G $5.9 .0 \times 8.9 \mathrm{~cm}$. Brown clay, creamy slip, brown to black glaze. Foot of goat in field; below, narrow and two broad bands. Pl. X. Similar: TS 2608 H 11 NW.
191. TS 1210. Shoulder/side/bottom sherds with ring foot. G 11 NW. Diam. of foot c. 13.0 cm . Reddish to buff clay, white slip, black glaze. Group of small dots in field; below, one narrow and two broad bands, rays radiating from the foot. Pl. XI. Similar: TS 648 G 11 SE, TS 834 G 11 SW, TS 1327 G 11 SW.

Indeterminate closed vases.
192. TS 3015. Side sherd. H 13. $4.0 \times 2.2 \mathrm{~cm}$. Red clay with grits, yellowish slip, brown glaze. Fragmentary head of goat. Pl. XI.
193. TS 4619. Shoulder sherd. H 10 NE. $1.7 \times 6.0 \mathrm{~cm}$. Fine brownish clay, creamy slip, brown glaze. Forepart of running goat, head turned backwards, frieze of pendent tongues above. Pl. XI.
194. TS 2692. Shoulder sherd with root of neck. L 8 SE. $4.2 \times 8.5 \mathrm{~cm}$. Reddish to brown clay with some grits, (slip not mentioned), black glaze. Band along root of neck, below forepart of running goat, head turned backwards, small dot above leg. Pl. XI.
195. TS 315. Shoulder sherd with root of neck. F 5 SE. $3.6 \mathrm{~cm} \times 6.4 \mathrm{~cm}$. Red to brownish clay with few grits and mica, creamy slip, light brownish glaze. Band along root of neck, group of pendent dots below forepart of goat, head turned backwards. Pl. XI.
196. TS 830. Side sherd. G 11 SE. $3.9 \times 2.9 \mathrm{~cm}$. Reddish clay with mica, white slip, red glaze. Fragmentary head of goat. Pl. XI.
197. TS 1675. Neck/shoulder sherd. P 11 NW. $5.6 \times 4.0 \mathrm{~cm}$. Fine light brown clay, light yellowish slip, black glaze. Small codron at junction of neck and shoulder, group of pendent strokes, snout of goat. Pl. XI.
198. TS 1151-53. Shoulder/side sherds. G 11 SW. No measurements. Reddish clay, white slip, black to red glaze. Frieze of pendent tongues; below, horn and ear of goat, red and white stripes added on broad band of belly. Pl. XI.
199. TS 638. Rim/neck/shoulder sherd. G 11 SW. C. $8.7 \times$ c. 7.7 cm . Light, reddish clay with grits and mica, creamy slip, black glaze. Rim-collar slightly everted and glazed, white stripe added on interior. Frieze of pendent tongues, horn and ear of goat in field. Pl. XI. Similar (neck sherd): TS 1266 P 11 SW, TS 3685 G 14.
200. TS 3282 . Side sherd. G $13.9 .1 \times 6.4 \mathrm{~cm}$. Reddish, gritty clay, core grey brown, with few mica, creamy slip, red glaze. Slanting abdomen of goat, probably with head turned backwards (two small vertical stripes above the back might be part of the beard); below, S-loop. Pl. XI.
201. TS 78. Side sherd. G 5 SE. $3.8 \times 2.5 \mathrm{~cm}$. Light brown clay, yellowish slip, black to brown glaze. Breast and foreleg of running goat; red added on breast. Pl. XI.
202. TS 2094. Neck/shoulder sherd. P 11 NW. $7.0 \times 5.5 \mathrm{~cm}$. Light brown to greyish clay with grits and mica, white slip, black glaze. Small codron at junction of neck and shoulder, codron partly glazed. Two vertical stripes, rump of goat. Pl. XI.
203. TS 1149. Side sherd. G 11 SW. $3.6 \times 4.7 \mathrm{~cm}$. Reddish clay with grits, whitish slip, black to red glaze. Waterbird(?). Pl. XI.
204. TS 676. Side sherd. P 11 SW. C. $2.8 \times 3.4 \mathrm{~cm}$. Feddish clay with grits, white slip, brownish glaze. Black-figure. Forepart of waterbird with its head bent forwards and pressed against its neck, probably raised wing; white added on neck, breast and wing. Pl. XI.
205. TS 672. Side sherd. P 11 NW. $4.4 \times 3.4 \mathrm{~cm}$. Light buff clay with mica, white slip, black glaze. Black-figure. Hindpart of marching bird with pendent tail; red added on foot and wing, and for stripe on band below. Pl. XI.
206. TS 5635 . Side sherd. H $12.5 .3 \times 5.0 \mathrm{~cm}$. Brownish clay with some grits, yellowish slip, brownish glaze. Black-figure. Lower part of marching bird; red and white added on wing. Pl. XI.
207. TS 3426. Side sherd. H 11 NW. $3.4 \times 4.1 \mathrm{~cm}$. Grey brown clay, whitish slip, black glaze. Black-figure. Neck of boar(?) ; red added. PI. XI.
208. TS 549. Side sherd. G 5 NE. $6.3 \times 4.7 \mathrm{~cm}$. Buff clay, with grits and mica, creamy slip, black glaze. Black-figure. Buttocks and tail of sitting beast. Pl. XI. Similar: TS 675 P 11 SW.
209. TS 3565. Side sherd. G 5 NE. $5.0 \times 5.1 \mathrm{~cm}$. Grey-brown clay with mica and small black grits, whitish slip, brown to black glaze. Black-figure. Foot of sitting beast, large, solid rosette; red and white added for stripes on band below. Pl. XI. Similar: TS 673 P 11 SW.
210. TS 178. Side sherd. F 5 SE. $3.2 \times 4.1 \mathrm{~cm}$. Light brown clay, creamy slip, black glaze. Black-figure. Fragmentary abdomen of white dotted animal; below the horizontal belly line, which ends in a hook, there was probably a white stripe rather than dots; adjoining abdomen, part of filling-ornament(?). Pl. XI. Similar: TS 2726 L 8 SE.
211. TS 2374. Side sherd. G 16 NW. $4.5 \times 4.0 \mathrm{~cm}$. Light red clay, white slip, brown glaze. Marching animal(?). Pl. XI.
212. TS 2645. Shoulder sherd. L 8 SE. $4.0 \times 4.7 \mathrm{~cm}$. Light brown clay, white slip, brown glaze. Frieze of pendent tongues; below, pendent half-rosette with festoon border, dot and part of two larger filling-ornaments(?) in field. Pl. XI.
213. TS 1356. Shoulder sherd. G 11 SW. $5.5 \times 5.0 \mathrm{~cm}$. Buff clay, with white grits, tan slip, red glaze. Frieze of pendent tongues, two vertical stripes and double angular corner ornament in field, root of handle glazed(?). Pl. XI.
214. TS 937. Shoulder sherd with root of handle. P 11 NW. $6.7 \times$ c. 4.0 cm . Brick-red clay with grits, white slip, black glaze. Rosette in field, in front of it sloping slim stripe, on root of handle two horizontal stripes, below them a sloping one, a dot and faint traces of glaze. Pl. XI.
215. TS 294. Side sherd. G 5 SE. $7.3 \times 4.5 \mathrm{~cm}$. Grey clay, white slip with greenish tinge, brown to black glaze. Slanting abdomen of goat, rosette below. Pl. XI.
216. TS 668. Side sherd. G 7 SE. $5.5 \times 6.3 \mathrm{~cm}$. Reddish clay with grits and mica, creamy slip, light brownish glaze. Horizontal abdomen of goat, rosette below. Pl. XII. Similar (rosettes): TS 1053 G 8 SW, TS 3002 L 8 SE.
217. TS 804. Side sherd. G 8 SE. $2.6 \times 2.3 \mathrm{~cm}$. Red clay with few grits and mica, creamy slip, brown to red glaze. Rosette. Pl. XII.
218. TS 1168. Side sherds. G 11 SW. $11.0 \times 7.0 \mathrm{~cm}$. Reddish to buff clay, creamy slip, black glaze. Hind legs of goat, between them dot and in front rosette and slim stripe, leg(?). Pl. XII.
219. TS 2097. Side sherd. P 11 NW. $3.4 \times 5.0 \mathrm{~cm}$. Pink clay, white slip, reddish to dark brown glaze. Rosette and foot of goat. Pl. XII. Similar: TS 321 G 5 SE.
220. TS 1482. Side sherd. G 11 SW. $4.5 \times 3.5 \mathrm{~cm}$. Reddish clay, whitish slip, red glaze. Rosette and slim vertical stripe. Pl. XII. Similar (rosette): TS 1500 P 11 NW.
221. TS 1443. Side sherd. P 11 NW. $6.5 \times 6.0 \mathrm{~cm}$. Red to buff clay, white slip, brown glaze. Hind leg of goat and slim vertical stripe, between them a small cross. Pl. XII.
222. TS 1485. Side sherd. G 11 SE. $2.5 \times 4.5 \mathrm{~cm}$. Reddish to buff clay, creamy slip, brown glaze. Hind foot of goat, angular ornament. Pl. XII.
223. TS 1451. Side sherd. G 11 SW. $5.5 \times 7.5 \mathrm{~cm}$. Reddish to buff clay, white slip, black glaze. Hook shaped design, dots. Pl. XII. Similar: TS 1714 G 15 NE, TS 2661 L 8 SE.
224. TS 5628. Two side sherds, glued. H 11 NE. $14.0 \times 9.0 \mathrm{~cm}$. Dark brownish clay, white smooth slip, brown glaze. Sloping stripe crossed by small stripes in field; red added on two of the five horizontal bands below. Pl. XII.
225. TS 3575 . Side sherd. G $13.7 .0 \times 4.0 \mathrm{~cm}$. Light brown clay, grey in core, yellowish slip, black glaze. Black-figured. Fragmentary hind part and abdomen of animal, faint traces of incisions on abdomen; red added on body as well as on the solid rosette. Pl. XII. Similar: TS 30 G 5 NE (abdomen), TS 1150 G 11 SW (rosette).
226. TS 1162 . Side sherd. G 11 SE. $4.0 \times 2.0 \mathrm{~cm}$. Reddish clay with some mica, whitish slip, red to brown glaze. Black-figure. Rosette with incisions radiating from incised circle. Pl. XII.
227. TS 1341. Shoulder sherd. G 8 SE. $5.6 \times 4.0 \mathrm{~cm}$. Reddish clay, creamy slip, red glaze. On shoulder, curved stripe and two pointed ones, white stripes added on the broad horizontal band, below meander. Pl. XII.
228. TS 2883. Shoulder/side or bottom sherd. J 8 SE. $5.2 \times 3.5 \mathrm{~cm}$. Fine light brown clay, greyish slip, red glaze. Point of single ray and two close-set ones, curved band crossing some of the narrow horizontal bands below. Pl. XII.
229. TS 1832. Shoulder sherd. G 15 NE. $6.5 \times 5.0 \mathrm{~cm}$. Fine light brown clay, white slip, black glaze. Two rays of different width. Pl. XII.
230. TS 2096. Shoulder/side sherd. P 11 NW. $4.0 \times 4.2 \mathrm{~cm}$. Light buff clay, white slip with greenish tinge, black to brown glaze. Part of floral design(?); white added for stripes on band below. Pl. XII.
231. TS 3396. Shoulder sherd. H 11 NW. $4.8 \times 4.5 \mathrm{~cm}$. Dark red, coarse, gritty clay, creamy slip, brown glaze. Two opposed, curved stripes. Pl. XII.
232. TS 2725. Shoulder sherd(?). L 8 SE. $3.3 \times 3.0 \mathrm{~cm}$. Red clay, whitish-greyish slip, black glaze. Part of floral design(?). PI. XII.
233. TS 1386. Side sherd. G 11 SW. $4.5 \times 5.0 \mathrm{~cm}$. Reddish buff clay, yellowish slip, black glaze. Irregular design, graffito in field. Pl. XII. Fig. g.
234. TS 3652 . Side sherd. G $13.13 .0 \times 11.0 \mathrm{~cm}$. Light brown clay, greyish white slip, brown to black glaze. At top, glazed field (panel ?) ; below, two bands of different width separated by narrow ones, white stripe added on the broadest of the bands, point of ray at bottom. Pl. XII.
235. TS 3513. Side sherd. G 5 NE. $3.6 \times 3.1 \mathrm{~cm}$. Buff sandy clay, whitish slip, brown glaze. Group of three dots in field, below broad band with white-red-white stripes added, meander at bottom. Pl. XII. Similar: TS 3579 G 13 NW.
236. TS 921. Side sherd with root of handle. P 11 NW. $3.9 \times 2.9 \mathrm{~cm}$. Reddish clay, yellow slip, red glaze. Root of handle glazed; two white stripes added on the glazed field below. PI. XII.
237. TS 2712. Side sherd. L 8 SE. $4.0 \times 5.0 \mathrm{~cm}$. Red clay, white slip, red glaze. At top meander, narrow and broad band below, white stripes added on the latter, ray at bottom. Pl. XII.
238. TS 207. Side sherd. G 5 NW. $10.2 \times 8.2 \mathrm{~cm}$. Fine, light brown clay, creamy slip, black to brown glaze. At top meander, one broad band with red-white-red stripes added below, traces of glazed field at bottom. Pl. XII. Similar: TS 529 H 5 SE, TS 1344 H 5 NE, TS 1446 P 11 NW, TS 1940 F 16 SW, TS 2564 H 11 NW, TS 3534 G 5 NW, TS 3744 G 14.
239. TS 669. Side sherd. G 8 SE. $3.4 \times 3.6 \mathrm{~cm}$. Reddish clay with few grits and mica, creamy slip, black to red glaze. Hook meander, glaze below. Pl. XII.
240. TS 1683. Side sherd. G 8 SW. $7.5 \times 4.8 \mathrm{~cm}$. Light red to brown clay with some white grits, light buff slip, red glaze. Quick waveline enframed by narrow and broad bands, on latter an added white stripe. Pl. XII. Similar (white slip): TS 1080 G 8 SW, TS 1989 G 8 NW.
241. TS 1180. Side sherd. G 11 SW. $5.0 \times 6.0 \mathrm{~cm}$. Fine buff clay, white slip, brown glaze. Two broad bands. PI. XII. Similar: TS 1800 G 7 SE, TS 1877 G 19, TS 2639 L 8 SE, TS 4408 G 10 NE .
242. TS 1278. Side/bottom sherds. P $11 \mathrm{SW} .7 .0 \times 6.5 \mathrm{~cm}$. Light reddish to buff clay with few grits, light buff slip, black glaze. Chequers, rays below. Pl. XII. Similar (white slip) : TS 1342 G 8 SE, TS 4409 G 10 NE.
243. TS 1186. Side sherd. G 11 SW. $8.0 \times 9.0 \mathrm{~cm}$. Reddish, somewhat micaceous clay, black core, creamy slip, red glaze. Two broad bands with added white stripes, point of ray below. Pl. XII. Similar: TS 1108 G 8 SW, TS 2878 J 8 SE.
244. TS 611. Neck sherd. G 5 SE. $4.5 \times 4.5 \mathrm{~cm}$. Reddish clay with few grits, white slip, red glaze. Cable with inserted leaves. Pl. XII. Similar: TS 854 G 11 SE, TS 3611 G 13, TS 4714 Surface.
245. TS 1086. Side/bottom sherd. G 8 SW. $9.6 \times 6.6 \mathrm{~cm}$. Red, somewhat porous clay, whitish slip, brown to black glaze. One broad and two narrow bands, radiating rays below. Pl. XIII. Similar: TS 536 F 5 SE, TS 1679 F 5 SE.
246. TS 1681. Side/bottom sherd. G 11 SW. $9.5 \times 7.5 \mathrm{~cm}$. Brick-red clay with white grits, white slip, brown glaze. Broad and narrow band, point of ray below. Pl. XIII. Similar: TS 379 G 8 SE, TS 1085 G 8 SW, TS 1194 G 11 SW, TS 1696 G 5 SW.
247. TS 2251. Bottom sherd with ring foot. J 8 SE. $12.2 \times 3.9 \mathrm{~cm}$. Brown clay, white slip, brown glaze. Rays radiating from the glazed foot. Red dipinto under foot. Pl. XIII. Fig. g.
248. TS 849. Bottom sherd with ring foot. G 11 NW. H. c. 4.0 cm . Hard, gritty red clay, reddish slip, black glaze. Two rays radiating from the glazed foot. Pl. XIII.
249. TS 3508. Bottom sherd with ring foot. G 5 NE. Org. diam. of foot c. 10.0 cm . Reddish clay, whitish slip, black to brown glaze. Three rays of different width radiating from the glazed foot. Pl. XIII.
250. TS 1169. Bottom sherd with ring foot. G $11 \mathrm{SW} .4 .5 \times 7.5 \mathrm{~cm}$. Dark buff clay with white grits, core black, white slip, brown glaze. Foot and lower part of side glazed. Pl. XIII. Similar: TS 1192 G 11 SW, TS 1195 G 11 SW, TS 2688 L 8 SE.
251. TS 1357. Double-roll handle. F 5 SE. $10.5 \times 2.0 \mathrm{~cm}$. Red clay with grits, creamy slip, red glaze. Two rows of dots, glazed band at handle-root, slim vertical band in shoulder field. Pl. XIII. Similar: TS 33 G 5 SE, TS 1174 G 11 SE, TS 1492 P 11 NW.
252. TS 1730. Side sherd. H 5 NE. $4.0 \times 5.0 \mathrm{~cm}$. Reddish to buff clay, black glaze. Glazed all over, incised decoration: probably inner part of lotus-flower, "above" narrow white band added. Pl. XIII. Similar: TS 96 E 8 NE.
253. TS 3824. Side sherd. H 11 NW. $3.6 \times 2.8 \mathrm{~cm}$. Yellowish, somewhat gritty clay, brownish to violet glaze. Glazed all over, incised decoration: floral(?). Pl. XIII.

Kraters.

254. TS 1339. Shoulder sherd. G 8 SE. $6.5 \times 9.0 \mathrm{~cm}$. Light buff clay, creamy slip, brown glaze. Exterior: vertical panel, corner palmette in field, rosette with festoon border and four-leaf flower with inserted dots. Interior:(?). Pl. XIII.
255. TS 597. Shoulder/side sherds. G 11 SW. C. $12.4 \times$ c. 8.7 cm . Reddish clay with grits and mica, creamy slip, light brown glaze. Exterior: vertical panel, hind leg of animal in field, behind it vertical slim ray; below, broad band and meander. Interior:(?). Pl. XIII.
256. TS 1452 . Neck/shoulder sherd. G 11 SW. $7.0 \times 5.5 \mathrm{~cm}$. Red clay with some grits and mica, whitish slip, black glaze. Exterior: neck glazed, vertical panel, frieze of pendent tongues; below, group of pendent dots. Interior: neck glazed with white and red bands added. Pl. XIII.
257. TS 2098. Shoulder sherd. P 11 NW. $9.2 \times 7.0 \mathrm{~cm}$. Light brown clay, chalky white slip, black glaze. Black-figure. Exterior: frieze of pendent tongues, vertical panel, grif fin with tall neck in field, rounded design at bottom, corner-palmette, irregular designs in front of grif fin. Interior: plain. Pl. XIII. Similar (no griffin): TS 302 F 5 SE, TS 2625 J 8 SE.
258. TS 2269. Shoulder sherd. G 7 SE. $5.1 \times 5.2 \mathrm{~cm}$. Dark brown gritty clay, yellowish slip, light to dark brown glaze. Vertical panel, filling-ornament with added red in field. Interior: plain. Pl. XIII.
259. TS 2324. Neck/shoulder sherd. L 8 SE. $9.3 \times 6.4 \mathrm{~cm}$. Brick-red, very gritty clay, whitish slip, brown glaze. Black-figure. Exterior: neck glazed, vertical panel, in field hindpart of animal. Interior: glazed, white band added on neck. Pl. XIII.
260. TS 3057. Shoulder/side sherd. G $14.7 .0 \times 4.4 \mathrm{~cm}$. Grey-brown, micaceous clay, white slip, black glaze. Black-figure. Vertical panel, in field wing(?) with added red, solid star-rosette, small group of tips below. Interior:(?). Pl. XIII.
261. TS 662. Shoulder/side sherd. G 8 SE. $9.3 \times 10.5 \mathrm{~cm}$. Light brownish clay with mica, creamy slip, black glaze. Black-figure. Vertical panel, tail of bird in field, corner palmette; red and white added for stripes on the two bands below. Pl. XIII.
262. TS 667. Neck/shoulder sherd. G 8 SW. $5.6 \times 4.7 \mathrm{~cm}$. Reddish clay with grits and mica, creamy slip, red glaze. Black-figure. Vertical panel, head of lion in field. Interior:(?). Pl. XIII.
263. TS 2150. Shoulder sherds. P 11 NW. $13.7 \times 7.7 \mathrm{~cm}$. Light grey clay, thin greyish slip, black glaze. Black-figure. Vertical panel; in field, blob-rosette and hindpart of bull with added red on belly. Interior: plain. Pl. XIII.
264. TS 2323. Shoulder sherd. L 8 SE. $3.9 \times 5.1 \mathrm{~cm}$. Reddish, very gritty clay, creamy slip, black to brown glaze. Vertical panel; in field, group of four small stripes, above frieze of pendent tongues. Interior:(?). Pl. XIII.
265. TS 4514. Sūkās I 60 no. 1 fig. 25 d pl. 4 . Shoulder sherd. G 13 NW. $4.5 \times 4.0 \mathrm{~cm}$. Buff clay, creamy slip, brownish glaze. Vertical panel with graffito: $\delta \alpha$. Pl. XIV. Fig. g. Similar (no graffiti): TS 659 P 11 NW, TS 828 G 11 SE.
slanting on 157 ; the latter represents the typical illustrating of the fast running goat on the late vases. ${ }^{296}$ The goats on $158-159$ might have been of this type too. ${ }^{297}$ Small and not very characteristic fragments of grazing goats occur on $\mathbf{1 6 0 - 1 6 4}$; on $\mathbf{1 6 3}$ the filling-ornaments are very crowded as is usual on vases from the first quarter of the 6th century, ${ }^{298}$ whereas there is no sign of ornaments between the goat-legs on 161, and the fragment may be late like the oinochoe $154 .{ }^{299}$ On 160 there are remnants of what may be a St. Andrew cross, ${ }^{300}$ and on 164 there is a four-leaf flower. ${ }^{301} \mathbf{1 5 5}$, and $165-167$ have pure black-figured decoration. On the shoulder sherd, $\mathbf{1 5 5}$, is part of a sphinx ${ }^{302}$ or a siren ${ }^{303}$ the incised line which curls into a spiral indicates the border of the hair, the ear or an ear disk. ${ }^{304}$ A stripe may be incised on the deer's ear on $\mathbf{1 6 5}$, but V-shaped horns are not the usual black-figured type; ${ }^{305}$ the closest parallel is found
${ }^{296}$ BCH 86 1962, 407 fig. 100 a, Blinkenberg, Lindos I 282.985 pl. 46 (Kardara, A, 208.7, Schiering, notes 267,268 , 276, Rumpf, 78 II k 10), CVA Oxford fasc 2, II D, pl. 2.5 (Kardara, A, 208.1 (see above 282), CVA Rodi fasc 2, II Dh, pl. 7.1 (Kardara, A, 208.2 (see above note 281), CVA Copenhague fasc 2, II D, pl. 77.3 (Kardara, A, 208.3 (see above note 279), Lambrino, Vases, 256.12 figs. 218-221 (Kardara, A, 210.1, Schiering, notes 318, 319, 322, 617), JdI 1 1886, 139-140.2939 (Kardara, A, 208.4 (see above note 282), Homann-Wedeking, Vasenornamentik, 17.7: Gruppe R).
${ }^{297}$ For the pendent hook, see AJA 59 1955, 51H-J, Kardara, A, 269 fig. 257 below, CVA Oxford fasc 2, II D, pl. 4.9 (Kardara, A, 216.5 (see above note 285) and AA 32 1917, 101.25 fig. 25 (Kardara, A, 181.4, Schiering, notes $151,152,373,408,668,716,773$, Rumpf, 78 II f 2).
${ }^{298}$ CVA Oxford fasc 2, II D, pl. 4.31 (Kardara, A, 231.12, Schiering, note 151, Rumpf, 80 III a 22), ActaArch 61935,191 fig. 15 (Schiering, notes $115,336,344,361,383,472,479,536,624,687,734,739,778$, Rumpf, 80 III b 1), Kinch, Vroulia, pl. 15 (Kardara, A, 217.2 (see above note 280).
${ }^{299}$ See above, notes 284, 291.
${ }^{300}$ BCH 86 1962, 407 fig. 100 a, 88 1964, 329 fig. 60. For varieties on Fikellura vases and "Clazomenian" sarcophagi, see ActaArch 13 1942, 30 note 55.
${ }^{301}$ CVA Copenhague fase 2, II D, pl. 77.3 (Kardara, A 208.3 (see above note 279).
${ }^{302}$ CVA Oxford fasc 2, II D, pl. 4.32 (Kardara, A, 226.2, Schiering, note 151, Rumpf, 80 III a 23), JHS 44 1924, pl. 8.16 (Kardara, A, 230.1, Schiering, notes 151, 756, Rumpf, 80 III a 31), BCH 861962,406 fig. 100 b .
${ }^{303}$ Naukratis II pl. 11.3 (Kardara, A, 235.1, Schiering, notes 308, 309, 316, 317, 455, 472, 778, Rumpf, 80 III d 1).
${ }^{304}$ Females on Corinthian vases seldom wear jewellery in their ears, the ear itself is usually distinctly rendered, see AJA 65 1961, 3 pl. $4 \mathrm{c}, 5 \mathrm{pl} .5$, but on less carefully drawn Corinthian figures a stylization of the ear similar to that of 155 occurs, CVA Frankfurt am Main fasc 1, pl. 16.13-15. The sphinx on a Late Rhodian plate wears a disk in her ear, Naukratis II pl. 12 (Kardara, A, 236.1, Schiering, notes 246, 451, Rumpf, 82 IV a 5), and on a fragment of an oinochoe, likewise from Naukratis, the stylization may indicate an ear as well as an ear disk, CVA Oxford fasc 2, II D, pl. 4.51 (Kardara, A, 226.4, Schiering, note 151, Rumpf 80 III a 29); otherwise ear disks are not used on sphinxes etc., in the earlier or in the later Wild Goat Style. They appear from time to time on Chian; on Animal Style chalices, CVA Heidelberg fasc 1, pl. 3.12, and on Simple Figure Style chalices, BSA 60 1965, 141.10 pls. 42,44 ; not usually on Chian Black-Figure, but see JHS 44 1924, pl. 12.16; sometimes the stylization is so pronounced that it is difficult to decide if it is all ear or if a disk is attempted, ibid. pl. 12.8; in the "Grand Style" the ear itself is carefully rendered, and ear disks occur, ibid, pl. 6.1. See furthermore the remarks of R. M. Cook on the ear types on "Clazomenian", CVA Brit. Mus. fasc 8, 28 Postscript.
${ }^{305}$ Black-figured: AA 29 1914, 228-231 fig. 43 (Kardara, A, 210.1 (see above note 286). The Corinthian version of horns is different from 165, CVA Bruxelles fasc 1, III C, pl. 3.4 a. On a bowl from Naukratis the deer might have had a pair of horns similar to 165, but in the drawing published by Chr. Kardara the horns look reconstructed, Kardara, A, 245. 4 fig. 198 (Schiering, notes 267, 277, 365, 776, Rumpf, 81 III f 2), see further JHS 81887 , 121 pl .79 above (the sketch here is probably not reliable) ; J. M. Cook compares the bowl to the Miscellaneous East Greek Black-Figure from the second quarter of the 6th century, BSA 60 1965, 120 , and our fragment may belong to these, the latest of the Orientalizing East Greek vases; on the group, see below p. 74. In the Wild Goat Style deer rendered in silhouette and outline often have the double horns, CIRh VI/VII 85.1 figs. 91-93, 95 (Kardara, A, 101.1, Schiering, notes $120,125,127,371$, Rumpf, 71 III D 13), Samos V 75-76.616 pl. 125 (Kardara, A, 68.13, Schiering, note 200, pp. 10, 45, 50), Schiering, Werkstätten, 49 note 371 , and the black-figured deer in question may be of the same type as the one illustrated on these 7 th century Wild Goat vases rather than the one favoured on the Corinthianizing Wild Goat vases.

Hist. Filos.Skr. Dan.Vid. Selsk. 6, no. 2.
in the fragments of a dinos in Cambridge, possibly related to "Clazomenian". ${ }^{306}$ On 166 the raised leg looks like a paw of a beast, and the upright position of the animal, the lack of differentiation between head and neck, and the stylization of the head are features usually connected with a lion with frontal head. ${ }^{307}$ The leg is raised to an uncertain angular design, which may perhaps be interpreted as a meander, or a most unusual version of a tail of a bull. ${ }^{308}$ The slim and somewhat elongated body on 167 belongs either to a crouching griffin ${ }^{309}$ or to a sphinx. ${ }^{310} 168-169$ are rim and neck fragments; 168 has a white rosette on the interior, ${ }^{311} 169$ a white painted eye on the exterior; eyes with slender contours like those of $\mathbf{1 6 9}$ are found mainly on Late Wild Goat vases, frequently on those in mixed technique. ${ }^{312}$ The handle-rotelle, 170 a , probably belonged to a vase from the last quarter of the 7th century. ${ }^{313}{ }^{171}$ 191 are ascribed to amphorae, a shape not met with among the Wild Goat vases until the late phase. ${ }^{314}$ Of 171 nearly one half is preserved; the large goats which occupy the shoulder field of a great many of the amphorae are not usually rendered with their heads pointing straight forwards and in marching posture as on 171.315 In other respects too $\mathbf{1 7 1}$ differs from the other amphorae: it has several filling-ornaments, ${ }^{316}$ vertical panels with meanders ${ }^{317}$ and four narrow bands below the shoulder
${ }^{306}$ CVA Cambridge fasc 2, II D, pl. 19.1-5, BSA 47 1952, 138. F1 a-c, 139 note 64 (139: "They are, I think, to be dated a little before the middle of the sixth century, earlier than any of the pieces listed above. If so, they mark an early - probably experimental stage in the Clazomenian b.f. style"), BSA $601965,131$.
${ }^{307}$ For a lion with frontal head, see BSA $601965,120.32 \mathrm{pl} .26$. The latter has whiskers like our lion -the frontal lions without mane are still conventionally called panthers, but see below note 378 .
${ }^{308}$ For a lion ''attacking" a bull from behind, see CVA Cambridge fasc 2, II D, pl. 18.38 (Kardara, A, 223.2), ActaArch 13 1942, 26 fig. 15 (Kardara, A, 211.1 (see above note 286).
${ }^{309}$ Like CVA Oxford fasc 2, II D, pl. 4.30 (Kardara, A, 227.10, Schiering, note 151, Rumpf, 80 III a 21), CVA Cambridge fasc 2, II D, pl. 18.32 (Kardara, A, 224.17, Schiering, notes 420, 439).
${ }^{310}$ Like Délos X 38-39.59 pl. 12 (Kardara, A, 208.5 (see above note 282), Homann-Wedeking, Vasenornamentik, 17.5).

311 Otherwise white rosettes are found on the exterior of the rim of Wild Goat oinochoai; but see a Fikellura oinochoe in Paris which has white lotus flowers and buds painted on the interior of the trilobe rim, CVA Louvre fasc 1, II Dc, pl. 5.12, Zervos, Rhodes, 143 fig. 336, BSA $341933 / 34$, 39.S1, 41: "continue the Rhodian tradition', dated c. 550 B.C.
${ }^{312}$ ClRh III 76-77.14 fig. 67 pl. A (Kardara, A, 208.2 (see above note 281, Homann-Wedeking, Vasenornamentik, 14, 17.4: Gruppe R), CVA Copenhague fasc 2, II D, pl. 77.3 (Kardara, A, 208.3 (see above note 279) ; on late vases in silhouette and contour technique, see CVA Torino fasc 2, II D, pl. 3.2, Kardara, A, 182.6 fig. 149 (Schiering, notes 152, 155, 174, 472, 608, 654, 774, Rumpf, 78 II f 5), 236.1 fig. 196 (see Schiering, pl. 6.4), 237.2 fig. 197. Late oinochoai with only floral decoration have the same sort of eye, Tocra, 42.591 pl. 30. On Classical Camiran vases the contours are usually broader, CVA Louvre fasc 1, II D, pl. 5.1 (= Zervos, Rhodes, 32 fig. 45, 133 fig. 304, pl. 26 fig. 500 (Kardara, A, 104.1, Schiering, notes 120, 130, 133, 135, 428, 433, 445 a, 461, 724, 733, 743 a, Rumpf, 70 III A 4), CVA München fasc 6, pl. 275 'Sub-Camiran'" (Kardara, A, 190.2, Schiering, notes 126, 133, 136, 147, 460, 571, Rumpf, 72 III D 43).
${ }^{313}$ ArchRep 1962/63, 41 fig. 17; for the same motif used as filling-ornament, see CIRh VI/VII 218-219 pls. 6-7 (Kardara, A, 104.2, Schiering, notes $6,120,123,133,349,367,424,433,499,635,637,724,736,744$, 746, Rumpf, 70 III A 2), BSA 61 1966, 153.1 pl. 31.
${ }^{314}$ BSA $341933 / 34,55$, Schiering, Werkstätten, 27-28.
${ }^{315}$ Only the sphinx on the amphora in the Louvre has the same appearance, Zervos, Rhodes, 52 fig. 94 (Kardara, A, 189.1, Schiering, notes 182, 424, 433, 616, 630, 644, Rumpf, 72 III d 1).
${ }^{316}$ On the Louvre amphora (see preceding note) filling-ornaments occur in similar numbers, but they seem related to the Classical Camiran Style, whereas the filling-ornaments on $\mathbf{1 7 1}$ are similar to those employed on vases in mixed technique; the latter type of filling-ornament occurs on most of the other amphorae, but here the trend is towards larger and fewer ornaments, see for instance Délos XVII 58-59.4-7 pl. 39. Note some fragments from Istros on which the filling-ornaments are still small and rather crowded, Histria 2, 59.29 pl .3 , the vase is listed as an oinochoe, but might be an amphora.
${ }^{317}$ The panels are usually filled with dots: JdI I 1886, 140. 2944 (Kardara, A, 209.2, Schiering, note 185, Rumpf, 78 II g 3), AA 7 1892, 170.175 (Kardara, A, 210.3, Schiering, notes 185,525 , Rumpf, 78 II g 2), Délos XVII 60.14 pl. 41 (Schiering, note 537).
field. ${ }^{318}$ These features suggest an origin early in the first quarter of the 6 th century. ${ }^{319}$ The filling-ornaments on $\mathbf{1 7 2 - 1 7 3}$ look identical, and the fragments may belong to shoulder fields, A and B, of the same vase. On 172 one of the forelegs is stretched forwards, the other one is nearly kneeling ${ }^{320}$ - on $\mathbf{1 7 3}$ the goat is marching, its legs perhaps rendered like those of the goat on 181. There are no traces of pendent tongues above the goat on $\mathbf{1 7 2}$, and the filling-ornaments were probably sparse, so the vase should be classed among the latest amphorae from c. $580-60$ B.C. ${ }^{321}$ The same may hold good for $\mathbf{1 7 5}-\mathbf{1 7 \%}$ on which the goat type canonic for the amphorae is shown. ${ }^{322}$ The goat's head on $\mathbf{1 7 4}$ is not turned backwards, and, as mentioned above, this is strange on amphorae; ${ }^{323}$ the fragment may be connected with the earliest of the amphorae from Delos/Rheneia. ${ }^{324} \mathbf{1 7 8} \mathbf{- 1 8 4}$ belong to amphorae with exclusively large floral motives in the shoulder fields, a group not strictly regarded as belonging to the Wild Goat style, but to be derived from the latest Wild Goat vases. ${ }^{325}$ On $\mathbf{1 7 8}$ the inner part of a pair of large volutes occurs, ${ }^{326}$ on 181 the root of the neck is preserved, and the small leaf should thus illustrate the upper leaf of a similar pair of volutes; ${ }^{327}$ remnants of large, nearly horizontal handle-palmettes occur on 179-180, and they too can be combined with large volutes. ${ }^{328} 183$ is obscure; the motive resembles that of the handle-palmettes, but the wheel-marks seem to make the usual placement in the shoulder field impossible. Sherds with part of a vegetable motif nearly identical to 182 have been found in Istros ${ }^{329}$ - linked circles with buds between as on 184 occur on the shoulder of an amphora from Tocra. ${ }^{330}$ On $\mathbf{1 8 5}-\mathbf{1 8 6}$ are remains of probably short neck-cables like those usually found on amphorae. The leaf of 186 is rounded-on

[^33]185 it is pointed like the one on $172 ;^{331}$ open cables as on 187 are connected with the latest Wild Goat vases and the amphorae with exclusively floral ornaments. ${ }^{332}$ Red and white stripes added on dividing bands were introduced on the Late Wild Goat oinochoai ${ }^{333}$ and they still occur on the broad bands of a great many of the late amphorae, like the ones to which 188-189 belonged ${ }^{334}$ - but accessory colours are surely excluded on some, perhaps the later ones. ${ }^{335}$ Our 191 belongs to the latter category. A large group of sherds, 192-253, has been catalogued as belonging to indeterminate closed vases; most of them are tiny side sherds which mainly belong to the Late Wild Goat style. The goats on $192-197$ probably all represent the late type with its head turned backwards. ${ }^{336}$ It is not possible to talk about a uniform style of drawing in the goats represented on the fragments from Tall Sūkās, but generally a certain similarity to the material from Istros may be noted. ${ }^{337}$ The ear of 198 is apparently drawn exclusively in silhouette and the goat might have been in black-figured technique. 199 perhaps has a broad neck collar and the fragment might thus be connected with a one-piece amphora. ${ }^{338}$ For the S-loop on 200 , see above. ${ }^{339} 202$ may have belonged to one of the latest Wild Goat amphorae on which the original panels are provided by only one or two vertical stripes. ${ }^{340}$ On 204-206 three different versions of black-figured birds are represented: 204 probably with raised wings, ${ }^{341}$ 205-206 apparently marching; ${ }^{342}$ other black-figured animals occur on 207-210. ${ }^{343}$ Most of the filling-ornaments on 212-226 are to be included among the stock of ornaments em-
${ }^{331}$ Both varieties occur on the latest amphorae, see Tocra, pl. 28.580-581.
${ }^{332}$ Délos XVII 58.2-4 pls. 38-39 (amphorae, see above note 326), 60.15 pl. 42 (flat-bottomed oinochoe, Schiering, note 171).
${ }^{333}$ BSA 34 1933/34, 71 fig. 10, Vroulia, 228. R. M. Cook, Greek Painted Pottery, London 1966, 122.
${ }^{334}$ Délos XVII 58-60.2-3, 5-8, 10-11 pls. 38-40 (see above notes 320,326).
${ }^{335}$ Délos XVII 58.4, 59.9 pls. 39-40, (see above note 326), Tocra, 46.580 pl. 28.
${ }^{336}$ This posture is to be accepted, too, for 192, 196-197, as the heads of the goats seem to be raised.
${ }^{337}$ Compare 176 for instance, with Lambrino, Vases, 256.12 figs. 218-221 (Kardara, A, 210.1 (Schiering, notes 318-22). Eyebrows and nose-wrinkles never seem to occur on our goats, whereas these features are very frequent in the material from Naukratis, CVA Oxford fasc 2, II D, pl. 4 passim, CVA Cambridge fasc 2, II D, pl. 18.12 and passim; the same features are found only on few of the goats from Istros, Lambrino, Vases, 251.11 fig. 217 (Kardara, A, 109.1), 256.13 fig. 222 (Kardara, A, 274.2), Histria 2, 57.4 pl. 1.
${ }^{338}$ Tocra, 41-42.588 pl. 29 (goat), Lambrino, Vases, 243-244.2 figs. 205-207 (floral motif, Schiering notes 185, 544, 547).
${ }^{339}$ See note 285.
${ }^{340}$ Tocra, 41-42.581 pl. 28. 371 catalogued as "Unclassified East Greek" may have belonged to a similar amphora.
${ }^{341}$ Compare CVA Oxford fasc 2, II D, pl. 4.33 (Kardara, A, 230.2, Schiering, note 151, Rumpf, 80 III a 24). The type occurs in Corinthian, Corinth VII.1, 65.251 pl .34 , but usually the Corinthian birds do not have raised wings, NSc 1960, 144 fig. 9 ; the latter type prevails too on the Late Wild Goat vases on which black-figured technique was employed, JHS 44 1924, pl. 8.13 (Schiering, notes 267, 268, 277, 343, Rumpf, 81 III f 15), CVA Oxford fasc 2, II D, pl. 4.37A, 47 (Kardara, A, 234.25, Schiering, notes 267, 277, Rumpf, 81 IIIf 9, Kardara, A, 248.9, Schiering, note 200, Rumpf, 81 III h 11).
${ }^{342} 205$: CVA Oxford, fasc 2, II D, pl. 4.47 (Kardara, A, 248.9 (see above note 341); 206: the fragment is rather large and the stylization is not equal to that of the usual Wild Goat birds or sirens; the polychromy might point to "Clazomenian" pottery, but the slip of 206 seems to contradict this-the sherd is perhaps to be connected with the so-called "Indeterminate East Greek Black-Figure", BSA 60 1965, 120, Gnomon 1965, 506, see below p. 74 .
${ }^{343}$ 207: possibly a boar, compare Naukratis I pl. 6.3 (see above note 281); 208: see Naukratis I pl. 13.2 (Schiering notes 267-8, Rumpf 81 f 29); 209: for the filling-ornament, see NSc 1960 , 148 fig. 13 b , ActaArch 13 1942, 49 fig. 30 (Kardara, A, 233.11, Schiering, notes 409, 778, Rumpf, 83 IV e 1), BCH 86 1962, 407 fig. 100 b ; 210: the white-spotted animal might have an incised belly-line and below the abdomen part of a filling-ornament. For this type, see a lid from Smyrna not of the ordinary Late Wild Goat Style, but assigned to the "Indeterminate East Greek Black-Figure", BSA 60 1965, 120.32 pl. 26.
ployed on vases in mixed technique, only one fragment, 216, might belong to the last quarter of the 7th century. ${ }^{344} \mathbf{2 2 7 - 2 3 4}$ have only linear decoration which occasionally represents floral motives; ${ }^{345} \mathbf{2 3 5}, \mathbf{2 3 7}-239$ have meanders as dividing bands, ${ }^{346} 240$ a waveline. ${ }^{347}$ Chequers, which occur on 242, are only seldom found on Wild Goat vases ${ }^{348}$ and the writer only knows of one example where the chequers are placed immediately above the rays radiating from the foot. ${ }^{349}$ The motif is more frequent on later vases as "Clazomenian" ${ }^{350}$ and other East Greek Black Figure. ${ }^{351}$ The neck-cable, 244, may have belonged to an amphora or to an oinochoe. ${ }^{352} \mathbf{2 4 3}, \mathbf{2 4 5}-\mathbf{2 5 0}$ are bottom sherds and fragments of the lower part of the belly, on which only bands and rays appear; ${ }^{353} 251$ is perhaps an amphora handle. ${ }^{354} 252-253$ are from vases either
${ }^{344}$ 212: compare BCH 88 1964, 329 fig. 60; 213: might be from a late amphora, see note 340 ; 214: see CVA Oxford fasc 2, II D, pl. 2.5 (Kardara, A, 208.1 (see above note 282), but probably 214 did not belong to a vase on which the filling-ornaments were so crowded. It is rather from a more sparsely decorated specimen, as for instance, Tocra, 41-42.580 pl. 28; 215: CIRh III 76-77.14 fig. 67 pl . A (Kardara, A, 208.2 (see above note 281); 216: the ornament is well known on 6th century vases with very crowded filling-ornaments, Naukratis II pl. 8.1 (Kardara, A, 244.3, Schiering, notes 267, 268, 277, 279, 343, 395, 546, 547, 592, 594, 605, 608, 776, 778, Rumpf, 81 III f 1), AJA 63 1959, 183.5 pl. 48 fig. 8 (Kardara, A, 247.1). However on 216 the ornament seems to be the only one between the legs, as found frequently on vases of the later Classical Camiran Style, CIRh VI/VII 85.1 figs. 91-93, 95 (Kardara, A, 101.1 (see above note 305), on which the bodies of the goats are horizontal like that of $\mathbf{2 1 6}$. The remnant of the leg on 216 indicates that our goat was not marching, but running fast like the goats on an oinochoe from Camiros, see Zervos, Rhodes, 44 fig. 77 (Kardara, A, 95.5, Schiering, notes $120,134,349,397,472,474,580,704,708,736$, Rumpf, 70 III C 4); compare the typical running position of the 6th century goat, Blinkenberg, Lindos I 282.985 pl. 46 (Kardara, A, 208.7 (see above, note 296) - our fragment may have belonged to a vase from the 7th century; 217: CVA Oxford fasc 2, II D, pl. 2.5 (Kardara, A, 208.1, (see above note 282); 218: the fragment is described as a side sherd, but might rather have been from the shoulder of an amphora, compare Délos XVII 60.14 pl .41 (see above note 317); 219-220: see Histria 2, 59.26 pl. 2 and Tocra, 41-42.580 pl. 28; 221: see CVA Oxford fasc 2, II D, pl. 2.4-6 (Kardara, A, 208.1 (see above note 282), but our sherd belonged to a vase with more sparse filling-ornaments; 222: Tocra, 41-42.588 pl. 29; 225: BCH 86 1962, 407 fig. 100 a; 226: the rosette is very large, compare Naukratis I pl. 6.5 (Schiering, notes 267, 268, 277, Rumpf, 81 III f 26), Kinch, Vroulia pl. 15 (Kardara, A, 217.2 (see above note 280); 224: the fragment is strange, but compare the late amphorae with horizontal handles on the shoulder, Schiering, Werkstätten, 28 with references.
${ }^{345}$ 227-229: probably all shoulder sherds, compare Kardara, A, 237.2 fig. 197, ArchRep 1962/63, 46 fig. 26, Délos XVII 58.3 pl. 38 (see above note 326), CIRh VI/VII 508 figs. 33, 35 (Schiering, notes 69, 188, 525, Rumpf, 78 II h $7-8$), AA 7 1892, 170.174 (Schiering, notes $69,142,143,377,422,441,568,572,585$, 624, 633), 170.175 (see above note 317); 231: perhaps part of a large pair of volutes, like Délos XVII 58.2 pl. 38, but the fragment might possibly be Chian, see Lambrino, Vases, 126.7 fig. 68 c ; 233: graffito, see Kardara, A, pl. A, Lambrino, Vases, 211-229 figs. 168-202 and Histria 2, pl. 64.
${ }^{346}$ 235, 237-238: broken meanders like Délos XVII 58-59.5-7 pl. 39 (see above note 334); 239: hook meanders very often on oinochoiai in mixed technique CVA Copenhague fasc 2, II D, pl. 77.3 (Kardara, A, 208.3 (see above note 279), Délos X 38-39.59-60 pl. 12 (Kardara, A, 216.1 (see above note 273), 208.5 (see above note 282).
${ }^{347}$ 240: CIRh VI/VII 495-496.1 fig. 22 (Kardara, A, 283.5, Schiering, notes 69, 142, 387, 573, 619, 645 , Rumpf, 75 I c 3), D. M. Robinson, Catalogue of Greek Vases, Toronto 1930, 66-67.205-C259 pl. 18 (Kardara, A, 100.5); 241: compare the late amphorae, Tocra, 41-42.580, 588 pls. 28-29.
${ }^{348}$ Kardara, A, 67.3 (Schiering, note 188); on a stand, see Vroulia, 191-192 fig. 73 (Kardara, A, 274.1, Schiering notes 93,282 , 291, 348, 731, Rumpf, 79 II l.1), see too Naukratis II pl. 11.3 (Kardara, A, 235.1 (see above note 303).
${ }^{349}$ Fairbanks, Catalogue, 105.315 pl. 33 (Schiering, notes 267, 268, 277, 278, 534, 621, Rumpf, 81 III f 20).
${ }^{350}$ BSA 47 1952, 144, BSA 60 1965, 128-132.64-84 pls. 34-36.
${ }^{351}$ BSA 60 1965, 121.37 pl. 28.
${ }^{352}$ Délos XVII 59.10 pl. 40 (see above note 334), Kardara, A, 237.2 fig. 197.
${ }_{353}$ Distinguishing between the bottom fragments on the basis of the number of the rays is not quite safe-but in general the early amphorae seem to have rather close-set rays, AA 7 1892, 170.175 (Kardara, A, 210.3 (see above note 317), and there is a tendency towards fewer rays on the later amphorae, Délos XVII 58.2 pl .38 (see above note 326) and Tocra, $41-42.588 \mathrm{pl}$. 29 . For the red dipinto under the foot of 247 , see Tocra, 46 fig. 22.
${ }^{354}$ AA 7 1892, 170.175 (Kardara, A, 210.3 (see above note 317).
totally glazed or with glazed friezes on which the decoration is incised. ${ }^{355}$ Several fragments, 254-282, have been ascribed to larger open vases, i.e. kraters or dinoi. The krater shape most frequently represented is the MC low-necked column krater; ${ }^{356}$ black-figured technique prevails, only 254 could perhaps be assigned to a krater on which the old Ionian technique is employed. ${ }^{357}$ On 255 the meander band is placed immediately below the metope. ${ }^{358} \mathbf{2 5 6}-258$ and perhaps 264 have a frieze of pendent tongues above the metope, ${ }^{359}$ on $\mathbf{2 5 9}$ it is abandoned. ${ }^{360} \mathbf{2 5 7} \mathbf{- 2 5 8}$ have only Corinthian filling-ornaments; ${ }^{\mathbf{3 6 1}}$ the griffin, $\mathbf{2 5 \%}$, has an extraordinarily tall neck, and it might be that only a protome was intended, ${ }^{362}$ the rounded design below the corner-palmette is placed much too low to be interpreted as a wing. ${ }^{363}$ Representations of large waterbirds are very popular in the metope of Corinthian kraters, ${ }^{364}$ and likewise on the Eastern versions of the column krater: 260-261 are to be ascribed to kraters with such scenes. ${ }^{365}$ The double incisions, the stylization of the mane, the heart-shaped ear and the nearly circular eye are features which connect the lion on 262 with the Wild Goat tradition. ${ }^{366}$ The animal on 263 might be a bull. ${ }^{367}$ The letters on 265 are assigned to the 1 st half of the 6 th century. ${ }^{368}$ Rim fragments decorated with meanders, continuous like $\mathbf{2 6 6}$ or broken like $\mathbf{2 6 7}$, may come from column kraters as well as

[^34]from kraters with ring-handles. ${ }^{369}$ The fragmentary handle plates, 268-274, display both geometrical and "floral" decoration. ${ }^{370} \mathbf{2 7 5}-\mathbf{2 8 3}$ can be ascribed to kraters or to dinoi. The profile of 275 is not known, but the fragment possibly comes from a dinos. ${ }^{371}$ On the rim fragment, $\mathbf{2 7 6}$, a quatrefoil is inserted in the meander. ${ }^{372}$ The shoulder sherd 278 is from a dinos or a krater which is slipped on the exterior except for a glazed zone on the shoulder decorated with an incised floral frieze. ${ }^{373}$ The bottom fragment, $\mathbf{2 7 8}$, is very similar to a fragment from Lindos. ${ }^{374}$ Wavelines as on $\mathbf{2 7 9}$ are seldom on kraters/dinoi ${ }^{375}$ - more frequent on bowls ${ }^{376}$. Open vases with pendent tongues and very degenerated filling-ornaments as on $\mathbf{2 8 0}$ occur in Kardara's Late Rhodian I, which apparently includes some of the vases later excluded as Aeolic by E. Walter-Karydi. ${ }^{377}$ The stylization of the lion with frontal head $\boldsymbol{2 8 2}^{\mathbf{3 7 8}}$ looks similar to MC lions. ${ }^{379} \mathbf{2 8 3} \mathbf{- 2 8 4}$ have been catalogued as belonging to bowls: the rounded design behind the marching beast on $\mathbf{2 8 3}$ is perhaps the point of the leaf from a handle palmette; ${ }^{380}$ the drawing of the bull on 284 faithfully copies the Corinthian tradition. ${ }^{381} \mathbf{2 8 5}-309$ are fragments of fruit-stands or dishes, and many of them are paralleled by the Rhodian types from Tocra, where they are found mainly in Deposits II-III which cover the second and third quarters of the 6th century. ${ }^{382}$ The fragmentary foot-stems identify $\mathbf{2 8 5}-\mathbf{2 8 8}$ as fruit-stands. $\mathbf{2 8 5}$ and $\mathbf{2 8 6}$ display the same sort of inner, central decoration; ${ }^{383}$ on $\mathbf{2 8 7}$ the buds alternate with tongues instead of leaves; ${ }^{384}$ wavelines often occur on fruit-stands with a low vertical rim as on 288. ${ }^{385} \mathbf{2 8 9}-\mathbf{2 9 3}$

[^35]are side sherds of which $\mathbf{2 8 9} \mathbf{- 2 9 1}$ are to be connected with fruit-stands, the others may equally well have belonged to dishes. Examples with outer friezes like those on 289 do not occur among the material from Tocra, but among that from Naukratis. ${ }^{386}$ Friezes with "geometrical" decoration used as dividing bands between the central decoration and the outer frieze, like on $290-291$, still occur early in the 6 th century. ${ }^{387}$ 294 is the earliest Wild Goat fragment found on Tall Sūkās. According to the registrar it is from a plate which has a low ring-foot divided by a deep furrow; this is not the ordinary shape for plates in Wild Goat Style. ${ }^{388}$ Only in the first half of the 7th century

[^36]does a type with low ring foot divided by a furrow occur; ${ }^{389}$ its sparse decoration is geometric in character-and our fragment is clearly connected with the Wild Goat tradition, though the decoration of it has an early look. Palmettes with double contours are known all through the second half of the 7th century, ${ }^{390}$ but the irregularity of the palmette on $\mathbf{2 9 4}$ may be accepted as a sign of early experimentation. It is not obvious which sort of bird is represented on $\mathbf{2 9 4}$; there is no real similarity to the famous Wild Goat swallows - not even the earliest ones, or the waterbirds. ${ }^{391}$ Whatever species the very geometrical birds of the first half of the 7th century represent, ${ }^{292}$ our bird seems related to them, not only by the painting, but also by the these birds' rather casual position in the field, quite different from the very deliberate and charming way in which the Wild Goat birds are placed. 294 may possibly belong to the early Wild Goat style, emerging during the end of the first half of the 7th century. ${ }^{393} \mathbf{2 9 5 - 3 0 4}$ are all fragments of dishes with floral decoration, 305-309 of plain ones. The earliest fragment is $\mathbf{2 9 5}$ which probably belongs to a late 7th century dish with cutaway rim. ${ }^{394}$ $296-304^{395}$ and the banded dishes, $305-308$, are late, matched by the Rhodian dishes from Tocra, dated c. 580-60 B.C. ${ }^{396}$

Oinochoai.

150. TS 1170. Shoulder/side sherds with root of neck. G 11 SW. No measurements. Fine reddish clay with few grits, creamy slip, red to black glaze. Small codron at junction of shoulder and neck. Frieze of pendent tongues, goat with head turned backwards. Pl. VII.
151. TS 1193. Shoulder/side sherds with root of neck. G 11 SW. No measurements. Red to buff clay with some grits and mica, creamy slip, red glaze. Small codron at junction of neck and shoulder. Part of two friezes, upper one: pendent tongues, grazing goat(s?), lower one: buttocks (of goat?); white-red-white stripes added on the broad band between the friezes; in field furthermore rosette with several petals, alternatingly glazed(?). Pl. VII.
152. TS 4467. Shoulder sherd with root of vertical handle. H 11 NE. $8.1 \times 10.1 \mathrm{~cm}$. Light brownish clay with grits, white slip, brownish to black glaze. In field to the right of handle, head of grazing goat, in the opposite field group of short strokes. Handle enframed by two

237, 551, 582, Rumpf, 73 III g 7), 129.5 (Schiering, notes 231, 232, 234, 237, 558), 129.4 (Schiering, notes 231, 232, 237, 558), 129.6 (Schiering, notes 231, 233, 237, 582, 623, Rumpf, 73 III g 6), 129.7 (Schiering, notes 231, 232, 237, 558, 582, 623), 129.9 (Schiering, notes 231, 237, 515, 558, 560, 582), 129.8 (Schiering, notes $231,237,515,560,623$, Rumpf, 73 III g 2), Tocra, $50-52.631-680$ fig. 26 pls. $34-36$. A small and isolated group of plates from Tocra alone displays a low ring foot (without grooves), Tocra 43, 49.607-611, fig. 24 , pls. 31-33: late seventh to early sixth century. On the Tocra group see further, BSA 61 1966, $153-154$.
${ }^{389}$ Samos V $57.440-441$ pl. 80, AM 571933 , 111 fig. 54 c.
${ }^{390}$ Schiering, Werkstätten, Beilage 6, Samos V 68 fig. 42 pl. 107.560.
${ }^{391}$ Swallows: Samos V pls. 105, 123.609, 610 (Kardara, A, 68.8-9, 93.5, Schiering, notes 399, 745, Rumpf, 70 III B 6). Waterbirds: BCH 89 1965, 971 fig. 5, Kinch, Vroulia, pl. 35 (Kardara, A, 83.1, Schiering, notes 244, 256), JHS 60 1944, pl. 1.1 (Kardara, A, 70.2), m-n (Kardara, A, 73.15-16), p (Kardara, A, 70.1), r (Kardara, A, 70.3).
${ }^{392}$ Samos V 62.483 pl. 85.
${ }^{393}$ Gnomon 1965, 506, Samos V 63.
${ }^{394}$ Kardara, A, 128-129 pl. 11 (see above note 388), Tocra, 43 note 13.
${ }^{395}$ From the picture it is difficult to decide if the hook meander of 298 is placed on a broad flat rim like on $296-297$ and $301-303$. However, if located on the side, then 298 is rather from a fruit-stand; the same may be the case for two of the fragments from the similar group of 297 i.e. TS 304 and TS 3465 .
${ }^{396}$ Tocra, 43-44.633-672, 681-709 pls. 35-37. For the differing decoration of 301, see Histria 2, 63.71 pl. 6. The decoration of 304 is paralleled by Tocra no. 654 , except for the fact that our dish has bands on the rim, not a hook meander. 381 catalogued as "Unclassified East Greek" may possibly be from a dish.
vertical lines, one nearly straight and one slightly waved; root of handle glazed, vertical band hanging from handle. Pl. IX.
153. TS 1378. Shoulder/side sherd. G 5 SE. $7.0 \times 6.0 \mathrm{~cm}$. Dark brown clay with some grits, white slip, brownish to black glaze. Exclusively silhouette technique. Faint traces of pendent leaf above, marching animal with head turned backwards (ram?), rosette. Pl. IX.
154. TS 274. AASyr 8/9 1958/59, 129 fig. 12. Fragmentary half of oinochoe. G 8 SW. H. c. 28.0 cm . Pink clay, creamy slip, g)lden brown to black glaze. Upper frieze, black-figured: two groups of confronted sphinxes, between them, 1) owl, 2) large palmette, furthermore tail possibly belonging to a similar confronted group; red added on sphinxes' hair, bands on wings and owl's breast; lower frieze, outline and silhouette technique: running goats with heads turned backwards, red added on shoulders and buttocks, filling-ornaments; broad bands with red-white-red stripes added, enframed meander in which boxes and quatrefoil are inserted, frieze of pendent tongues on shoulder, rays radiating from the foot. Pl. VIII.
155. TS 4641. Shoulder sherd with root of neck. H 10 NE. $3.7 \times 4.3 \mathrm{~cm}$. Grey clay with some grits, greyish slip (slip and clay blackened by fire), brownish glaze. Black-figure. Traces of pendent tongues at top and below back of head with border of hair(?) curling into a spiral with central dot, part of wing; sphinx or siren(?), rosette. Pl. IX.
156. TS 4642. Side sherd. G 10 SE. $5.8 \times 6.0 \mathrm{~cm}$. Light red-brown clay with some grits, yellowish slip, dark brown glaze. Running goat with head turned backwards. Pl. IX. Similar: TS 1494 G 11 SW.
157. TS 1087. Side sherd. G 8 SW. $4.3 \times 5.1 \mathrm{~cm}$. Buff clay with grits and mica, white slip, brown to red glaze. Goat, head turned backwards, trace of filling-ornament, white stripe added on broad band above. Pl. IX.
158. TS 640 . Side sherd. G 8 SW. $4.4 \times 3.5 \mathrm{~cm}$. Reddish clay with mica, creamy slip, black to red glaze. Goat's head lifted and turned backwards(?), pendent hook in front of nose, part of meander(?) above band. Pl. IX.
159. TS 1520. Side sherd. G 7 SE. $3.5 \times 2.8 \mathrm{~cm}$. Light brown clay, creamy slip, brown glaze. Part of goat's head with pendent hook(?) in front, red stripe added on the broad band above. Pl. IX.
160. TS 4648. Side sherd. G 10 SE. $8.2 \times 5.6 \mathrm{~cm}$. Brown gritty and micaceous clay, (slip not mentioned), brownish glaze. Forepart of grazing goat, between legs perhaps St. Andrew cross, red added on goat's neck. Pl. IX.
161. TS 541. Side sherd. F 5 SE. $7.1 \times 8.1 \mathrm{~cm}$. Light brown to pinkish clay with dark core, white slip, dark brown glaze. Part of two grazing goats, red-white-red stripes added on band above meander. Pl. IX.
162. TS 1099. Side sherd. G 8 SW. $3.1 \times 4.1 \mathrm{~cm}$. Reddish clay with some grits, (slip not mentioned), red glaze. Two friezes: upper, part of neck or leg of grazing goat; lower, end of indefinable design, white stripe added on the broad dividing band. Pl. IX.
163. TS 671 . Side sherd. G 16 SW. $9.0 \times 4.1 \mathrm{~cm}$. Reddish, gritty clay, grey in core, white slip, black to brown glaze. Fore- and hindlegs of goat marching left, very close-set fillingornaments, white-red-white stripes added on the broad band below. Pl. IX.
164. TS 651. Side sherd. G 11 SW. $7.2 \times 6.2 \mathrm{~cm}$. Reddish clay with few grits and mica, white slip, black to brown glaze. Hind-part of marching animal (goat?); part of four-leaf flower between legs. $P l . I X$.
165. TS 3845. Side sherd. G 15 SW. $8.8 \times 7.2 \mathrm{~cm}$. Light brownish clay, yellowish slip, red brown glaze. Above, trace of narrow horizontal band; below, horns of deer, perhaps an incised stripe in the middle of its ear. Pl. IX. Similar: TS 4635 H 10 NE.
166. TS 677. Side sherd. F 5 SE. C. $5.0 \times 3.0 \mathrm{~cm}$. Reddish clay with grits and mica, creamy slip, black glaze. Black-figure. Forepart of lion with frontal head and whiskers, its leg raised to angular design, trace of narrow band above. Pl. IX.
167. TS 658. Side sherd. P $11 \mathrm{SW} .7 .2 \times 7.3 \mathrm{~cm}$. Light buff clay with grits and mica, white slip, black glaze. Black-figure. Two friezes: upper, abdomen and wing of crouching griffin or sphinx with red added alternately on the wing-feathers, rosette and below the narrow horizontal band part of the empty field of the second frieze. Pl. IX.
168. TS 1449. Rim sherd, i.e. fragmentary lobe. P 11 NW. $2.5 \times 2.5 \mathrm{~cm}$. Reddish to buff clay, red glaze. Exterior: no description, interior: glazed with part of added white dot-rosette. Pl. IX.
169. TS 2652. Neck sherd. L 8 SE. $3.3 \times 2.0 \mathrm{~cm}$. Fine red clay, red glaze. Small codron at bottom. Exterior: glazed with one half of added white eye, interior: no description. Pl. IX.

170a. TS 2270. Handle-rotelle with neck sherd. G 7 SE. Diam. 3.5 cm , w. 2.5 cm . Dark buff clay with some grits, whitish slip, black glaze. One side of neck sherd glazed, the other slipped(?). Edge of rotelle glazed, rosette on topside. Pl. IX.

170b. TS 1959. Shoulder/side sherds with root of neck. G 7 SE. No measurements. Light red clay, reddish to black glaze. Totally glazed. Pl. IX. Similar: TS 1202 G 11 SW, TS 1974 G 7 SE, TS 2099 P 11 NW.

Amphorae.

171. TS 2247. AASyr 10 1960, 119 fig. 7, NMArb 1961, 126, 128 fig. 9, Archaeology 14 1961, 215. Fragmentary half of amphora. G 15 NW, G 15 SE, G 15 NE. H. 21.2 cm , w. 19.8 cm . Light reddish clay with grits and few mica, light brown somewhat greenish slip, brown to black glaze. Small codron at junction of neck and shoulder. Frieze of pendent tongues. Marching goat, vertical panels with meanders, several filling-ornaments, red-white-red-white-red stripes added on the broad band of the belly, rays radiating from the foot. Pl. $I X$.
172. TS 2880. Rim/neck/shoulder/side sherds. J 8 SE. $11.5 \times 11.0 \mathrm{~cm}$, w. of rim 10.3 cm . Fine light brown clay, thin white slip, black glaze. Small codron at junction of neck and shoulder. Neck: part of cable, shoulder: fast running goat (one of the forelegs nearly kneeling), rosette in front, two narrow and one(?) broad band below. Pl. X. Cf. no. 173.
173. TS 2879. Shoulder/side sherd. J 8 SE. $12.5 \times$ c. 6.0 cm . Fine brown clay with some grits, (slip not mentioned), red to brown glaze. Hindpart and one of the forelegs of marching goat, rosette. $P l . X$. Might possibly belong to no. $\mathbf{1 7 2}$.
174. TS 3632 . Shoulder sherd. G $13.6 .2 \times 6.6 \mathrm{~cm}$. Red clay with grits, whitish slip, brown to black glaze. Small codron at junction of neck and shoulder. Goat with raised head and very slanting body, red added on chest and back. Pl. X.
175. TS 1836. Shoulder sherds. G 15 SE. $7.0 \times 7.0 \mathrm{~cm}, 8.5 \times 7.0 \mathrm{~cm}$. Fine reddish brown clay, white slip, black glaze. Running goat with its head turned backwards, very slanting body, dot-rosette in front, half-rosette on ground line, white stripes added on band at bottom of sherd. Pl. X.
176. TS 954. Neck/shoulder sherd. G 12 SW. $8.2 \times$ c. 6.5 cm . Buff clay with few grits, creamy slip, brown to red glaze. Small codron at junction of neck and shoulder. Goat with its head turned backwards and very slanting body. Pl. X.
177. TS 2297. Shoulder sherd with root of neck. G 16 NW. $5.0 \times 2.7 \mathrm{~cm}$. Brownish clay with few white grits, yellowish slip, red to brown glaze. Goat with its head turned backwards and very slanting body, group of pendent strokes above. $\mathrm{Pl} . X$.
178. TS 512. Shoulder sherd. Surface. F 5 w-slope. $5.1 \times 5.0 \mathrm{~cm}$. Light brown pinkish clay, core grey, white slip, dark brown glaze. Central part of large volute pair with inserted dot above and below. Pl. X.
179. TS 1514. Shoulder/side sherd. G 5 SE. $2.0 \times 4.5 \mathrm{~cm}$. Light buff clay, creamy slip, brown glaze. Lower part of volute with stalks of two palmette leaves curling upwards, white stripes added on the horizontal band below. Pl. X.
180. TS 1523. Shoulder/side sherd. G 8 SW. $6.0 \times 4.5 \mathrm{~cm}$. Reddish clay, creamy slip,
black to red glaze. Lower part of volute with stalks of two palmette leaves curling upwards, two narrow and one broad band below. Pl. X.
181. TS 3405. Shoulder sherd. H 11 NW. $3.5 \times 2.8 \mathrm{~cm}$. Light brown clay, whitish slip, brown glaze. Small glazed codron at junction of neck and shoulder. Part of big volute pair with inserted leaf. Pl. X.
182. TS 1516. Shoulder/side sherd. G 5 NE. $5.4 \times 6.0 \mathrm{~cm}$. Dark buff clay with some grits, white slip, black glaze. Central part of large volute pair(?) rising from ground line, inserted leaf. Pl. X.
183. TS 1448. Shoulder or side sherd. P 11 NW. $5.0 \times 4.3 \mathrm{~cm}$. Light buff clay with numerous grits, whitish slip, red glaze. Part of probably asymmetric volute pair with inserted leaf, traces of horizontal band. Pl. X.
184. TS 5622 . Shoulder or side sherd. H $12.3 .5 \times 4.0 \mathrm{~cm}$. Dark brownish clay, dark brown glaze. Linked circles with inserted buds. Pl. X.
185. TS 1058. Rim/neck/side sherds. G 8 SE. $7.7 \times 2.4 \mathrm{~cm}, 11.3 \times 7.0 \mathrm{~cm}$, c. $8.5 \times 5.5 \mathrm{~cm}$. Buff clay, with white and black grits, white slip, brown glaze. Rim glazed, on neck upper part of cable, at side two broad and one narrow band, below rays radiating from the foot, between them blob-rosette. Pl. X.
186. TS 1997. Rim/neck sherd. G 13 SE. $4.5 \times 5.0 \mathrm{~cm}$. Red clay with white grits, white slip, black glaze. Rim glazed, part of cable. Pl. X. Similar: TS 3709 G 14, TS 1343 G 11 SW.
187. TS 4912. Rim/neck sherd. G 14 NE. $4.5 \times 5.4 \mathrm{~cm}$, org. diam. of rim c. 12.0 cm . Reddish clay with some grits, whitish slip, red glaze. Rim glazed, part of open cable. Pl. X. Similar: TS 1286 P 11 SW.
188. TS 289. Side sherd. G 8 SW. $14.0 \times 9.6 \mathrm{~cm}$. Light brown clay, greyish-white slip, black glaze. Broad band with white-red-white stripes added; above, traces of two narrow bands; below, one narrow band and point of ray. Pl. X. Similar: TS 647 G 11 SE.
189. TS 1122. Side sherd. G 8 NW. $6.4 \times 8.8 \mathrm{~cm}$. Dark brownish clay with some white grits, white slip with pinkish tinge, brown to red glaze. Group of small dots in field, below narrow bands and one broad band with red and white stripes added. Pl. X. Similar: TS 829 G 11 SE, TS 1084 G 8 SW, TS 1138 G 11 SE, TS 2594 H 11 NW, TS 2884 J 8 SE, TS 3237 J 15 (Sūkās I, 83 no. 107 pl. 4).
190. TS 3523. Side sherd. G $5.9 .0 \times 8.9 \mathrm{~cm}$. Brown clay, creamy slip, brown to black glaze. Foot of goat in field ; below, narrow and two broad bands. Pl. X. Similar: TS 2608 H 11 NW.
191. TS 1210. Shoulder/side/bottom sherds with ring foot. G 11 NW. Diam. of foot c. 13.0 cm . Reddish to buff clay, white slip, black glaze. Group of small dots in field; below, one narrow and two broad bands, rays radiating from the foot. Pl. XI. Similar: TS 648 G 11 SE, TS 834 G 11 SW, TS 1327 G 11 SW.

Indeterminate closed vases.
192. TS 3015. Side sherd. H 13. $4.0 \times 2.2 \mathrm{~cm}$. Red clay with grits, yellowish slip, brown glaze. Fragmentary head of goat. Pl. XI.
193. TS 4619. Shoulder sherd. H 10 NE. $1.7 \times 6.0 \mathrm{~cm}$. Fine brownish clay, creamy slip, brown glaze. Forepart of running goat, head turned backwards, frieze of pendent tongues above. Pl. XI.
194. TS 2692. Shoulder sherd with root of neck. L 8 SE. $4.2 \times 8.5 \mathrm{~cm}$. Reddish to brown clay with some grits, (slip not mentioned), black glaze. Band along root of neck, below forepart of running goat, head turned backwards, small dot above leg. Pl. XI.
195. TS 315. Shoulder sherd with root of neck. F 5 SE. $3.6 \mathrm{~cm} \times 6.4 \mathrm{~cm}$. Red to brownish clay with few grits and mica, creamy slip, light brownish glaze. Band along root of neck, group of pendent dots below forepart of goat, head turned backwards. Pl. XI.
196. TS 830. Side sherd. G 11 SE. $3.9 \times 2.9 \mathrm{~cm}$. Reddish clay with mica, white slip, red glaze. Fragmentary head of goat. Pl. XI.
197. TS 1675. Neck/shoulder sherd. P 11 NW. $5.6 \times 4.0 \mathrm{~cm}$. Fine light brown clay, light yellowish slip, black glaze. Small codron at junction of neck and shoulder, group of pendent strokes, snout of goat. Pl. XI.
198. TS 1151-53. Shoulder/side sherds. G 11 SW. No measurements. Reddish clay, white slip, black to red glaze. Frieze of pendent tongues; below, horn and ear of goat, red and white stripes added on broad band of belly. Pl. XI.
199. TS 638. Rim/neck/shoulder sherd. G 11 SW. C. $8.7 \times$ c. 7.7 cm. Light, reddish clay with grits and mica, creamy slip, black glaze. Rim-collar slightly everted and glazed, white stripe added on interior. Frieze of pendent tongues, horn and ear of goat in field. Pl. XI. Similar (neck sherd): TS 1266 P 11 SW, TS 3685 G 14.
200. TS 3282 . Side sherd. G $13.9 .1 \times 6.4 \mathrm{~cm}$. Reddish, gritty clay, core grey brown, with few mica, creamy slip, red glaze. Slanting abdomen of goat, probably with head turned backwards (two small vertical stripes above the back might be part of the beard); below, S-loop. Pl. XI.
201. TS 78. Side sherd. G 5 SE. $3.8 \times 2.5 \mathrm{~cm}$. Light brown clay, yellowish slip, black to brown glaze. Breast and foreleg of running goat; red added on breast. Pl. XI.
202. TS 2094. Neck/shoulder sherd. P 11 NW. $7.0 \times 5.5 \mathrm{~cm}$. Light brown to greyish clay with grits and mica, white slip, black glaze. Small codron at junction of neck and shoulder, codron partly glazed. Two vertical stripes, rump of goat. Pl. XI.
203. TS 1149. Side sherd. G 11 SW. $3.6 \times 4.7 \mathrm{~cm}$. Reddish clay with grits, whitish slip, black to red glaze. Waterbird(?). Pl. XI.
204. TS 676. Side sherd. P 11 SW. C. $2.8 \times 3.4 \mathrm{~cm}$. Reddish clay with grits, white slip, brownish glaze. Black-figure. Forepart of waterbird with its head bent forwards and pressed against its neck, probably raised wing; white added on neck, breast and wing. Pl. XI.
205. TS 672. Side sherd. P 11 NW. $4.4 \times 3.4 \mathrm{~cm}$. Light buff clay with mica, white slip, black glaze. Black-figure. Hindpart of marching bird with pendent tail; red added on foot and wing, and for stripe on band below. Pl. XI.
206. TS 5635 . Side sherd. H $12.5 .3 \times 5.0 \mathrm{~cm}$. Brownish clay with some grits, yellowish slip, brownish glaze. Black-figure. Lower part of marching bird; red and white added on wing. Pl. XI.
207. TS 3426 . Side sherd. H 11 NW. $3.4 \times 4.1 \mathrm{~cm}$. Grey brown clay, whitish slip, black glaze. Black-figure. Neck of boar(?) ; red added. Pl. XI.
208. TS 549. Side sherd. G 5 NE. $6.3 \times 4.7 \mathrm{~cm}$. Buff clay, with grits and mica, creamy slip, black glaze. Black-figure. Buttocks and tail of sitting beast. Pl. XI. Similar: TS 675 P 11 SW.
209. TS 3565. Side sherd. G 5 NE. $5.0 \times 5.1 \mathrm{~cm}$. Grey-brown clay with mica and small black grits, whitish slip, brown to black glaze. Black-figure. Foot of sitting beast, large, solid rosette; red and white added for stripes on band below. Pl. XI. Similar: TS 673 P 11 SW.
210. TS 178. Side sherd. F 5 SE. $3.2 \times 4.1 \mathrm{~cm}$. Light brown clay, creamy slip, black glaze. Black-figure. Fragmentary abdomen of white dotted animal; below the horizontal belly line, which ends in a hook, there was probably a white stripe rather than dots; adjoining abdomen, part of filling-ornament(?). Pl. XI. Similar: TS 2726 L 8 SE.
211. TS 2374. Side sherd. G 16 NW. $4.5 \times 4.0 \mathrm{~cm}$. Light red clay, white slip, brown glaze. Marching animal(?). Pl. XI.
212. TS 2645. Shoulder sherd. L 8 SE. $4.0 \times 4.7 \mathrm{~cm}$. Light brown clay, white slip, brown glaze. Frieze of pendent tongues; below, pendent half-rosette with festoon border, dot and part of two larger filling-ornaments(?) in field. Pl. XI.
213. TS 1356. Shoulder sherd. G $11 \mathrm{SW} .5 .5 \times 5.0 \mathrm{~cm}$. Buff clay, with white grits, tan slip, red glaze. Frieze of pendent tongues, two vertical stripes and double angular corner ornament in field, root of handle glazed(?). Pl. XI.
214. TS 937. Shoulder sherd with root of handle. P 11 NW. $6.7 \times$ c. 4.0 cm . Brick-red clay with grits, white slip, black glaze. Rosette in field, in front of it sloping slim stripe, on root of handle two horizontal stripes, below them a sloping one, a dot and faint traces of glaze. Pl. XI.
215. TS 294. Side sherd. G 5 SE. $7.3 \times 4.5 \mathrm{~cm}$. Grey clay, white slip with greenish tinge, brown to black glaze. Slanting abdomen of goat, rosette below. Pl. XI.
216. TS 668. Side sherd. G 7 SE. $5.5 \times 6.3 \mathrm{~cm}$. Reddish clay with grits and mica, creamy slip, light brownish glaze. Horizontal abdomen of goat, rosette below. Pl. XII. Similar (rosettes): TS 1053 G 8 SW, TS 3002 L 8 SE.
217. TS 804. Side sherd. G 8 SE. $2.6 \times 2.3 \mathrm{~cm}$. Red clay with few grits and mica, creamy slip, brown to red glaze. Rosette. Pl. XII.
218. TS 1168. Side sherds. G $11 \mathrm{SW} .11 .0 \times 7.0 \mathrm{~cm}$. Reddish to buff clay, creamy slip, black glaze. Hind legs of goat, between them dot and in front rosette and slim stripe, leg(?). Pl. XII.
219. TS 2097. Side sherd. P 11 NW. $3.4 \times 5.0 \mathrm{~cm}$. Pink clay, white slip, reddish to dark brown glaze. Rosette and foot of goat. Pl. XII. Similar: TS 321 G 5 SE.
220. TS 1482. Side sherd. G 11 SW. $4.5 \times 3.5 \mathrm{~cm}$. Reddish clay, whitish slip, red glaze. Rosette and slim vertical stripe. Pl. XII. Similar (rosette): TS 1500 P 11 NW.
221. TS 1443. Side sherd. P 11 NW. $6.5 \times 6.0 \mathrm{~cm}$. Red to buff clay, white slip, brown glaze. Hind leg of goat and slim vertical stripe, between them a small cross. Pl. XII.
222. TS 1485. Side sherd. G 11 SE. $2.5 \times 4.5 \mathrm{~cm}$. Reddish to buff clay, creamy slip, brown glaze. Hind foot of goat, angular ornament. Pl. XII.
223. TS 1451. Side sherd. G $11 \mathrm{SW} .5 .5 \times 7.5 \mathrm{~cm}$. Reddish to buff clay, white slip, black glaze. Hook shaped design, dots. Pl. XII. Similar: TS 1714 G 15 NE, TS 2661 L 8 SE.
224. TS 5628. Two side sherds, glued. H 11 NE. $14.0 \times 9.0 \mathrm{~cm}$. Dark brownish clay, white smooth slip, brown glaze. Sloping stripe crossed by small stripes in field; red added on two of the five horizontal bands below. Pl. XII.
225. TS 3575 . Side sherd. G $13.7 .0 \times 4.0 \mathrm{~cm}$. Light brown clay, grey in core, yellowish slip, black glaze. Black-figured. Fragmentary hind part and abdomen of animal, faint traces of incisions on abdomen; red added on body as well as on the solid rosette. Pl. XII. Similar: TS 30 G 5 NE (abdomen), TS 1150 G 11 SW (rosette).
226. TS 1162. Side sherd. G 11 SE. $4.0 \times 2.0 \mathrm{~cm}$. Reddish clay with some mica, whitish slip, red to brown glaze. Black-figure. Rosette with incisions radiating from incised circle. Pl. XII.
227. TS 1341. Shoulder sherd. G 8 SE. $5.6 \times 4.0 \mathrm{~cm}$. Reddish clay, creamy slip, red glaze. On shoulder, curved stripe and two pointed ones, white stripes added on the broad horizontal band, below meander. Pl. XII.
228. TS 2883. Shoulder/side or bottom sherd. J 8 SE. $5.2 \times 3.5 \mathrm{~cm}$. Fine light brown clay, greyish slip, red glaze. Point of single ray and two close-set ones, curved band crossing some of the narrow horizontal bands below. Pl. XII.
229. TS 1832. Shoulder sherd. G 15 NE. $6.5 \times 5.0 \mathrm{~cm}$. Fine light brown clay, white slip, black glaze. Two rays of different width. Pl. XII.
230. TS 2096. Shoulder/side sherd. P 11 NW. $4.0 \times 4.2 \mathrm{~cm}$. Light buff clay, white slip with greenish tinge, black to brown glaze. Part of floral design(?); white added for stripes on band below. Pl. XII.
231. TS 3396. Shoulder sherd. H 11 NW. $4.8 \times 4.5 \mathrm{~cm}$. Dark red, coarse, gritty clay, creamy slip, brown glaze. Two opposed, curved stripes. Pl. XII.
232. TS 2725. Shoulder sherd(?). L 8 SE. $3.3 \times 3.0 \mathrm{~cm}$. Red clay, whitish-greyish slip, black glaze. Part of floral design(?). Pl. XII.
233. TS 1386. Side sherd. G 11 SW. $4.5 \times 5.0 \mathrm{~cm}$. Reddish buff clay, yellowish slip, black glaze. Irregular design, graffito in field. Pl. XII. Fig. g.
234. TS 3652 . Side sherd. G $13.13 .0 \times 11.0 \mathrm{~cm}$. Light brown clay, greyish white slip, brown to black glaze. At top, glazed field (panel ?) ; below, two bands of different width separated by narrow ones, white stripe added on the broadest of the bands, point of ray at bottom. Pl. XII.
235. TS 3513. Side sherd. G 5 NE. $3.6 \times 3.1 \mathrm{~cm}$. Buff sandy clay, whitish slip, brown glaze. Group of three dots in field, below broad band with white-red-white stripes added, meander at bottom. Pl. XII. Similar: TS 3579 G 13 NW.
236. TS 921. Side sherd with root of handle. P 11 NW. $3.9 \times 2.9 \mathrm{~cm}$. Reddish clay, yellow slip, red glaze. Root of handle glazed; two white stripes added on the glazed field below. Pl. XII.
237. TS 2712. Side sherd. L 8 SE. $4.0 \times 5.0 \mathrm{~cm}$. Red clay, white slip, red glaze. At top meander, narrow and broad band below, white stripes added on the latter, ray at bottom. Pl. XII.
238. TS 207. Side sherd. G 5 NW. $10.2 \times 8.2 \mathrm{~cm}$. Fine, light brown clay, creamy slip, black to brown glaze. At top meander, one broad band with red-white-red stripes added below, traces of glazed field at bottom. Pl. XII. Similar: TS 529 H 5 SE, TS 1344 H 5 NE, TS 1446 P 11 NW, TS 1940 F 16 SW, TS 2564 H 11 NW, TS 3534 G 5 NW, TS 3744 G 14.
239. TS 669. Side sherd. G 8 SE. $3.4 \times 3.6 \mathrm{~cm}$. Reddish clay with few grits and mica, creamy slip, black to red glaze. Hook meander, glaze below. Pl. XII.
240. TS 1683. Side sherd. G 8 SW. $7.5 \times 4.8 \mathrm{~cm}$. Light red to brown clay with some white grits, light buff slip, red glaze. Quick waveline enframed by narrow and broad bands, on latter an added white stripe. Pl. XII. Similar (white slip): TS 1080 G 8 SW, TS 1989 G 8 NW.
241. TS 1180. Side sherd. G 11 SW. $5.0 \times 6.0 \mathrm{~cm}$. Fine buff clay, white slip, brown glaze. Two broad bands. PI. XII. Similar: TS 1800 G 7 SE, TS 1877 G 19, TS 2639 L 8 SE, TS 4408 G 10 NE.
242. TS 1278. Side/bottom sherds. P $11 \mathrm{SW} .7 .0 \times 6.5 \mathrm{~cm}$. Light reddish to buff clay with few grits, light buff slip, black glaze. Chequers, rays below. Pl. XII. Similar (white slip): TS 1342 G 8 SE, TS 4409 G 10 NE.
243. TS 1186. Side sherd. G 11 SW. $8.0 \times 9.0 \mathrm{~cm}$. Reddish, somewhat micaceous clay, black core, creamy slip, red glaze. Two broad bands with added white stripes, point of ray below. Pl. XII. Similar: TS 1108 G 8 SW, TS 2878 J 8 SE.
244. TS 611. Neck sherd. G 5 SE. $4.5 \times 4.5 \mathrm{~cm}$. Reddish clay with few grits, white slip, red glaze. Cable with inserted leaves. Pl. XII. Similar: TS 854 G 11 SE, TS 3611 G 13, TS 4714 Surface.
245. TS 1086. Side/bottom sherd. G 8 SW. $9.6 \times 6.6 \mathrm{~cm}$. Red, somewhat porous clay, whitish slip, brown to black glaze. One broad and two narrow bands, radiating rays below. Pl. XIII. Similar: TS 536 F 5 SE, TS 1679 F 5 SE.
246. TS 1681. Side/bottom sherd. G 11 SW. $9.5 \times 7.5 \mathrm{~cm}$. Brick-red clay with white grits, white slip, brown glaze. Broad and narrow band, point of ray below. Pl. XIII. Similar: TS 379 G 8 SE, TS 1085 G 8 SW, TS 1194 G 11 SW, TS 1696 G 5 SW.
247. TS 2251. Bottom sherd with ring foot. J 8 SE. $12.2 \times 3.9 \mathrm{~cm}$. Brown clay, white slip, brown glaze. Rays radiating from the glazed foot. Red dipinto under foot. Pl. XIII. Fig. g.
248. TS 849 . Bottom sherd with ring foot. G 11 NW. H. c. 4.0 cm . Hard, gritty red clay, reddish slip, black glaze. Two rays radiating from the glazed foot. Pl. XIII.
249. TS 3508. Bottom sherd with ring foot. G 5 NE. Org. diam. of foot c. 10.0 cm . Reddish clay, whitish slip, black to brown glaze. Three rays of different width radiating from the glazed foot. Pl. XIII.
250. TS 1169. Bottom sherd with ring foot. G $11 \mathrm{SW} .4 .5 \times 7.5 \mathrm{~cm}$. Dark buff clay with white grits, core black, white slip, brown glaze. Foot and lower part of side glazed. Pl. XIII. Similar: TS 1192 G 11 SW, TS 1195 G 11 SW, TS 2688 L 8 SE.
251. TS 1357. Double-roll handle. F 5 SE. $10.5 \times 2.0 \mathrm{~cm}$. Red clay with grits, creamy slip, red glaze. Two rows of dots, glazed band at handle-root, slim vertical band in shoulder field. Pl. XIII. Similar: TS 33 G 5 SE, TS 1174 G 11 SE, TS 1492 P 11 NW.
252. TS 1730 . Side sherd. H 5 NE. $4.0 \times 5.0 \mathrm{~cm}$. Reddish to buff clay, black glaze. Glazed all over, incised decoration: probably inner part of lotus-flower, "above" narrow white band added. Pl. XIII. Similar: TS 96 E 8 NE.
253. TS 3824. Side sherd. H 11 NW. $3.6 \times 2.8 \mathrm{~cm}$. Yellowish, somewhat gritty clay, brownish to violet glaze. Glazed all over, incised decoration: floral(?). Pl. XIII.

Kraters.

254. TS 1339. Shoulder sherd. G 8 SE. $6.5 \times 9.0 \mathrm{~cm}$. Light buff clay, creamy slip, brown glaze. Exterior: vertical panel, corner palmette in field, rosette with festoon border and four-leaf flower with inserted dots. Interior:(?). Pl. XIII.
255. TS 597. Shoulder/side sherds. G 11 SW. C. $12.4 \times$ c. 8.7 cm . Reddish clay with grits and mica, creamy slip, light brown glaze. Exterior: vertical panel, hind leg of animal in field, behind it vertical slim ray; below, broad band and meander. Interior:(?). Pl. XIII.
256. TS 1452 . Neck/shoulder sherd. G $11 \mathrm{SW} .7 .0 \times 5.5 \mathrm{~cm}$. Red clay with some grits and mica, whitish slip, black glaze. Exterior: neck glazed, vertical panel, frieze of pendent tongues; below, group of pendent dots. Interior: neck glazed with white and red bands added. Pl. XIII.
257. TS 2098. Shoulder sherd. P 11 NW. $9.2 \times 7.0 \mathrm{~cm}$. Light brown clay, chalky white slip, black glaze. Black-figure. Exterior: frieze of pendent tongues, vertical panel, grif fin with tall neck in field, rounded design at bottom, corner-palmette, irregular designs in front of grif fin. Interior: plain. Pl. XIII. Similar (no griffin): TS 302 F 5 SE, TS 2625 J 8 SE.
258. TS 2269. Shoulder sherd. G 7 SE. $5.1 \times 5.2 \mathrm{~cm}$. Dark brown gritty clay, yellowish slip, light to dark brown glaze. Vertical panel, filling-ornament with added red in field. Interior: plain. Pl. XIII.
259. TS 2324. Neck/shoulder sherd. L 8 SE. $9.3 \times 6.4 \mathrm{~cm}$. Brick-red, very gritty clay, whitish slip, brown glaze. Black-figure. Exterior: neck glazed, vertical panel, in field hindpart of animal. Interior: glazed, white band added on neck. Pl. XIII.
260. TS 3057. Shoulder/side sherd. G $14.7 .0 \times 4.4 \mathrm{~cm}$. Grey-brown, micaceous clay, white slip, black glaze. Black-figure. Vertical panel, in field wing(?) with added red, solid star-rosette, small group of tips below. Interior:(?). Pl. XIII.
261. TS 662. Shoulder/side sherd. G 8 SE. $9.3 \times 10.5 \mathrm{~cm}$. Light brownish clay with mica, creamy slip, black glaze. Black-figure. Vertical panel, tail of bird in field, corner palmette; red and white added for stripes on the two bands below. Pl. XIII.
262. TS 667. Neck/shoulder sherd. G 8 SW. $5.6 \times 4.7 \mathrm{~cm}$. Reddish clay with grits and mica, creamy slip, red glaze. Black-figure. Vertical panel, head of lion in field. Interior:(?). Pl. XIII.
263. TS 2150. Shoulder sherds. P 11 NW. $13.7 \times 7.7 \mathrm{~cm}$. Light grey clay, thin greyish slip, black glaze. Black-figure. Vertical panel; in field, blob-rosette and hindpart of bull with added red on belly. Interior: plain. Pl. XIII.
264. TS 2323. Shoulder sherd. L 8 SE. $3.9 \times 5.1 \mathrm{~cm}$. Reddish, very gritty clay, creamy slip, black to brown glaze. Vertical panel; in field, group of four small stripes, above frieze of pendent tongues. Interior:(?). Pl. XIII.
265. TS 4514. Sūkās I 60 no. 1 fig. 25 d pl. 4. Shoulder sherd. G 13 NW. $4.5 \times 4.0 \mathrm{~cm}$. Buff clay, creamy slip, brownish glaze. Vertical panel with graffito: $\delta \alpha$. Pl. XIV. Fig. g. Similar (no graffiti): TS 659 P 11 NW, TS 828 G 11 SE.
266. TS 1284. Rim/neck/shoulder sherd. P 11 SW. $10.0 \times 2.5 \mathrm{~cm}$, h. c. 4.0 cm , org. diam. c. 21.5 cm . Reddish clay with white grits, whitish slip, black glaze. Rim: continuous meander on topside, vertical stripes on edge. Exterior: neck glazed, frieze of pendent tongues on shoulder. Interior: glazed; at top, three white bands added. Pl. XIV. Fig. d. Similar: TS 29 G 5 NE, TS 269 G 11 SE, TS 2095 P 11 NW.
267. TS 1213. Rim/neck/shoulder sherd. G 11 SE. $3.0 \times 5.0 \mathrm{~cm}$, org. diam. c. 22.0 cm . Light reddish clay with white grits, white slip, red glaze. Rim: meander on topside, vertical stripes on edge. Exterior: neck glazed, frieze of pendent tongues on shoulder. Interior: glazed, white band added at top. Pl. XIV. Fig.d. Similar (red sometimes added on the interior): TS 3 Surface, TS 92 E 8 NE, TS 265 G 5 SE, TS 313 G 8 SW, TS 318 G 5 SE, TS 609 G 5 SW, TS 678 G 11 SE , TS 774 G 7 SE , TS 821 G 11 S W, TS 1110 G 8 S W, TS 1285 P 11 SW , TS 1298 P 11 NW, TS 1798 F 16 SW , TS 2144 L 8 SE, TS 2571 H 11 NW , TS 2575 H 11 NW, TS 2619 J 8 SE, TS 2723 L 8 SE, TS 3383 H 11 NW, TS 3512 G 5 NE, TS 3546 G 5 NE, TS 3610 G 13, TS 3666 G 14, TS 3736 G 14, TS 4404 G 14 NW, TS 4802 G 10 SE.
268. TS 1790. Handle-plate with rim sherd. F 15 SE . C. $7.0 \times 3.5 \mathrm{~cm}$, h. of handle 3.0 cm . Red brown clay with grits, (slip not mentioned), brown glaze. Plate: meander on topside, edges glazed, rim: traces of meander. Pl. XIV. Similar: TS 2538 Surface, TS 2586 H 11 NW.
269. TS 83 . Handle-plate with rim sherd and root of handle. G $15 \mathrm{SE} .7 .7 \times 2.5 \mathrm{~cm}$. Light brown clay, white slip with greenish tinge, black glaze. Plate: four clubs on topside, edges and handle-root: glazed, rim: meander. Pl. XIV.
270. TS 351. Handle-plate with rim sherd and root of loop-handle. Surface. $8.0 \times 5.5 \mathrm{~cm}$. Light brown clay, creamy white slip, light reddish-brown glaze. Decoration similar to no. 269. Fig. d.
271. TS 3844. Handle-plate with rim sherd and root of handle. Surface, W-slope. 9.2×6.0 cm, h. of handle 2.7 cm . Reddish clay with few grits, creamy slip, black to brown glaze. Plate: three rays on topside, edges glazed, rim: meander. Pl. XIV. Similar: TS 3428 H 11, TS 3466 H 11 NE.
272. TS 4401. Handle-plate with rim sherd and root of handle. G 10 NE. $4.8 \times 1.5 \mathrm{~cm}$. Light brownish clay, with dark and light grits, mica, yellowish slip, black glaze. Plate: six rays on topside, edges glazed, rim: meander. Pl. XIV. Similar: TS 779 G 7 SE.
273. TS 4913. Handle-plate with fragment of loop-handle. G/H $14.7 .0 \times 7.0 \mathrm{~cm}, \mathrm{~h}$. of handle 3.0 cm . Light brownish clay, yellowish slip, brownish glaze. Plate: on topside, volute pair with inserted leaf, volutes connected to the edge by small stripes, underside and edges glazed. Pl. XIV. Fig. d.
274. TS 2311. Handle-plate with rim sherd and root of handle. F $16 \mathrm{SW} .8 .5 \times 5.0 \mathrm{~cm}$. Brown, very gritty clay, whitish slip, brown glaze. Plate: three linked circles with buds between, rim: meander, root of handle: glazed. Pl. XIV.

Kraters or dinoi.

275. TS 2093. Rim/shoulder sherd. P 11 NW. $4.5 \times 7.9 \mathrm{~cm}$. Pink clay, creamy white slip, brown and orange glaze. Collar of rim sloping on the exterior. Rim: meander, exterior: frieze of pendent tongues, below broad band with white-red-white stripes added, in field two small pendent strokes and a curved one (slanting back of animal?). Interior: plain. Pl. XIV.
276. TS 1444. Rim sherd. P 11 NW. $2.5 \times 2.0 \mathrm{~cm}$. Light buff clay, creamy slip, brown glaze. Square with quatrefoil inserted in meander. Pl. XIV.
277. TS 4528. Shoulder sherd. H 11 SE. $4.6 \times 9.8 \mathrm{~cm}$. Reddish clay, core grey, creamy slip, red glaze. Black-figure. At top, small codron covered by slip. Exterior: glazed, incised decoration: upper part of three pendent lotus flowers linked by double incisions, inserted leaves. Interior: slipped. Pl. XIV.
278. TS 2238 . Bottom/side sherd. G 15 SE. $17.9 \times 12.0 \mathrm{~cm}$. Red, very gritty clay, yellow
slip, red glaze. Exterior: at top, rosette with festoon border, solid star-rosette and group of strokes at ground line, below hook meander enframed by broad bands with added white stripes, at bottom several rays with dot-rosettes between. Interior: glazed; two red and four white bands added. Pl. XIV.
279. TS 1044. Side sherd. G 7 SE. $6.0 \times 5.3 \mathrm{~cm}$. Red clay, white grits, white slip, black to brown glaze. Exterior: half-rosette at ground line, below quick waveline enframed by broad bands, narrow one at bottom. Interior: glazed, red and white bands added. Pl. XIV.
280. TS 4630 . Shoulder sherd. H 10 NE. $4.0 \times 5.5 \mathrm{~cm}$. Light yellow-brown clay, creamy slip, brownish glaze. Exterior: frieze of pendent tongues, small and larger dots in field. Interior: slipped. Pl. XIV.
281. TS 292. Shoulder sherd with root of neck. Surface, F 5 W-slope. $10.1 \times 5.5 \mathrm{~cm}$. Pink clay, creamy white slip, orange glaze. Exterior: root of neck glazed, frieze of pendent tongues, back of animal below. Interior: neck glazed. Pl. XIV. Similar: TS 3831 G 13.
282. TS 4620. Side sherd. H 10 NE. $4.0 \times 2.5 \mathrm{~cm}$. Brownish clay, creamy slip, brown glaze. Black-figure. Exterior: forepart of lion with frontal head, red added on neck. Interior: glazed. Pl. XIV.

Bowls.
283. TS 636. Side sherd. G 16 SW. $6.7 \times$ c. 5.0 cm . Reddish clay with grits, creamy slip, red glaze. Black-figure. Exterior: hindpart of beast and rounded design (point of leaf of handle palmette?), solid star-rosette and group of strokes at ground line, red and white added for stripes on band below. Interior: glazed. Pl. XIV.
284. TS 2152. Side sherd. P 11 NW. $4.3 \times 4.6 \mathrm{~cm}$. Red clay, white creamy slip, red to brown glaze. Black-figure. Exterior: marching bull, added red on belly and hind flank, below waveline enframed by two bands. Interior: glazed, white-red-white stripes added. Pl. XIV.

Fruit-stands.

285. TS 1125. Bottom sherd with upper part of stem. G $11 \mathrm{SE} .6 .0 \times 2.7 \mathrm{~cm}$. Dull, redbrown clay with grits, light buff slip, black glaze. Exterior: two narrow bands, stem glazed. Interior: four buds, four leaves, central dot and two circles, tondo enframed by narrow and broad band. Pl. XIV.
286. TS 2928. Bottom sherd with stem and root of splaying foot. J 8 SE. $5.2 \times 5.5 \mathrm{~cm}$. Light brown, very gritty clay, white slip, black glaze. Exterior: no description. Interior: stalks and bottoms of four leaves and four buds, central dot and two circles. Pl. XIV.
287. TS 3067. Bottom sherd with root of stem. G 14. W. 8.7 cm . Brownish clay, grey in core, (slip not mentioned), red glaze. Exterior: four narrow bands, stem plain. Interior: two buds and tongue, central dot and two circles, tondo enframed by broad band. Pl. XIV.
288. TS 595. Rim/side sherds. G 11 SE. W. c. 8.9 cm , org. diam. c. 20.6 cm . Reddish gritty clay with mica, white slip, black glaze. Exterior: three narrow bands, the low vertical rim glazed. Interior: waveline, three bands (glaze-red-glaze) and two narrow ones, point of radiating bud or leaf. Pl. XV. Similar: TS 1179 G 11 SW, TS 2996 H 11 NW, TS 3377 H 11 NW.
289. TS 4645. Side sherd. G 10 SE. $5.5 \times 5.9 \mathrm{~cm}$. Brownish, somewhat gritty and micaceous clay, (slip not mentioned), brown glaze. Exterior: three narrow bands, interior: outmost hook meander and narrow band with white and red stripes added, inner frieze group of five tongues and part of large rosette. Pl. XV.
290. TS 4689. Side sherd. H 10 SE. $2.7 \times 4.0 \mathrm{~cm}$. Light brownish, somewhat gritty clay, creamy slip, brownish glaze. Exterior: two narrow bands. Interior: outmost squares with quatrefoil and dots, broad band with white and red stripes added, inner frieze four or five tongues and part of bud, central dot and two circles. Pl. XV.

Nr. 2

Fig. d.

291. TS 610. Side sherd. G 11 SW. $4.2 \times 4.2 \mathrm{~cm}$. Pink gritty and micaceous clay, creamy slip, black to brownish glaze. Exterior: two narrow bands and grafitto. Interior: in outer frieze, bud linked to flower(?) red added, broad band with white and red stripes added, in inner frieze, squares with quatrefoil and dots, innermost band with white and red stripes added. Pl. XV. Fig. g.
Fruit-stands or dishes.
292. TS 4837. Side sherd. H 11 NE. $3.7 \times 2.3 \mathrm{~cm}$. Rather fine brownish clay, creamy slip, red brown glaze. Exterior: one narrow band. Interior: bottom of flower linked to bud. Pl. XV.
293. TS 1052. Side sherd. G 8 SW. $4.8 \times 4.7 \mathrm{~cm}$. Dark brown, very gritty clay, whitish slip, black glaze. Exterior: one narrow band. Interior: group of tongues, band above. Pl. XV. Plate.
294. TS 608. Side/bottom sherd, ring foot with groove. G 5 SW. $4.9 \times 4.8 \mathrm{~cm}$. Reddish, gritty and micaceous clay, creamy slip, black to brown glaze. Exterior: plain. Interior: bird and floral ornament, glaze(?) at border above. Pl. XV.

Dishes.
295. TS 352. Rim sherd with suspension-hole through outer part of side. Surface. 6.7×6.0 cm. Light brown to pinkish clay, light grey in core, white slip, black glaze. Exterior: edge of rim glazed. Interior: chain of lotus flowers and buds on rim. Pl. XV.
296. TS 1015. Rim/side/bottom sherd with ring foot. H 5 NE. $6.0 \times 4.4 \mathrm{~cm}$. Dark buff clay with some grits, creamy slip, black glaze. Three suspension-holes through rim. Exterior: group of two narrow bands and one around foot. Interior: hook meander on rim; on side, three bands (glaze-red-glaze) and two narrow ones, point of bud and leaf. Pl. XV.
297. TS 1147. Rim/side sherd. G 11 SW. $5.0 \times 10.1 \mathrm{~cm}$. Dark red clay with grits and mica, creamy slip, brown glaze. Exterior: three narrow bands. Interior: hook meander on rim, two broad bands and central bud and leaf on side. No added colour. Pl. XV. Similar: TS 48 Surface, TS 85 E 8 NE, TS 296 G 5 SE, TS 304 F 5 SE, TS 347 G 7 SE/G 8 SW, TS 1079 G 8 SW, TS 1081 G 8 SW, TS 1103 G 8 SW, TS 1141 G 11 SW, TS 1397 P 11 NW, TS 2687 L 8 SE, TS 3048 G 16, TS 3378 H 11 NW, TS 3465 H 11 NE, TS 3603 G 13, TS 3714 G 14, TS 4402 G 10 NE.
298. TS 1340. Rim/side sherd. H 5 NE. $8.5 \times 7.0 \mathrm{~cm}$. Dark buff gritty clay, whitish slip, black glaze. Exterior: four narrow bands. Interior: hook meander on rim(?), two broad and two narrow bands, central leaf on side. Pl. XV.
299. TS 2110. Side/bottom sherd with ring foot. P 11 NW. $5.1 \times 6.0 \mathrm{~cm}$. Pink clay, creamy slip, reddish brown glaze. Exterior: narrow band on foot. Interior: two(?) buds and one leaf, one of the buds(?) turned down. Pl. XV.
300. TS 1517. Rim/side/bottom sherd with ring foot. G 5 SE. $10.0 \times 5.0 \mathrm{~cm}, \mathrm{~h} .4 .0 \mathrm{~cm}$. Reddish gritty clay, creamy slip, red glaze. Exterior: four narrow bands, foot glazed. Interior: transversal stripe on rim; on side, three bands (glaze-red-glaze) and one narrow one, cross and remnant of bud or leaf. Pl. XV.
301. TS 2620. Rim/side/bottom sherds with ring foot. J 8 SE. $10.5 \times 11.0 \mathrm{~cm}$. Brown clay with white grits, white slip, black glaze. Exterior: two narrow bands. Interior: hook meander on rim; on side, three bands (glaze-red-glaze) and two narrow ones, lotus flower and bud. Pl. XV.
302. TS 238. Rim/side sherds. P 11 SW. $10.7 \times 8.5 \mathrm{~cm}$. Pink clay, creamy slip, brownish glaze. Exterior: narrow bands, dots on edge of rim. Interior: hook meander on rim; on side, two broad bands with added red stripes, three narrow bands, point of central bud or leaf. Pl. XV. Similar: TS 26 E 8 SE, TS 330 G 5 SE, TS 338 H 5 NE, TS 810 G 8 SE, TS 2497 P 11 NW.
303. TS 1105. Rim/side/bottom sherd with ring foot. G 8 SE. $7.0 \times 5.0 \mathrm{~cm}$. Dark brownish very micaceous clay, whitish slip, red glaze. Exterior: no description. Interior: hook meander on rim; on side, two broad bands, point of bud or leaf and radiating waveline. Pl. XV.
304. TS 5632. Rim/side/bottom sherds with ring foot. H 12 . Org. diam. c. $20.0 \mathrm{~cm}, \mathrm{~h}$. 4.5 cm . Dark brownish clay, thin light slip, brown glaze. Exterior: upper part, three bands, broad band at junction with foot and on foot. Interior: on rim and side, broad and narrow bands (glaze-red-glaze), buds alternating with groups of two tongues. Pl. XV. Fig. d.
305. TS 1271. Rim/side sherds. P 11 SW. $4.0 \times 8.0 \mathrm{~cm}, 5.4 \times 8.5 \mathrm{~cm}$. Reddish buff clay with few mica, whitish slip, red glaze. Suspension-hole below rim. Exterior: no description. Interior: broad band on rim; on side, broad and narrow band, point of tongue. $P l . X V$.

Banded dishes.

306. TS 1076. Rim sherds. G 8 SW. $6.1 \times 2.4 \mathrm{~cm}, 4.0 \times 2.0 \mathrm{~cm}$. Red, very gritty clay, black glaze. Exterior: no description. Interior: rim glazed, groups of four white transversal stripes added. Pl. XV. Similar: TS 1111 G 8 SE.
307. TS 1037. Rim/side/bottom sherds with ring foot. G 7 SE. $14.4 \times 3.4 \mathrm{~cm}$. Very micaceous red clay with some grits, black glaze. Two suspension-holes through rim. Exterior: no description. Interior: glaze on rim, two groups of white transversal stripes added, one band on side. $P l . X V$.
308. TS 1988. Rim/side sherd. G 8 NW. $4.0 \times 2.5 \mathrm{~cm}$. Fine brown clay, black glaze. Exterior: graffito. Interior: band on rim and at junction of side. Pl. XV. Fig. g. Similar: TS 3577 G 13 NW (no graffito).
309. TS 533. Rim sherd. P 11 SW. Org. diam. c. 10.0 cm , h. c. 2.2 cm . Reddish clay with white grits, red glaze. Exterior: band on rim. Interior: band on rim and immediately below rim. Pl. XV.

XIII
 Chian Vases

The ceramic series from Chios are poorly represented among the finds from Tall Sūkās; most of the pieces are late, only the two jugs, $\mathbf{3 2 0} \mathbf{- 3 2 1}$, seem to be from the 7 th century. The chalice fragments, $\mathbf{3 1 0}-\mathbf{3 1 8}$, display examples of three types of decoration of the first half of the 6th century: Animal Style chalices, Simple Figure chalices and Plain chalices. ${ }^{397} 310$, and possibly 311,313 and 317 , have belonged to Animal Style chalices. On the interior of 310 part of an elaborate lotus flower occurs, ${ }^{398}$ whereas 311 has a row of buds radiating from two narrow bands - instead of a flower. The decoration of the latter looks similar to that of phialai, ${ }^{399}$ but 311 is decorated on the exterior like the chalices in question. ${ }^{400}$ The dots flanked by two narrow bands on 313 might be part of a large volute composition like that on some of the Chian Wild Goat chalices of the late 7 th century, ${ }^{401}$ only a rim ornament as on 313 is not found on

[^37]chalices earlier than those of the Animal Style; the latter generally continues the Wild Goat tradition. ${ }^{402}$ The other fragment, 317, might possibly belong to an Animal Style chalice too; a roundel without transversal stripes is not usual in Chian, but occurs on a fragment from Naukratis. ${ }^{403} 312$ is from a plain chalice with tall, slightly offset walls and shallow body; the probably tall, conical foot is not preserved. The shape is quite similar to that of the Simple Figure chalices, of which some have been found in Deposit II in Tocra. ${ }^{404}$ Two tiny sherds, 314-315, may be connected with Simple Figure chalices, on account of their rim ornaments. ${ }^{405}$ The rim fragment 316 has only a narrow band on the edge, and though some of the latest of the chalices are without any particular rim ornament, ${ }^{406} 316$ may just as well have belonged to other shapes. ${ }^{407}$ Because of its finding place 318 is assigned to Period G^{2}. The only fragment with figure representation is $\mathbf{3 1 9}$; the seated sphinx is rendered in silhouette with reserved details. The fragment is plain on the interior and should thus belong to a closed vase; but the frieze of boxes below makes 319 resemble the domed Chian lids which usually have black-figure decoration. ${ }^{408}$ Seated sphinxes are very popular on the latter, ${ }^{409}$ and one of the early black-figure fragments from Thasos indeed displays similarity with the figure of our sphinx, ${ }^{410}$ but the same holds good for a sphinx on an Animal Style chalice where the technique employed is the same as on 319. ${ }^{411}$ Therefore our fragment, though clearly showing Fikellura affinities, is tentatively classified as Chian, i.e. from a bowl with domed lid rendered not as usual in blackfigure technique, but in that of the Animal Style chalices. ${ }^{412}$ Only one of the two jugs $320-321$ has a white slip, i.e. 320 , but the surface of $\mathbf{3 2 1}$ is so worn that we cannot tell if it has not been slipped, ${ }^{413}$ and the band system of the latter makes an ascription to Chios reasonable. $\mathbf{3 2 0}$ might belong to the last quarter of the 7th century, like most of

[^38]the jugs from Emporio. ${ }^{414}$ Most similar to 321 both in proportions and decoration is a jug from Kofina found in Deposit II, where nothing earlier than the 6 th century occurs, ${ }^{415}$ nevertheless, the squatness of our jug is more pronounced than of the ones usually ascribed to the 6 th century. ${ }^{416}$ A few fragments, $322-325$, of the wide-spread Chian wine-amphorae appeared too on Tall Sūkās. ${ }^{417} \mathbf{3 2 2 - 3 2 4}$ are slipped like the earliest wine-amphorae from the late 7 th and the early part of the 6 th century. ${ }^{418} 322$ is from a rather tall neck, the profile is straight and the lip only moderately thickened; these are features which distinguish our fragment from the 7 th century amphorae, ${ }^{419}$ and connect it with the more pronounced spindle-shaped type. ${ }^{420}$ The latter may have developed around 600 B.C.; some occur in CypArc II graves, ${ }^{421}$ and a fragmentary, re-used amphora from Tell Defenneh was sealed with carthouches of King Amasis. ${ }^{422}$ The casual drawing of $\mathbf{3 2 3}$ assigns the fragments to the same type as 322 and the same holds good for $324 .{ }^{423} 325^{424}$ is unslipped, a tendency which appeared already in the first half of the 6th century. ${ }^{425}$ The swelling neck and the dotted theta place this fragment late in the Chian series, perhaps as late as the beginning of the 5th century. ${ }^{426}$

Chalices.

310. TS 234. Side sherd. G 8 SE. $2.4 \times 1.3 \mathrm{~cm}$. Reddish grey clay, milky-white slip, black glaze. Exterior: slipped. Interior: glazed, part of lotus flower with white outlines and red interiors. Pl. XVI.
311. TS 2338. Side sherd. P 11 NW. $4.6 \times 2.0 \mathrm{~cm}$. Light red clay with dark grits, yellow slip, black to brown glaze. Exterior: slipped, frieze of Z's enframed by three bands; at top, single dot; at bottom, slim sloping band. Interior: four buds with white outlines and red interiors radiating from two curved stripes, below white point. Pl. XVI.
${ }^{414}$ Emporio, $144-145.592-595$ fig. 93 pl. 51 belonging to Period IV. For references to the similar Samian series, on which the bands never seem to be grouped as on the Chian jugs, see Emporio, 144 note 1 and Agora XII.1, 78 note 11.
${ }^{415}$ BSA 49 1954, 138.44 pl . 7. The band round the bottom is suggested to imitate a foot, see Agora XII. 178.
${ }^{416}$ Emporio, 145.596 pl. 51. The jugs from the Samian Bothros, closed c. 600 B.C., are definitely slimmer, see AM 74 1959, 27-32 Beilage 59, 73.1; the jug from the "Grand Dépot" in Lindos has the same slim dimensions, Lindos I 618.2565 pl. 123.

417 Emporio, 178-180 with references; for antecedents, ibid, 137-138. See further Lambrino, Vases, $95-132$ figs. 62-90, Histria 2, 89-91.348-372 pls. $21-22$, Materiali 1031962,11 fig. 4, BSA 60 1965, 139, ArchRep 1965/66, 34 fig. 12, BCH 93 1969, 448-449 fig. 25, Mégara Hyblaea 2, 83-84 pl. 70.1-2, 6, Xanthos IV 69-70.111 pl. 25, Agora XII.1, 200 note 4.
${ }^{418}$ BSA 49 1954, 169, Emporio, 179 note 1.
419 BSA 53/54 1958/59, 16 fig. 4, BCH 88 1964, 137-140.218 fig. 50.
420 ArchRep 1965/66, 34 fig. 12.
${ }^{421}$ BCH 88 1964, 138 note 7, 140.
${ }^{422}$ W. M. Flinders Petrie and others, Tanis II. London 1888, 72 pl. 36.5 : "white faced Greek amphora with red lines'", BSA 51 1956, 62 note 4, Boardman, GO, 32, 147 fig. 38.
${ }^{423}$ Emporio, 137: "the upright handle regularly carries a vertical stripe, as do the sixth-century wine-amphorae".
${ }^{424} 325$ is found with a Phoenician jar (TS 4927), dated 600-475 B.C. Sūkās I 90 note 301.
425 BSA 49 1954, 169.
${ }^{426}$ An identical neck is known from Kofina, BSA 49 1954, 139.51 fig. 8, 169, found in Deposit III which contains material from the end of the Archaic period. See further, Amphoras and the Ancient Wine Trade, Excavations of the Athenian Agora, Picture Book No. 6 1961, fig. 44.2 (P 24873). The dotted theta is known from the last quarter of the 6th century, but is not regular until the 5th, see L. H. Jeffery, The Local Scripts of Archaic Greece, Oxford 1961, 325, 335, 338 no. 48 pl. 65.
312. TS 4386. AASyr 13 1963, 220 fig. 23, Emporio, 158 note 2. Side/bottom sherds with handle root. G 12 SW. $8.9 \times 7.9 \mathrm{~cm}$ (one sherd). Brownish very gritty clay, with mica, yellowish slip, black to brown glaze. Exterior: handle-zone enframed by two narrow bands, six vertical stripes, row of V's executed with multiple brush, root of handle glazed. Interior: glazed. Pl. XVI. Fig. d.
313. TS 2155. AASyr 10 1960, 127-28 fig. 16. Rim sherd. P 11 NW. $2.1 \times 2.2 \mathrm{~cm}$. Light brown clay with small white grits, creamy slip, black to brown glaze. Exterior: frieze of S's enframed by four bands, dots superimposed on the uppermost one; in field, slightly curved row of dots flanked above by narrow band and below by glazed field. Interior: single leaf with white outlines and red interior. Pl. XVI. Similar (no decoration except that on the rim): TS 2199 J 8 SE.
314. TS 2663. Rim sherd. L 8 SE. $2.2 \times 1.5 \mathrm{~cm}$. Light brownish clay, white slip, brown to black glaze. Exterior: frieze of small, slanting strokes enframed by four bands. Interior: glazed. Pl. XVI.
315. TS 4562. AASyr 13 1963, 220 fig. 25, Emporio, 157 note 5. Rim sherd. H 10 NE. $2.5 \times 1.5 \mathrm{~cm}$. Greyish brown clay, creamy slip, light brown and black glaze. Exterior: frieze of dots enframed by two bands. Interior: glazed, two bands and dot in added white. Pl. XVI. Similar: TS 2664 L 8 SE.
316. TS 3581. Rim sherd. G 13 NW. $2.1 \times 3.1 \mathrm{~cm}$. Grey-brown, sandy clay, white slip, brown glaze. Exterior: slipped, band on edge. Interior: glazed, except for band at top. Pl. XVI.
317. TS 4801. Side sherd. G 10 SE. $1.8 \times 1.2 \mathrm{~cm}$. Dark brownish clay, thick, smooth yellow slip, brown to black glaze. Exterior: roundel with double contours and solid interior. Interior: part of lotus flower with white outlines and red interiors. Pl. XVI.
318. TS 4699. Side sherd. H 13 NW. $1.5 \times 2.4 \mathrm{~cm}$. Brownish somewhat gritty clay, thick white slip, black to brown glaze. Exterior: slipped, narrow and broad glazed band superimposed. Interior: glazed, two white bands added. Pl. XVI.

Lid?

319. TS 2281. Fragment from upper part. F 16 SW. $2.7 \times 4.0 \mathrm{~cm}$. Red clay with a little mica, creamy slip, light brown to black glaze. Exterior: possibly four-leaf rosette, seated $\operatorname{sphinx}(?)$ with red added on thigh and belly, curved, reserved stripes at hip and another in the forepart of the wing; below, two narrow bands and frieze of boxes. Interior: plain. Pl. XVI. Jugs.
320. TS 4440. AASyr 13 1963, 220 fig. 24. Nearly intact. G 12 SE. H. 8.0 cm. Reddish brown clay, white slip, brownish glaze. Exterior: two bands below handle, on handle transversal stripes. Interior: band on rim. Pl. XVI.
321. TS 235. Handle missing, otherwise nearly complete. H 5 NE. H. 9.9 cm , diam. of foot 6.9 cm . Fine light brownish clay with some grits and mica, reddish brown glaze. Exterior: band on rim, two bands below handle. Interior: band on rim. Pl. XVI.

Amphorae.
322. TS 5637. Rim/neck sherd. H $12.5 .3 \times 14.5 \mathrm{~cm}$. Dark red, gritty clay, whitish slip, brown matt glaze. Rim glazed; on neck, pendent, slim, slightly curved stripe; at bottom, narrow horizontal band. Pl. XVI. Fig. d.
323. TS $1158-59$. Neck/side sherds. G $11 \mathrm{SW} .8 .0 \times 12.0 \mathrm{~cm}, 12.0 \times 12.0 \mathrm{~cm}, 11.0 \times 13.0 \mathrm{~cm}$. Red gritty clay with few mica, white slip, red matt glaze. On neck, slim curved band, and below narrow horizontal band; on belly, another narrow band. Pl. XVI. Similar: TS 1224 G 11 NW, TS 2616 H 11 NW, TS 5650 H 12.
324. TS 1475. Handle. G 11 SW. $9.0 \times 3.5 \mathrm{~cm}$. Dark brown gritty clay, white slip, red matt glaze. Vertical band. Pl. XVI.
325. TS 4928. Sūkās I 90 no. 6 fig. 32 c pl. 5. Fragmentary neck with handle roots. H 15. H. 10.0 cm , diam. 12.0 cm . Light reddish brown, very gritty clay, black glaze. Rim glazed, on both sides painted: θ. Pl. XVI. Fig.d.

XIV
 Vroulian Cup

Surprisingly, a fragment of a Vroulian cup has appeared. This category is found only rarely outside Rhodes; ${ }^{427}$ overseas the cups are represented in Naukratis ${ }^{428}$ and in Mersin, where two fragments have appeared. ${ }^{429 a}$ On account of the contexts in Vroulia the cups are dated to the first third of the 6 th century. ${ }^{429}$ b
326. TS 4693. Side sherd. H 11 SE. $3.0 \times 2.5 \mathrm{~cm}$. Red-brownish, somewhat gritty clay, black glaze. Exterior: incised leaves alternately in glaze and added red radiating from two incised curved stripes. Interior: similar leaves. Pl. XVI.

XV

Vases in Fikellura Style

Another of the possible Rhodian groups, the Fikellura vases, ${ }^{430}$ are sparsely represented too: less than ten sherds were found and registered, 327-331.431 Usually friezes of short vertical strokes enframe the meander as on 327 , only the earliest of the vases with meanders on the neck are without these friezes; ${ }^{432}$ on the later vases they are canonic. ${ }^{433}$ The Altenburg Group, dated $550-540$ B.C., seems to provide the

[^39]earliest examples, ${ }^{434}$ and this dating should thus be the earliest possible for $\mathbf{3 2 7} \mathbf{3} \mathbf{3 2 8}$ is without enframing friezes, so theoretically it might be earlier than $\mathbf{3 2 7}$ - the very delicate and careful drawing of the meander and the square connect the fragment with early vases like the Mykonos Group. ${ }^{435}$ Pendent lotus flowers, as the one on the shoulder sherd $\mathbf{3 2 9}$, occur on vases dated between c. 550 and 535 B.C. ${ }^{436}$

Indeterminate closed vases.
327. TS 2312. Neck sherd. F 16 SW. $3.2 \times 2.4 \mathrm{~cm}$. Reddish somewhat porous clay, with some mica, yellow slip, red brown glaze. At top small glazed codron. Frieze of short vertical strokes enframed by narrow bands, below remnants of meander. Pl. XVI.
328. TS 4419. Sūkās I 63 no. 18,88 fig. 25 g pl. 4 . Neck sherd. G $14 \mathrm{SE} .6 .5 \times 8.9 \mathrm{~cm}$. Light, reddish very micaceous clay, yellow slip, brownish glaze. Reserved metope with meander and squares with quatrefoil and inserted dots. Pl. XVI.
329. TS 2629. Shoulder sherd. F 15 SW. $4.0 \times 3.3 \mathrm{~cm}$. Red, very micaceous clay, white slip, red glaze. Pendent lotus flower, narrow bands. Pl. XVI.
330. TS 625 . Side sherd. G 11 SE. C. $3.5 \times 3.3 \mathrm{~cm}$. Reddish clay with mica, yellow-white slip, red glaze. Two friezes of crescents, separated by two narrow bands. Pl. XVI.
331. TS 575 . Side sherd. G 11 SW. $2.5 \times 2.3 \mathrm{~cm}$. Red clay with mica, white slip, red glaze. Frieze of crescents, below/above frieze of short vertical strokes. Pl. XVI. Similar: TS 598 G 11 SW, TS 1102 G 8 SW, TS 1740 P 11 NW, TS 3077 G 14.

XVI

Other East Greek Black-Figured Vases

The fragments classified under this heading form no homogeneous group; stylistically as well as chronologically they are very different. $\mathbf{3 3 2 - 3 4 7}$ all belong to closed vases. $\mathbf{3 3 2}-\mathbf{3 3 6}$ are slipped and thus related to the latest Orientalizing wares, i.e. Late Wild Goat, Chian and Naucratite (?), but in the colour effect and the incised details they lead forward to the Black-Figure schools of the second half of the 6th century in Eastern Greece. Only little material belonging to this transitional phase, mainly covering the second quarter of the 6th century, has been published. ${ }^{437}$ Usually the items are listed under Miscellaneous or Indeterminate Black-Figure. ${ }^{438}$ Thick and broad white bands, like on 332 , are frequent in this period; ${ }^{439}$ on the body of the lions the use of small vertical incisions is still restricted to the mane, the forepart of the back and the buttocks. ${ }^{440} 333$ might represent this type, but on 332 the incisions apparently appear too on the breast of the animal, a feature which is met with in "Clazomenian',

[^40]already on the earliest of these vases. ${ }^{441}$ The closest parallel to the waved silhouette of the indeterminate figure of 336 seems to be the stylization of the belly of a centaur on a "Clazomenian'" fragment dated c. 550-540 B.C. ${ }^{442}$ The tail on 334 probably belonged to a horse, ${ }^{443}$ as none of the early "Clazomenian" satyrs appear to have tails stylized in the same manner. ${ }^{444}$ White crosses are favourite ornaments especially on female dresses of the "Clazomenian" vases; they occur too on our fragment 335, where the border is indicated by three incised and perhaps two red vertical wavelines, but the appearance looks less stiff than on the "Clazomenian'" vases. Like the preceding four sherds, this fragment is slipped and may thus antecede the "Clazomenian" proper, or perhaps be a late, Chian/Naucratite representation influenced by "Clazomenian',. ${ }^{445}$ The rest of the fragments belonging to closed vases, $\mathbf{3 3 \%} \mathbf{- 3 4 7}$, are not slipped; most of them are from the second half of the 6 th century, and thus probably to be connected with vases from the "Clazomenian" koiné. Red and white are used lavishly on $337-338,341-343$; the most ornamental fragment, 337, might be rather late, the stylization of the mane is closest to the pieces grouped together in the Knipovitch Class, ${ }^{446}$ where the horses, as usual in "Clazomenian', are bridled, but on none of them is the neck ornament stylized in the same primitive manner as on $337 .{ }^{447}$ Broad white bands as on 338 and on the chest of $\mathbf{3 3 7}$ are seen still on the "Clazomenian" pottery from the late 6th century. ${ }^{448}$ S-shaped incisions flanking added stripes, like on $\mathbf{3 4 2}-343$, occur on a horse of a hydria assigned to the Urla Group. ${ }^{449} 339^{450}$ might be rather early; the manner seems to copy the Gorgo Painter. ${ }^{451}$ The details of the sturdy bird on 344a are not very informative. ${ }^{452}$ Fussy incisions like those on $\mathbf{3 4 5}$ often appear on the horses of the Urla Group. ${ }^{453}$

441 AD II.5, Berlin 1908, pl. 55 (= BSA 47 1952, 124 A 3 Tübingen Group).
${ }^{442}$ AD II.5, pl. 56.5 (= BSA 47 1952, 139 F 15 Miscellanea). For similar stylization on the later vases belonging to the Clazomenian koiné, see for instance CVA Brit. Mus. fasc 8, II Dn, pls. 7.9, 11.2 ($=$ BSA 47 1952, 131 C II 22, C II 18 Urla Group), BSA 47 1952, 140 F a pl. 32 Miscellanea.
${ }^{443}$ CVA Cambridge fasc 2, II D, pl. 18.4 (= BSA 47 1952, 138-139 F 1 a-c Miscellanea, dated ". . a little before the middle of the 6 th century an early - probably experimental stage in the Clazomenian b.f. style"), see further BSA 60 1965, 131, AD II.5, pl. 55.2 a ($=$ BSA 47 1952, 124 A 3 Tübingen Group).
${ }^{444}$ CVA Brit. Mus. fasc 8, II Dn, pl. 7.9 ($=$ BSA 47 1952, 131 C II 22 Urla Group); late example: BSA 47 1952, 140 Fa Miscellanea, last quarter of the 6 th century.

445 The chain of woman dancers on the "Clazomenian" vases may have influenced Chain representations, see BSA 511956,61 note 10 and JHS $441924,204,217-218$; for the opposite point of view, see BSA 47 1952, 127 note 20. Ornamental crosses are found too on Naucratite dresses, JHS 44 1924, pl. 6.8,25 but bordering wavelines like on $\mathbf{3 3 5}$ are apparently not to be connected with the latter category. On "Clazomenian" the chiton-clad women are fullest represented in the Tübingen Group: C. Watzinger, Griechische Vasen in Tübingen, Reutlingen 1924, 15.9 pl. 2 C 8 (according to R. M. Cook an "unreliable sketch", BSA 47 1952, 125 A 10), CVA Brit. Mus. fasc 8, II Dn, pl. 13.3 ($=$ BSA 47 1952, 125 A 11), BSA 60 1965, 130.68 fig. 12 pl. 34.
${ }^{446}$ BSA 47 1952, 136-138, for the mane, see especially E II 3. The class is dated 540-10 B.C.
447 The five narrow bands on the neck of 337 more likely illustrate the delicate necklace found on "Clazomenian" horses, CVA Brit. Mus. fasc 8, II Dn, pl. 12.1 ($=$ BSA 47 1952, 132 C II 25 Urla Group) than a harness, see BSA 47 1952, 136 E III 2 Knipovitch Class.
${ }^{448}$ BSA 60 1965, 130-131.71-73 pl. 35.
${ }^{449}$ CVA Brit. Mus. fasc 8, II Dn, pl. 13.1 (= BSA 47 1952, 131 C I 14), dated c. 530 B.C.
450339 is found with a fragment of possibly an Ionian Little Master cup, Sūkās I 60 note 176 pl. IV no. 4 (not included in the present catalogue).
${ }^{451}$ Sūkās I 60 note 175, add: JdI 76 1961, 1-47 figs. passim.
${ }^{452}$ For an Atticizing fragment, see BSA 60 1965, 115.3 pl .23 .3 g.
${ }^{453}$ BSA 47 1952, 133; see CVA Brit. Mus. fasc 8, II Dn, pls. 12.1, 3-4, 13.2 ($=$ BSA 47 1952, 132 C II 25, 131 C II 14, 132 C II 27).

Two rows of rays radiating from the foot are not usual on East Greek pottery, though the contrary has been claimed. ${ }^{454} 348-\mathbf{3 6 4}$ may seem Attic, but the fabric indicates an Eastern origin. 348-352 are from open vases; the fragments all bear figure representations which more or less are influenced by the traditions of the mainland. The most outstanding one is that on 348: a man(?) is leaning forward, and the raised hand is rather his own than that of another person. The gesture and the stylization of some of the details, which are rendered rather awkwardly, are not familiar in Eastern Greece. The posture of the hand is matched on an Attic amphora assigned to the Amasis Painter; ${ }^{455}$ the Attic scene is Dionysaic and our figure, whom two red stripes on the shoulder may indicate as dressed, may be a participant in a similar party rather than in a sporting contest. ${ }^{456}$ The stylization of the hair hanging down the back seems to copy the Attic fashion employed by the Amasis Painter and his contemporaries; ${ }^{457}$ because of the raised hand the position of the fillet looks strange. ${ }^{458}$ The profile and the large nearly circular eye suggest a date not later than c. 540 B.C. for our fragment. Large solid filling-ornaments occur on two fragments 349 and 351, and the decoration of at least the latter fragment seems due to Attic influence: the use of several incisions is characteristic especially for the Polos Painter, ${ }^{459}$ whose works were widely exported. ${ }^{460}$ A stylization of leg and chest similar to that on $\mathbf{3 5 0}$ is found on Attic as well as Corinthian. ${ }^{461}$ The type of lion painted on 352 , where the whole mane except the narrow, incised fore part is painted red, may equal the Corinthian lion ${ }^{462}$ - but the model may rather be the Attic one. ${ }^{463} \mathbf{3 5 3 - 3 5 \%}$ are rim fragments of kraters or dinoi. The flower chain on 353 a may be understood as a simplification of the elaborate Attic and Corinthian rim ornament. ${ }^{464}$ The very slovenly

[^41]rendering of the animal on the handle-plate 353 b may perhaps too imply influence from the manner of the Polos Painter. The motifs on $354-357$ are the current East Greek rim ornaments. ${ }^{465} 358-364$ are rim fragments of cups suggested to be East Greek because of the clay which is described as brownish, sometimes with white particles. 358-359 have the same rim ornament and on account of their finding places they might have belonged to the same cup. The type to which $358-359$ have belonged is that of a Siana-cup, a double-decker, but usually on the Attic cups the lotuses are linked to lotuses and the buds to buds, ${ }^{466}$ while on our fragments the lotus is linked to a bud, i.e. the arches do not cross each other. Only on a few of the Sianas painted in the manner of the Griffin Bird Painter an arrangement as on 358-359 occurs. ${ }^{467}$ If the fabric, as described, can qualify for an Attic origin, our cup may well be Attic. ${ }^{468}$ The bird has affinities with those from Tocra ${ }^{469}$ rather than with those on a suggested East Greek, but Attic influenced cup, which M. Robertson ${ }^{470}$ regards as a possible precursor of the Ionian Little Masters. ${ }^{471}$ Human figures and animals appear on 360 363 which have belonged to band-cups; ${ }^{472}$ they have been discarded as Attic on account of their fabric, but the drawing of 360 is perhaps clumsier too than on Attic cups. This fragment should be dated c. 530 B.C. What sort of cup $\mathbf{3 6 4}$ belonged to is uncertain. ${ }^{473}$ The fragment 365 is flat and with a plain exterior; most likely it belongs to a plate, a shape not usual in the "Clazomenian" series. ${ }^{474}$ The representation shows affinities with "Clazomenian", but also divergencies: white is used for the ornamental details, but the flesh of the figure is black, not white as usual for women in "Clazomenian". 475 Nevertheless it is preferable to consider our figure as female: jewels indeed seem to be absent on 365, but in this sketchy drawing the hairline curling into a spiral might indicate an ear-disk. ${ }^{476}$ Because of the plate shape our figure was most likely the only one represented on the plate; the incisions on the breast indicate a wing, i.e. of a sphinx ${ }^{477}$ or a siren ${ }^{478}$-with head turned back. The profile and the oblong eye date our fragment to the decade $530-20$ B.C., and $\mathbf{3 6 5}$

465 354: BSA 60 1965, pl. 32.52 e, Attic: CVA Louvre fasc 12, pl. 164.3; 355. Attic: CVA Louvre fasc 12, pl. 160.1; 356: the profile looks similar to Attic kraters dated c. 540-30 B.C., CVA Louvre fasc 12, pl. 164; 357: BSA 60 1965, pl. 28.37.
${ }^{466}$ Tocra, $96.1042-5$ note 5 pl .75.
467 See specially CVA Capua fasc 2, III H, pl. 11.5 (J. D. Beazley, Attic Black-Figure Vase-Painters. Oxford 1956, 74.8). Our fragments have no visible traces of added white.
${ }^{468} \mathrm{E} \varphi \eta \mu \mathrm{ApX}$ 1953/54 II, 147: the Attic fabric is doubtful.
${ }^{469}$ See note 466.
${ }^{470} \mathrm{E} \varphi \eta \mu \mathrm{A} \rho \times 1953 / 54$ II, $147-148$ pl. 1.3.
471 AM 59 1934, 81-122 pls. 6-9, Beilage 6-11.
${ }^{472}$ JHS $521932,187-191$ pl. 9, further CVA Orvieto fasc 1, III H, pls. $3-5$, Tocra, 96.1062 pl. 79.
${ }^{473}$ The ground line is indicated by horizontal bands, a feature which occurs on the Attic Siana cups, see note 466 , but the fabric of 364 is certainly not Attic.
${ }^{474}$ BSA 47 1952, 139 F 8, 142.
475 Even on the latest vases, BSA $601965,130.68$ fig. 12 pl. 34 : c. 540 B.C., 130.71 pl. 35 : c. 525 B.C. On white for male flesh, see BSA 471952 , 128 note 30 , 141 note 78 .
${ }^{476}$ See R. M. Cook on "Clazomenian" ears and ear-rings, CVA Brit. Mus. fase 8, 28 Postscript.
477 For a sphinx with head turned back, see a fragment of a Clazomenian sarcophagus in Copenhagen, ActaArch $61935,175-178$ fig. 7 pl .2 , dated in the first quarter of the 5 th century. For a sphinx on a late Wild Goat plate, see Naukratis II pl. 12 (Kardara, A, 236.1, Schiering, notes 246, 451, Rumpf, 82 IV a 5).
${ }^{478}$ For a "Clazomenian" siren with head turned back, see CVA Brit. Mus. fasc 8. II Dn, pl. 6.1, dated in the third quarter of the 6th century.
might perhaps be grouped with the vases listed by R. M. Соoк as "sometimes mentioned with Clazomenian"; ${ }^{479}$ a woman on a very late amphora from Rhodes has dark flesh like 365. ${ }^{480}$

Indeterminate closed vases.

Slipped.

332. TS 1380. Side sherd. G 7 SE. $7.0 \times 4.0 \mathrm{~cm}$. Fine dark buff clay with few mica, creamy slip, black glaze. Forepart of beast, outline of chest marked by small incisions, incisions and added red and white on body. Pl. XVII.
333. TS 1738. Side sherd. P 11 SW. $4.5 \times 6.5 \mathrm{~cm}$. Reddish buff clay, white slip, red very worn glaze. Forepart of beast, outline of neck and back marked by small incisions, red added on abdomen. Pl. XVII.
334. TS 4063. Side sherd. H 11 NW. $5.0 \times 5.3 \mathrm{~cm}$. Red brown, very gritty clay, white slip, black glaze. Panel, tail of horse in field, careful incisions. Pl. XVII.
335. TS 578 . Side sherd. G 11 SE. $3.7 \times 3.4 \mathrm{~cm}$. Light buff clay with grits and mica, white slip, black glaze. Border of costume: three incised and one red vertical waveline, two white crosses added besides. Pl. XVII.
336. TS 1379. Side sherd. G 5 NE. $5.0 \times 3.5 \mathrm{~cm}$. Light buff clay, whitish slip, black and red glaze. Body of centaur(?), outline waved and marked by incisions. Pl. XVII.

Without slip.

337. TS 635 . Side sherd. G 11 SE. $4.5 \times 6.9 \mathrm{~cm}$. Reddish clay with white grits, black glaze. Forepart of horse with added red on mane; at top, white dot belonging to head-harness, below five white bands indicating necklace, curvilinear red and white bands added on body. Pl. XVII.
338. TS 1447. Side sherd. P 11 NW. $5.5 \times 4.5 \mathrm{~cm}$. Red clay with white grits, red brown glaze. Glazed all over, added white curvilinear stripe and parallel incised stripe. Pl. XVII.
339. TS 4574. Sūkās I 60 no. 3 fig. 25 f pl. 4. Side sherd. G $13 \mathrm{SE} .4 .2 \times 3.2 \mathrm{~cm}$. Buff micaceous clay, brownish glaze. Forepart of lion, incisions on body, two groups of sloping parallel incisions on leg, red added on abdomen and mane. Pl. XVII.
340. TS 1986. Side sherd. G 7 SE. $3.7 \times 2.5 \mathrm{~cm}$. Fine light reddish clay, black glaze. Hind part of animal(?), red and white bands added. Pl. XVII.
341. TS 634. Side sherd. G 11 NW. C. $3.5 \times 3.0 \mathrm{~cm}$. Reddish clay with white grits and mica, black to red glaze. Glazed field at top; below, hind part of animal(?), red and white stripes added. Pl. XVII. Similar: TS 1839 G 15 NE.
342. TS 2226. Side sherd. L 8 SE. $3.9 \times 3.0 \mathrm{~cm}$. Red clay, brownish-black glaze. Forepart of beast, incisions, red-white-red curvilinear bands added. Pl. XVII.
343. TS 2442. Side sherd. L 8 SE. $5.0 \times 3.0 \mathrm{~cm}$. Reddish clay, lustrous dark red glaze. Body of beast, incisions, white S's added. Pl. XVII.

344a. TS 4489. Side sherd. H 11 NE. $2.6 \times 2.8 \mathrm{~cm}$. Buff clay, black glaze. Lower part of bird, feathers indicated. Pl. XVII.

344b. TS 2838. Side sherd. F 8 NW. $4.0 \times 4.2 \mathrm{~cm}$. Red clay with white grits, red glaze. Part of wing(?), incisions radiating from curved incised line. Pl. XVII.
345. TS 2677. Side sherd. L 8 SE. $3.5 \times 2.8 \mathrm{~cm}$. Fine red clay, black glaze. Forelegs of horse, several incisions. Pl. XVII.
346. TS 1764. Echinoid foot with bottom sherd. Surface, J 5 NW. Diam. $13.5 \mathrm{~cm}, \mathrm{~h} . \mathrm{pr}$. 6.0 cm . Fine red to buff clay with mica, red to black glaze. Foot glazed, red band added on the

```
479 BSA 47 1952, 140-141 pl. 32, JHS 78 1958, 11-12.
480 BSA 47 1952, 140 e.
```

vertical edge, two rows of rays radiating from the foot. Graffito under foot. Pl. XVII. Fig. g. Similar (no graffito): TS 4835 G 12 SE.
347. TS 1009. Bottom sherd. H 5 SE. $10.3 \times 5.7 \mathrm{~cm}$. Fine reddish, very micaceous clay, black to brown glaze. Two rows of rays radiating from the foot. Pl. XVII.

Indeterminate open vases.

348. TS 742. Shoulder/side sherd. F 11 NW. $4.7 \times 3.7 \mathrm{~cm}$. Reddish, very micaceous clay, black to red glaze. Exterior: human figure with long hair leaning forward, hand raised to back of head, the border of the front hair crossed by a fillet, two added vertical red bands on shoulder, in front narrow sloping band, narrow band and glazed field at top. Interior: glazed. Pl. XVII.
349. TS 633. Rim/side sherd. H 5 SW. C. $4.4 \times$ c. 2.6 cm . Reddish clay with black grits and mica, black to brown glaze. Rim flat and offset on the exterior. Exterior: on topside of rim "two bands with dots"; below rim, broad band, large filling ornament and rounded design with numerous incisions. Interior: glazed, red band added. Pl. XVII.
350. TS 628. Side sherd. G 8 SE. C. $5.4 \times$ c. 4.4 cm . Light buff clay with mica, black to brown glaze. Exterior: forepart of marching beast, incisions, red band added on breast. Interior: glazed. Pl. XVII.
351. TS 4615 . Side sherd. H 10 SE. $4.0 \times 4.7 \mathrm{~cm}$. Dark brownish clay with some grits, black to brown glaze. Exterior: back of beast, several incisions, red dots added along edge of back, above sling-shaped tail, large filling-ornament. Interior: glazed, red band added. Pl. XVII.
352. TS 4644. Side sherd. G 10 SE. $3.6 \times 4.4 \mathrm{~cm}$. Light brownish clay, red-brown glaze. Exterior: forepart of beast, red added on neck and shoulder, foremost narrow "band" with incisions. Interior: glazed. Pl. XVII.

Kraters.

353a. TS 4658. Rim. G 10 SE. $7.5 \times 3.2 \times 1.6 \mathrm{~cm}$. Buff, very gritty clay, black to brown glaze. Topside: chain of alternating lotus flowers and palmettes, red added on outer lotus leaves and inner part of palmettes; underside and vertical edge glazed, red band added on edge. Pl. XVII. Fig.e.

353b. TS 4572 . Handle plate. G 13 NW. $4.0 \times 3.0 \mathrm{~cm}$. Brownish somewhat gritty and micaceous clay, brown to black glaze. Topside: buttocks of beast with incisions and added red, underside and vertical edges glazed. Pl. XVII.
354. TS 3524. Handle plate with rim sherd. G $5.4 .7 \times 5.3 \mathrm{~cm}$. Reddish clay with white grits, yellowish slip, red brown glaze. Suspension-hole through rim. Plate: two rays, vertical edges glazed, rim: transversal zigzags. Pl. XVII.
355. TS 929. Rim/side sherd. P 11 SW. C. $8.4 \times 2.5 \mathrm{~cm}$. Red clay with some grits and mica, black to brown glaze. Groove in underside of rim. Rim: on topside transversal rays, vertical edge and underside glazed. Interior: glazed, red band added. Pl. XVII.
356. TS 1296. Rim/side sherd. P 11 NW. $12.5 \times 3.5 \mathrm{~cm}$. Red clay with some white grits, black glaze. Rim: topside and underside glazed, on vertical edge rays. Interior: glazed. Pl. XVII. Fig. e.
357. TS 665. Rim/side sherd. G $11 \mathrm{SW} . \mathrm{C} .7 .5 \times 4.6 \mathrm{~cm}$. Light reddish clay with white grits and mica, creamy slip, red glaze. Rim: on topside chequers, on vertical edge three vertical stripes, glazed underside. Interior: broad band at top. Pl. XVII.
Cups.
358. TS 4437. Rim/side sherds. H 11 NE. $1.1 \times 1.7 \mathrm{~cm}, 3.0 \times 3.9 \mathrm{~cm}$. Reddish brown clay with white grits, black to brown glaze. Suspension-hole through rim. Exterior: lotus-and-bud on rim, forepart of confronted pair of birds and grazing deer on side. Interior: glazed, except for band at top of rim. Pl. XVIII.
359. TS 4611. Rim sherds. H 11 NE. $3.0 \times 2.1 \mathrm{~cm}, 2.8 \times 2.0 \mathrm{~cm}$. Light brownish clay, black to brown glaze. Exterior: lotus-and-bud, red added on lotuses. Interior: glazed. Pl. XVIII. Similar: TS 576 G 11 SW.
360. TS 5645. Side sherd. H 12. $2.4 \times 2.2 \mathrm{~cm}$. Brownish clay, black glaze. Exterior: lower part of human figure in himation, red and white added. Interior: glazed. Pl. XVIII.
361. TS 3827. Side sherd. H 11 NW. $3.0 \times 1.8 \mathrm{~cm}$. Brownish clay, light buff slip, black glaze. Exterior: club-shaped design with added white dot, glazed field below. Interior: glazed. Pl. XVIII.
362. TS 5647. Side sherd. H $12.3 .7 \times 3.5 \mathrm{~cm}$. Fine brownish clay, shining black glaze. Exterior: foot and lower part of human figure clad in long dress, red added, in front two tiny legs of an animal. Interior: glazed. Pl. XVIII.
363. TS 5646 . Side sherd. H $12.2 .9 \times 1.6 \mathrm{~cm}$. Brownish clay, shining black glaze. Exterior: hindlegs of animal, glazed design at top. Interior: glazed. Pl. XVIII.
364. TS 2336. Side sherd. G 13 SE. $4.1 \times 6.3 \mathrm{~cm}$. Light yellow clay with white grits and mica, black glaze. Exterior: hind leg af animal and bird's tail and wing(?), at bottom of sherd two narrow bands and glazed field. Interior: glazed. Pl. XVIII.
Plate.
365. TS 427. Rim/side sherd. Surface, south of tall. $11.6 \times 8.0 \mathrm{~cm}$. Reddish-brown clay, grey in core, black glaze. Exterior: plain. Interior: at border, broad band with white added stripe, row of dots, narrow band with white dots added; in field, head and upper part of sphinx or siren with head turned back, red added on hair, red and white on feathers. Pl. XVIII.

XVII

Unclassified East Greek Vases

About forty fragments can only be regarded as belonging to the stock of vases common all over Eastern Greece. Only in two cases, $\mathbf{3 6 6 - 3 6 7}$, was the vase recognisable, the remainder of the fragments being catalogued under the heading "closed and open vases'". The aryballos, $\mathbf{3 6 6}$, looks very similar to a Rhodian type from Tocra, where it is dated to the second and third quarters of the 6 th century. ${ }^{481}$ The shape of the lekythos, $\mathbf{3 6 7}$, is not common in Eastern Greece and the description of the clay may in fact hint at a foreign origin. ${ }^{482}$ The neck fragment, $\mathbf{3 6 8}$, looks asymmetrical and may have belonged to the popular East Greek shape of the askos, not hitherto found in a reliable context in Eastern Greece itself. ${ }^{483}$ The shape of the thin-walled, squat and flat-based vase, 370 a, diverges from the current plain East Greek Archaic vases and might be later. ${ }^{484}$ It has furrows and ribs on the belly, furthermore the curve of

[^42]the belly does not run unbroken into the neck; at the junction is a rib. On account of its finding place the handle fragment, 370 b , is assigned to period $\mathrm{G}^{2}, 588-552$ B.C. ${ }^{485}$ The fragment, $\mathbf{3 7 1}$, with only linear decoration may perhaps be interpreted as a schematic version of a Late Wild Goat amphora, ${ }^{486}$ the only divergency from the latter is the slip, which is light buff on $\mathbf{3 \gamma 1} . \mathbf{3 \gamma 2 - 3 \gamma 4}$ all bear pendent tongues on the shoulder; the slip of $\mathbf{3 \gamma 2}$, the pairs of tongues separated by vertical stripes, and the dots at the ground line seem to relate our fragment to some of the Fikellura vases, ${ }^{487}$-the decoration on the belly resembles that on the various groups of banded wares from the second half of the 6 th century. ${ }^{488}$ The two other fragments are unslipped, and this is common for a large, but not homogeneous group of vases, probably from the second half of the 6 th century and the first third of the 5 th century. ${ }^{489} \mathbf{3 7 5 - 3 \%} \mathbf{7}$ represent other varieties which certainly are to be connected with the latter group. ${ }^{490}$ The bottom fragment, 378 a , belongs to a large vase, an amphora, hydria or a pithos with band decoration on the belly, perhaps like the Rhodian ones, which served funeral purposes. ${ }^{491} 378 \mathrm{~b}$ is from a large closed vase, probably totally glazed; the profile of the foot is not unlike that of an Attic storage amphora from a context of $520-500$ B.C. ${ }^{492}$ The side sherd 379 displays scratched Greek letters, which resemble those of inscriptions of the first half of the 6th century. ${ }^{493}$ On 381 there are faint traces of probably lotus flowers alternating with buds; the same sort of schematic drawing appears on a Rhodian dish, ${ }^{494}$ and the low ring foot of 381 makes it likely that our fragment belonged to a similar dish. The fragment, $\mathbf{3 8 2}$, is obscure: the rendering of the circles is "geometric" in character, but none of the existing circle-schemes are placed as isolated in the field as that of $382,{ }^{495}$ neither are there visible traces of further decoration. The bottom fragment, 383, has a foot similar to that of the late bird- and rosette-bowls. ${ }^{496}$ The inscription on $\mathbf{3 8 5}$ is written in the manner of the first half of the 6 th century, ${ }^{497}$ whereas the rho on 386 looks later. ${ }^{498}$

[^43]Hist. Filos. Skr. Dan.Vid. Selsk. 6, no. 2.

Aryballos.
366. TS 1190. Rim/neck/shoulder sherd with handle. G 11 SE. H. 2.5 cm , diam. of rim 4.4 cm . Dark red clay with white grits and few mica, red glaze. Rib on neck. Topside of rim glazed, otherwise plain except for horizontal band below handle. Pl. XVIII.

Lekythos.

367. TS 2123. Rim/neck/shoulder sherd with handle. L 8 SE. H. 5.8 cm . Pink clay, black glaze. Both sides of rim glazed; on handle, vertical stripe, "traces of ornaments on shoulder". Pl. XVIII.

Indeterminate closed vases.

368. TS 1395. Rim/neck/shoulder sherd. H 5 NE. H. 5.0 cm , diam. of neck 1.0 cm . Dark red, gritty clay, red glaze. Rim flat, broad and sloping on the interior. Transversal stripes on topside of rim, narrow band along root of neck, glaze on shoulder. Pl. XVIII. Similar: TS 1736 P 11 SW.
369. TS 3454 . Neck sherd with root of rim. H 11 NW. $1.9 \times 2.7 \mathrm{~cm}$. Grey-brown clay, in core grey, brown glaze. Rim glazed, two bands on neck, glaze along root of rim and neck. Pl. XVIII.

370a. TS 191. Neck/side/bottom sherds, flat base. G 5 NE. H. 12.5 cm , w. 10.7 cm . Light yellow clay with black and white grits. Rib at junction of belly and neck, horizontal ribs and furrows on belly. Pl. XVIII.

370b. TS 3208. Sūkās I 83 no. 102 pl. 4. Shoulder sherd with fragment of vertical handle. J 13 NE. $5.4 \times 4.5 \mathrm{~cm}$. Red gritty clay, black glaze. Plain, but traces of glazed field below handle. Pl. XVIII.
371. TS 1737. Neck/shoulder sherd. P 11 SW. $9.0 \times 5.0 \mathrm{~cm}$. Clay: no description; light buff slip, brown glaze. Small codron at junction of neck and shoulder. On neck curvilinear design, part of cable(?), on shoulder two panels(?), in one of them trunk of animal(?). Pl. XVIII.
372. TS 2690. Shoulder/side sherds with root of horizontal handle. L 8 SE. 10.5×6.0 $\mathrm{cm}, 14.0 \times 9.0 \mathrm{~cm}$. Fine red clay, white slip, red glaze. On shoulder pendent tongues separated from each other by vertical stripes, dots at ground line, broad and narrow bands on belly. Pl. XVIII.
373. TS 2649. Shoulder/side sherds. L 8 SE. $15.0 \times 12.0 \mathrm{~cm}, 6.5 \times 5.5 \mathrm{~cm}$. Red clay with few grits, light brown slip, brown, rather matt glaze. Belly banded, pendent tongues at upper part of shoulder. Pl. XVIII.
374. TS 3326. Shoulder sherd with root of neck. F 7 E. $5.4 \times 6.4 \mathrm{~cm}$. Brown clay, dark brown glaze. Pendent tongues, narrow band and glazed field at bottom, narrow band and glazed field along root of neck. Pl. XVIII.
375. TS 4819. Rim/neck sherd. H 11 NE. $6.7 \times 8.7 \mathrm{~cm}$. Rather fine light brown clay, grey in core, light brownish slip, black to brown matt glaze. Slightly everted, carinated rim. Rim glazed on both sides, three stalked buds on neck. Pl. XVIII. Fig.e.
376. TS 5613. Neck/shoulder/side sherds with handle. H 12. H. 13.5 cm , w. c. 14.0 cm . Brownish, somewhat gritty and porous clay, red matt glaze. Tall cylindrical neck, handle oblong in section. Shoulder/side banded, on neck/shoulder group of three stalked buds, handle surrounded by band, vertical band on handle. Pl. XVIII. Fig.e.
377. TS 1360. Shoulder/side sherd with roots of horizontal handle. G $7 \mathrm{SW} .7 .5 \times 5.0 \mathrm{~cm}$. Red-buff clay with white grits, red glaze. Handle-roots glazed, between them bud(?) below narrow horizontal band. Pl. XIX.

378a. TS 3479. Side/bottom sherd with pointed, flat base. F/G $15.11 .0 \times 15.0 \mathrm{~cm}$. Red to brown micaceous clay, greyish in core, brown glaze. Two bands on belly, traces of glaze on base. Pl. XIX.

Fig. e.

378b. TS 2621. Bottom sherds with biconical foot. J 8 SE. H. 11.0 cm , diam. of foot 15.5 cm . Fine reddish-buff clay with white grits, red glaze. Glazed except for lower part of foot. Pl. XIX.
379. TS 3056. Side sherd. G 14. $2.9 \times 3.1 \mathrm{~cm}$. Buff, gritty and micaceous clay, brown glaze. Horizontal band with scratched letters: $\sigma \tau \alpha$? below glazed field. Pl. XIX. Fig. g.
Indeterminate open vases.
380. TS 922. Side/bottom sherds with ring foot. P 11 SW. H. c. 4.2 cm , w. 11.2 cm . Rather fine clay (colour not mentioned) with some grits, black glaze. Exterior: plain. Interior: part of irregular, concentric circle, dot above. Pl. XIX.
381. TS 5663 and 4911. Bottom sherds with ring foot. H $12 . \mathrm{H} .1 .2 \mathrm{~cm}$, w. 6.0 cm , diam. of foot 5.5 cm . Fine, but somewhat gritty, light brownish clay, grey in core, red to brown glaze. Exterior: no description. Interior: central dot and circle, four radiating buds, between them faint traces of lotus flowers, central dot with small circle. Pl. XIX. Fig. e.
382. TS 2471. Side sherd. L 13 SE. $2.5 \times 3.7 \mathrm{~cm}$. Fine reddish clay, smooth reddish slip, black glaze. Exterior: small concentric circle group. Interior: glazed. Pl. XIX.
383. TS 3583. Bottom sherd with low foot. G 13. H. of foot 0.8 cm , diam. 5.8 cm . Light brown clay, red glaze. Exterior: foot and lower part of side glazed. Interior: glazed, central circle in added red. Pl. XIX. Fig.e.
384. TS 1073. Side/bottom sherds with ring foot. G 8 SW. $8.1 \times 2.6 \mathrm{~cm}$. Dark buff clay with white and black grits, black glaze. Exterior: band on foot. Interior: glazed tondo(?) surrounded by broad band and thin stripes in dilute glaze(?), glaze at top of sherd. Pl. XIX.
385. TS 2644. Side sherd. L 8 SE. $3.2 \times 3.5 \mathrm{~cm}$. Red clay with grits, dark brown glaze. Exterior: glazed, scratched letters: $\mu \varepsilon \lambda \alpha$. Interior: glazed. Pl. XIX. Fig. g.
386. TS 4694. Side sherd. H 11 SW. $2.8 \times 1.9 \mathrm{~cm}$. Brownish clay, black to red glaze. Exterior: glazed, scratched letters: $\alpha \delta \alpha$. Interior: band. Pl. XIX. Fig. g.

XVIII
 Local Ware

The local manufacture of Greek vases mainly represents the shapes current in the 6th century. The clay is either light brownish or reddish with several particles and usually very micaceous. 387-391 are fragments of various types of amphorae. Both fragments, 387 and 389, have a rather low neck, like those of the Samian amphorae dated c. 600 B.C., ${ }^{499}$ but our fragments are later. The torus rim of $\mathbf{3 8 9}$ swells less than those of the Samian ones, and together with 387 , which has an echinoid rim, ${ }^{500}$ it should be dated to the first half of the 6th century. The profile of 388 is not known, but it too seems to have had an echinoid rim. ${ }^{501} 390$ has a tall and totally straight neck and might be as late as the end of the 6th century or the early 5th century. ${ }^{502}$ The carinated rim fragment, 392, might belong to a krater or large basin like those from Kofina, where they were found in an Archaic deposit. ${ }^{503}$ The bottom fragment 393 is white slipped, but the heavy type of vase with a biconical foot is apparently not Chian; ${ }^{504}$ the shape is close to that of CypArc II amphorae. ${ }^{505}$ Though we know nothing of the upper part of 394, the appearance of the body is straighter than on the CypClas type, and perhaps 394 should too be regarded as Archaic. ${ }^{506}$ There is a glazed field at the bottom of the unslipped pointed foot of 395 , this feature seems to occur on a 6th century Chian white slip amphora from Cyprus, ${ }^{507}$ but the walls of our fragment look steeper. Lekythoi with carinations like 396 are found on Rhodes in contexts from the second quarter of the 6th century. ${ }^{508}$ The very thick-walled fragment, 397, with the echinoid foot may have belonged to a large vase, a pithos(?) with rather straight sides. ${ }^{509}$ The profile of the small bottom fragment 398 is most similar to that of the so-called salt cellars with echinus wall and recessed underside; the type is best known from Attica and the existing pieces from this area are usually glazed. ${ }^{510}$ The series begins before 480 B.C., but the shape is "popular earlier and lasts little, if at all, beyond 450 B.C.". ${ }^{511}$ Triple- and double-roll handles are used commonly in the Orientalizing wares of the 7th and the 6th centuries in Eastern Greece, but plain ones

[^44]like $399-400$ occur too. ${ }^{512}$ 401-408 bear scratched letters or other signs. Those on 401 are not intelligible. ${ }^{513} 402$ may possibly be interpreted as a lambda and a pi. 403, 405, and 408 are fragmentary Greek inscriptions datable to the first half of the 6th century. ${ }^{514}$ The kappa under the foot of 407 is perhaps either a potter's mark or a numeral; ${ }^{515}$ the confusing scratchings on 406 are perhaps a gamma and an alpha. ${ }^{516}$ The fabric of 404 is not necessarily local, the sherd may be from a Greek pot; of the scratched letters, at least the one to the right is non-Greek, rather it looks Semitic and resembles a taw and a reš. ${ }^{517}$ The proportions of the nearly complete column krater, 409, seem to resemble those of Attic kraters dating from the end of the 6th century and the first quarter of the 5th century; ${ }^{518}$ no Attic krater has roundels applied at the handle roots, this may be exclusively East Greek; they appear too on 410, on which the colonnettes are nearly straight, the neck looks as tall as that of 409. Only three fragments, 411 and 412-413, of local cups copying Ionian cups have been recognised. Though the shape of the thick-walled cup, 411, imitates that of cups of the first half of the 6th century the same decorative scheme as on 411 is not met with among the true Greek cups. The banded interior may perhaps match that of the Rhodian Type VIII in Tocra. ${ }^{519}$ The bottom fragment 412 has probably a very pronounced conical foot; ${ }^{520}$ the letters incised under the foot assign the fragment to the first half of the 6th century. ${ }^{521}$ The rim sherd 413 may imitate hemispherical bowls like nos. 138-149.

Amphorae.

387. TS 1020. Rim/neck/shoulder sherds with part of handle. G 5 NE. H. 9.8 cm , diam. of rim 14.5 cm . Light brownish, very micaceous clay with white and dark grits. Echinoid rim, codron at junction of neck and shoulder. Plain. Pl. XX. Fig. f.
388. TS 1768. Rim/neck/shoulder sherd with part of one handle. F 8 NW. H. of neck 9.0 cm , diam. of rim 14.0 cm . Brown very gritty clay, black in core. Thickened and everted rim, nearly cylindrical neck, flat handle. Plain. Pl. XX.
389. TS 1018. Rim/neck sherd with part of handle. G 5 SE. H. 8.7 cm . Light brownish, very micaceous clay with white and dark grits. Torus rim, cylindrical neck, flat handle below root of codron. Plain. Pl. XX. Similar: TS 110 E 8 NE, TS 1276 P 11 SW, TS 1277 P 11 SW, TS 3820 H 11 NW.
390. TS 1325. Rim/neck sherds with root of shoulder and handle. F 5 NE. H. 10.0 cm , diam. 12.3 cm . Light brownish clay with white grits, light buff slip. Torus rim, cylindrical neck, flat handle. Pl. XX. Similar: TS 2501 P 11 NW (Fig. g: 190.1, scratched axe-like design).

[^45]391. TS 2613. Handle with rim and shoulder sherd. H 11 NW. H. c. 17.0 cm . Red very gritty clay. Handle flat, rim "slightly thickened". Plain. Pl. XX.
392. TS 1493. Rim sherd. G 11 SW. $5.0 \times 5.0 \mathrm{~cm}$. Buff to red clay with mica, black glaze. Thickened rim, rounded on the exterior, carination below. Rim glazed on both sides. Pl. $X X$.
393. TS 2762. Bottom sherd with biconical foot. L $13 \mathrm{SE} .10 .5 \times 3.0 \mathrm{~cm}$. Red, very micaceous clay, white slip. Exterior: slipped all over. Pl. XX. Fig. f.
394. TS 2748. Fragmentary amphora with pointed bottom. G 15 NW. Max. w. 38.5 cm , h. 44.5 cm . Red, very micaceous clay, black in core. Flat base. Plain. Pl. XX.
395. TS 4762. Bottom sherd with pointed foot. H 11 NW. $3.5 \times 6.0 \mathrm{~cm}$. Reddish, very micaceous clay, grey in core, light brownish glaze. Horizontal band on the pointed foot. Pl. XX. Fig. f.

Lekythos.

396. TS 1293. Fragmentary neck with root of one handle. P 11 NW. H. 5.5 cm , diam. of rim 5.3 cm . Light buff, very micaceous clay. Conical rim, carination at handle level. Plain. Pl. $X X$.

Indeterminate closed vases.

397. TS 1420. Pointed bottom with disk foot. G 11 SE. $8.6 \times 6.2 \mathrm{~cm}$, diam. of foot 8.4 cm . Light brown, very micaceous clay with white and dark grits. Conical, nearly echinoid foot. Plain. Pl. $X X$.
398. TS 1884. Bottom of jar with low foot. H 11 NW. $7.0 \times 3.4 \mathrm{~cm}$. Fine red, very micaceous clay. Plain. Pl. XX. Fig. f.
399. TS 4578. Triple-roll handle. G 12 SE. $2.8 \times 9.5 \mathrm{~cm}$. Light brownish clay with few grits and few mica. Plain. Pl. $X X$.
400. TS 1428. Double-roll handle. G 12 SW. $3.4 \times 10.5 \mathrm{~cm}$. Light brownish, very micaceous clay with dark and white grits. Plain. Pl. XX.
401. TS 4456. Bottom sherds with ring foot. H 11 NE. $7.0 \times 2.1 \mathrm{~cm}$. Reddish clay with grey and white grits, red glaze. Faint traces of glaze on side and on foot(?), under foot unintelligible graffito. Pl. XX. Fig. g.
402. TS 619. AASyr $8 / 91958 / 59$, 130 fig. 15. Neck/shoulder sherd. G 8 SE. $7.0 \times 4.8 \mathrm{~cm}$. Brownish clay with numerous white and dark grits and some mica. On shoulder scratched Greek letters: λ r. Pl. XX. Fig. g.
403. TS 4180. AASyr 11 1961, 139 fig. 11 B. Shoulder sherd with root of neck(?). G 14. $7.4 \times 6.3 \mathrm{~cm}$. Light brownish clay, black in core, dark grits. On shoulder scratched Greek letters : $\alpha \lambda$ (or μ). Pl. XX. Fig. g.
404. TS 4670 . Shoulder sherd. G 13 SE. $4.0 \times 3.7 \mathrm{~cm}$. Brownish, gritty and micaceous clay, yellow slip. Scratched letters: Semitic. Pl. XX. Fig. g.
405. TS 4315. AASyr 11 1961, 139 fig. 11 C, NMArb 1961, 131, 133 fig. 14, Supplementum Epigraphicum Graecum 19 1963, no. 879, Archaeology 19 1961, 214-16, Revue Numismatique 6 1964, 23, Sūkās I 78 no. 74 , 85 fig. 26 e pl. 4 . Shoulder sherd of big jar. H $14.7 .4 \times 6.1 \mathrm{~cm}$, th. 1.3 cm . Light grey clay, pinkish in core, white and dark grits. Scratched Greek letters: $\alpha \lambda_{1} \circ \eta \mu$. Pl. XX. Fig. g.
406. TS 4181. AASyr 111961 , 139 fig. 11 A. Side sherd. G $14.12 .0 \times 9.7 \mathrm{~cm}$. Reddish clay, black in core, white and dark grits. Graffito, Greek letters(?) y a. Pl. XX. Fig. g.
407. TS 601. AASyr $8 / 91958 / 59,130$ fig. 15 . Bottom with disk foot. G $11 \mathrm{SW} .7 .8 \times 7.0$ $\mathrm{cm}, \mathrm{h} .2 .0 \mathrm{~cm}$, diam. of base 4.1 cm . Light brownish, very gritty clay, red slip. Exterior slipped all over. Scratched Greek letter: K under foot. Pl. XX. Fig. g.
Bowl.
408. TS 621. AASyr $8 / 9$ 1958/59, 130 fig. 15, NMArb 1961, 131, 133 fig. 14, Supplementum Epigraphicum Graecum 20 1964, no. 382. Rim sherd. P 11 NW. $7.3 \times 3.2 \mathrm{~cm}$, th. $1.0-1.6 \mathrm{~cm}$.

Light yellowish-grey, very gritty clay, slightly pinkish in core. Thickened and rounded rim.

Column kraters.
409. TS 4317. AASyr 11 1961, 139 fig. 10, NMArb 1961, 130, 132 fig. 13. Half of foot missing, otherwise nearly complete. H 11 NW. $56.0 \times 59.0 \mathrm{~cm}$, diam. of rim 51.5 cm . Light reddish-brown to orange clay with some white and many dark grits. Nearly cylindrical neck tapering slightly upwards, codron between neck and shoulder, looped handles with rotels at outer side of root, echinoid foot. Pl. XX. Fig. f.
410. TS 2767. Neck sherd and handle plate with nearly straight colonnettes, large krater. L 13 SE. $20.5 \times 21.5 \mathrm{~cm}$. Red, very gritty clay. Remnants of rotels at outer side of handle-root(?). Pl. $X X$.

Cups.

411. TS 1036. AASyr 10 1960, 127 fig. 14 A-B, Mélanges de l’Université Saint Joseph 37 1961, 194 pl. 1.3. Rim/shoulder/side sherds. G 7 SE. $13.0 \times 6.4 \mathrm{~cm}$. Rather coarse, light brownish to reddish and greyish clay, very micaceous, light and dark grits, greyish to brownishblack glaze, in places nearly matt. Exterior: rim and shoulder glazed except for edge of rim, root of handle glazed, below two narrow bands. Interior: banded, rim and shoulder glazed, except for edge of rim. Pl. XX. Fig. f.
412. TS 4894. Bottom sherd with fragmentary low foot. H $12.6 .5 \times 6.2 \mathrm{~cm}, \mathrm{~h} .2 .8 \mathrm{~cm}$, diam. of foot 6.1 cm . Rather fine, pale, yellowish-grey or drab clay with some grits. Dull dark brown glaze. Exterior: glazed. Interior: large central dot and concentric circle. Scratched Greek letters: χ є under foot. Pl. XX. Fig. g.
413. TS 3822. Rim sherd, slightly contracted rim. H 11 NW. $3.6 \times 4.0 \mathrm{~cm}$. Buff, gritty and very micaceous clay, dark in core, light buff slip, dark brown matt paint. Slipped on both sides, on the exterior three bands added immediately below rim. PI. XX.

XIX

Lamps
No complete East Greek lamps were found; the fragments are very small, in some cases so small and uncharacteristic that they are not datable. 414 is an open type, with a profile totally without curves, flat rim and probably likewise flat base. Without being a close parallel, 414 shares these features with lamps which are mainly later Archaic. ${ }^{522}$ 415, too, is from an open lamp; it has a flat rim with painted band decoration, and on account of this sparse information it is only possible to date the fragment as not later than the 5th century. ${ }^{523}$ The short nozzle of 416 makes a similar date possible for this piece. ${ }^{524}$ The tiny fragment, 418, is from a lamp of the well known 6th century type with the rim offset on the exterior and a groove in the topside of the rim. ${ }^{525} 417$ is the latest one; a large nozzle with small circular opening and grooves on the rim occur from the later part of the 5th century in Attica. ${ }^{526}$

[^46]414. TS 3437. Rim/side/bottom sherd. H 11 NW. W. $4.2 \mathrm{~cm}, \mathrm{~h} .2 .4 \mathrm{~cm}$. Red, very micaceous clay, red glaze. Exterior: edge of rim glazed, horizontal band on transition from rim to side. Interior: bottom glazed. Pl. XIX. Fig. f.
415. TS 3589. Rim/side/bottom sherd with root of spout. G $13 . \mathrm{W} .3 .7 \mathrm{~cm}, \mathrm{~h} .1 .8 \mathrm{~cm}$. Grey-brown clay, dark brown glaze. Exterior: edge of rim glazed, horizontal band at junction of rim and side. Pl. XIX. Fig. f.
416. TS 368. Spout. Surface. L. 3.7 cm , w. $2.7 \mathrm{~cm}, \mathrm{~h} .3 .2 \mathrm{~cm}$. Red clay. Very worn. Pl. XIX. Similar: TS 369 Surface.
417. TS 4661. Rim/side sherd with spout. G 10 SE. W. c. $5.0 \mathrm{~cm}, \mathrm{~h} .3 .5 \mathrm{~cm}$. Brownish, somewhat gritty and micaceous clay, black glaze. Concentric groove on topside. Interior: faint traces of glaze. Fig. f.
418. TS 142. Rim/side sherd. H 5 NE. L. 5.7 cm , w. 2.0 cm , h. 2.3 cm . Light reddish clay with dark grits and some mica. Thin greenish or yellowish white slip. Thickened offset rim with deep groove. Pl. XIX.
419. TS 2714. Side sherd. L 8 SE. $4.2 \times 4.5 \mathrm{~cm}$. Red micaceous clay, red glaze. Exterior: three horizontal bands. Pl. XIX.

XX

Archaic Plastic Figures

Four fragments occurred, all mediocre and badly preserved. Female protomes, like the worn and fragmentary specimen 420, are known from other overseas sites. ${ }^{527}$ Our fragment probably belongs to the series represented on Rhodes, where they date from the second half of the 6th century until c. 450 B.C. ${ }^{528} 420$ is still very Archaic and the closest Rhodian parallel is found in a context from the second half of the 6th century, ${ }^{529}$ and thus indicates a dating of our fragment to the fourth quarter of the 6th century. ${ }^{530}$ The wide-spread legs of $\mathbf{4 2 1}$ determine the fragment as belonging to a rider. The well known series of horse-riders from Samos are mainly assigned to the 7th century, ${ }^{531}$ but our fragment has a short torso with broad shoulders and a waistline which resembles works of the 6 th century more than the plastic of the earlier phase. ${ }^{532}$ The placing of the feet belonging to the moulded figurine, 422, and the two-stepped base seem to exclude an origin in the latest stage of the Archaic period. ${ }^{533} 423$ is noted

[^47]

Fig. f.
by the registrar to be hand-made; but the posture represented is that of a current moulded type, where one arm is held tight to the body. ${ }^{534}$
420. TS 4319. AASyr 11 1961, 138, NMArb 1961, 128, 131 fig. 12. Fragmentary female protome. G 10 SE . Two fregments: $5.5 \times 9.3 \mathrm{~cm}, 7.5 \times 6.0 \mathrm{~cm}$. Light reddish-grey clay, dark grey in core, with some white and many dark particles. Rim of protome with piercing-hole preserved in the smallest frigment. The matrix used was very worn and the details are indistinct. Oval face with pointed chin, short, full and very smiling lips, bulk of hair above forehead, highly placed ears, disk ear-rings, stephane. Pl. XIX.
421. TS 909. Torso of rider. P 11 SW. H. 6.4 cm , th. c. 1.8 cm . Coarse, dark brown, gritty and somewhat micaceous clay. Hand-made. Remnants of curls(?) hanging from the shoulder impressed on the breast. Pl. XIX.
422. TS 4364. Pair of fragmentary feet on two-stepped base. G 10 NE. L. 4.4 cm , w. $5.0 \mathrm{~cm}, \mathrm{~h} .2 .8 \mathrm{~cm}$. Light reddish-brownish micaceous clay with dark and light grits. Moulded. Pl. XIX.
423. TS 2595. Fragment of female figurine. H 11 NW. $4.9 \times 4.7 \mathrm{~cm}$. Red clay. Hand-made (but see text). Hand lying close to body, indistinct traces of drapery. Pl. XIX.

XXI
 Other Objects

The spindle whorl, 424, is made of local clay, but bears a Greek inscription incised around 600 B.C.; the shape of the spindle whorl itself is probably earlier. ${ }^{535}$ The spindle whorl, $\mathbf{4 2 5}$, is cut out of a potsherd, which may have been from a local vase just as from an Ionian one.

Spindle whorls.
424. TS 5528. Sūkās I 158 , 174 fig. 53 d. Slightly conical. H 12. H. 1.9 cm , diam. top: 2.2 cm , bottom : 2.9 cm . Light brownish, somewhat gritty clay, grey in core. Scratched Greek inscription: Пєб๙९๐рєऽ єцı. Pl. XIX. Figs. f, g.
425. TS 3653. Cut out of a potsherd. G 13 SW .6 .2 cm , th. 0.7 cm . Red micaceous clay, red glaze. Exterior: glazed, but for reserved band. Pl. XIX.

XXII

Conclusion

The earliest fragment included in the catalogue is 6 , which has been claimed to be Cretan rather than Mycenaean. Minoan contacts with these eastern regions already in the Middle Bronze Age are attested by finds from Ras Sǎmra and Byblos. ${ }^{536}$ The single sherd from Sūkās signifies an accidental and probably not direct contact with the Aegean. It is not until the Late Bronze Age that there are signs of more essential

[^48]" $\triangle A T T \because K$ "A mena dUN -D NANAD人4 Anght -

relations to the West. Of the 46 Mycenaean fragments found on Tall Sūkās only ten are not included in the present catalogue. About ten have been definitely distinguished as Myc III A 2, 1, 2, 5, 7-9, 13, 24, 26, a single sherd as III B, 23, and another as III C, 16. Furthermore, a number of III B figurines, 31-33b, occur. On the remaining sherds the linear decoration is so simple that it did not seem reasonable to distinguish between them, but a great many are probably Myc III B. This would correspond to the conditions in Ras Sǎmra, where IIIB prevails. ${ }^{537}$ On account of the bulk of Mycenaean pottery it has earlier been argued that there was a Peloponnesian or Rhodian settlement of the III B phase in Ras Sǎmra. ${ }^{538}$. However, P. J. Rirs has recently suggested that the Mycenaean settlement in Ras Sămra was rather established by half-Mycenaeanized Cypriots. ${ }^{539}$ The Mycenaean objects from Sūkās may have had the same origin.

The first genuine Greek pottery occurring on Tall Sūkās is Geometric. The Sūkās fragments belonging to such early vases, brought from Greece to Syria, confine themselves to two shapes: drinking cups and kraters, $37-41$ and 100 . Similar vases appeared in the earliest levels (i.e. IX-VIII) at the near-by port of Al-Minna, where the Greek pottery occurring bears witness that Greeks probably settled there already during the 9th century. ${ }^{540}$ According to the pottery, the first Greeks arriving at Al-Minna were Cypriot Greeks and other Greek islanders, and among the Geometric sherds from Tall Sūkās the three LG sherds, 39-41 are Cycladic, the latter two presumably manufactured in Naxos. ${ }^{541}$ 37-38 belong to skyphoi with pendent semicircles; the latter category is very frequent in the Cyclades, ${ }^{542}$ but an Euboean origin has often been claimed. ${ }^{543}$ Late in the 8th century the Greeks living in Phoenicia, perhaps in Al-Minna, started producing ceramics, mostly drinking cups. Using the local clay they copied the shape and decoration of a cup type current in Late Geometric Greece; ; ${ }^{544}$ five sherds of this category, 44-47, the so-called Al-Mīna ware, also appeared at Sūkās. Closely connected chronologically with the Geometric sherds from Sūkās are the only four PC sherds which were found: 49, 62, 64a and 70. They all have a Geometric character ${ }^{545}$ and are to be regarded as EPC. Together with these fragments should be noted a single, Cycladic sherd, 43 , which may belong to an Ad vase, a group mainly dated to the first quarter of the 7th century. ${ }^{546}$ These fifteen sherds form an early "group" and

[^49]with the exception of three sherds 42,101 and 294 , which are to be dated in the 2 nd quarter of the 7th century, 101 perhaps in the 3rd quarter, there was no evidence of Greek pottery in the excavated areas of the mound until the last quarter of the 7th century. Greeks, presumably, brought this early "group" of vases to Tall Sūkās; ${ }^{547}$ but we cannot be sure at which time they visited the tall, as the sherds were found in contexts much later than those to which they should have belonged. ${ }^{548}$ Only two were found in more appropriate connections. One was one of the EPC sherds, 70 , which was found in the terrace in front of the so-called rectangular building; ${ }^{549}$ the predecessor of this building was Complex III, ${ }^{550}$ a Phoenician private house, ascribed to Period H^{1}, which is thought to have come to an end about 675 B.C., perhaps in connection with one of Assarhaddon's compaigns, in 677 or in 671 B.C. ${ }^{551}$-the other fragment, one of the Al-Mina sherds, 47, was found not in the building fill, but in the open area east of the rectangular building, ${ }^{552}$ so for 47 the context is the period succeeding H^{1}, i.e. G^{3} ($675-588$ B.C.). Therefore - on account of the chronological unity within the early "group" and the almost total abscence of other Greek ceramics datable earlier than the end of the 7th century, it seems to me, that the Greeks visited the tall rather early, and that, about 675 B.C., the afore-mentioned destruction may have put an end to their existence there. So far it has been impossible to distinguish architectural remains, which could be connected with the early Greeks, ${ }^{553}$-there is no safe evidence of Greek building activity on the tall until c. 600 B.C.

In the neighbourhood of the rectangular building pieces of broken tiles occurred, elements not usually included in Oriental architecture. ${ }^{554}$ Tiles are a Greek invention, originating in the second half of the 7 th century on the Greek mainland. ${ }^{555}$ Two of the tile fragments were found in connection with the rectangular building, i.e. in the fill of the north wall of that structure, which belongs to Period G ${ }^{2}$ ($588-552$ B.C.). ${ }^{556}$ These fragments are thought to have belonged to the rectangular building itself in its earlier form, i.e. that standing in Period $G^{3} .{ }^{557}$ It was furthermore possible to detect other features which made an interpretation of the structure as a Greek building, a temple, possible. ${ }^{558}$ Nearby there were remnants too of an altar and of a peribolos, i.e. presumably a whole area of a sacral character. ${ }^{559}$ None of the tiles from the Greek

[^50]mainland is earlier than the second half of the 7th century; so there cannot have been buildings with a Greek tile roof on Tall Sūkās until the end of the 7th century or about 600 B.C. ${ }^{560}$ From this time there is more Greek pottery again on the tall, but the earliest of these finds are not numerous : two Corinthian sherds may be EC, $52(?), 67 \mathrm{a}$, and some of the Ionian cups possibly still belong to the 7th century, 102, 103(?), 104, $128 \mathrm{a}(?), 128 \mathrm{c} .1,128 \mathrm{c} .4$. Three fragments of the Wild Goat Style are from the 4th quarter of the 7 th century, 170a, 216, 295, as probably two Chian jugs, 320, 321. Still, together with the tile fragments, these few sherds certainly support the theory of a smaller Greek settlement established on the tall already at the end of the 7th century. P. J. Rirs has suggested that the building of the late 7th century with the Greek tile roof, i.e. the G^{3} building, may originally have had a "high-pitched ridgeroof consisting of wattle and daub covered with mud and thatch" and that ". . . . this roof towards the end of the century was replaced by an up-to-date one of tiles with a lower pitch", ${ }^{561}$ thus indicating the possibility of a continuous Greek habitation all through the 7th century. As mentioned above, three sherds, 42, 101 and 294, which can be dated to the second and third quarters of the 7th century have been found: $\mathbf{1 0 1}$ is from an Ionian cup, 294 from a plate in Wild Goat Style, and 42 is from a large jar, perhaps a Cycladic amphora of the Linear Island group. If Greeks were living on the tall during the second and the third quarters of the 7th century, these three sherds are the only ceramic evidence we have of their existence. As mentioned by P. J. Rirs the reason why the number of sherds is so small could be that no destruction took place during this period and that broken vases were regularly removed. ${ }^{562}$ But the presence of the three vases may too be due to a conservative taste or to an export of old stock material, so that the vases were imported at a time when they were outdated, i.e. in the fourth quarter of the 7th century. It should be noted too that no vase of the Linear Island group appeared in Al-Mina, nor has any specimen hitherto been found at other sites in the Near or Middle East. ${ }^{563}$ The finding of a spindle-whorl, 424, may have special interest in connection with the latter sherd; it was made of local clay, but carried an inscription scratched about 600 B.C. and undoubtedly insular in character, i.e. the origin of the owneress may have been Cycladic just as well as East Greek. ${ }^{564}$ It cannot be excluded that among the late 7th century inhabitants there may have been a Cycladic element, though we have no finds of their contemporary pottery. However, to judge from the pottery in general, mainly people from Eastern Greece lived on the tall in the late 7th century. Among the Ionian cups there are no stripedecorated Samian cups, which are so frequent in Al-Mina, ${ }^{565}$ nor has any other Samian
${ }^{560}$ If the tiles belong to the G^{3} building, probably standing on the tall at the end of the 7th century or about 600 B.C., they are the earliest ones so far known outside the Greek Mainland and Magna Graecia. In Eastern Greece tiles do not occur until the second quarter of the 6 th century, see \AA. Akerstrøm, Die architectonischen Terrakotten Kleinasiens, Lund 1966, 110-114 (Didyma).
${ }^{561}$ Sūkās I 58 note 168 . See above note 553 .
${ }_{562}$ Sūkās I 159, a catastrophe usually accounts for an accumulation of sherds.
${ }^{563}$ See above note 81.
${ }^{564}$ AASyr 15.2 1965, 59-61 fig. 1, Sūkās I 158 note 642.
565 Tocra, 115 note 5.
type of cup been safely distinguished. There is one fragment of an early Rhodian cup, 102, but among the early 6th century standard cups, which in fact are few, 105, 105.2, 106.1, any one may be Rhodian just as well as Samian. Besides the early Wild Goat sherd, 294, only three other sherds of vases in Wild Goat Style belonged to the 7th century, i.e. to the fourth quarter: 170a, 216, 295. These fragments might well be Rhodian, but Wild Goat vases were produced in other centres too. Up till now 7 th century workshops have been recognized in addition in Samos, Chios, Smyrna, Ephesus, Miletus and Larisa. ${ }^{566}$ Two Chian jugs, $\mathbf{3 2 0}-\mathbf{3 2 1}$, were determined as belonging to the 7 th century. The pottery from the first quarter of the 6 th century is only slightly more prolific: the Ionian cups are not many (see above), and of fragments in Wild Goat Style belonging to the first third a few more than ten have been identified: $153,155,163,166,167,171,204,212,278,283,289,290,291$. A single sherd should be noted, that of a Vroulian cup, 326, a definite Rhodian type. ${ }^{567}$ The Chian element, observed already in the late 7th century, still existed during the first quarter. It was never large, but culminated during this period, altogether nine sherds were identified: $\mathbf{3 1 0}, 311,313,314,315,31 \%, 319$. It should be noted that two of the fragments, 314315, may have come from Naukratis, see above note 405 . From the second quarter only a couple of Chian fragments appeared: 312, 316, 318; the wine amphorae, 322-324, may belong anywhere in the first half of the 6 th century.

The G^{3} building was destroyed by fire, of which traces were seen on the terrace. ${ }^{568}$ A local catastrophe may have taken place, but the disaster is thought rather to have been caused by an attack, for instance by the Egyptian pharaoh Apries in 588 B.C. during his confrontations with the Babylonians and their allies. ${ }^{569}$ Tile fragments of the same general type as the early ones ascribed to the G^{3} building were found in the area around the succeeding building, i.e. the G^{2} building. One of the fragments has three incised letters of the early 6 th century, ${ }^{570}$ a fact which has been accepted as an indication that rebuilding took place already soon after the destruction. If the year 588 B.C. is understood as the time for the destruction of the G^{3} building, then the rebuilding should be about or even before 580 B.C. ${ }^{571}$ At this time the Greeks seem to have gained greater influence on the tall: the rebuilding of the temple is on a larger scale ${ }^{572}$ and Greek pottery occurs in the largest quantities ever found on the tall. About 4425 East Greek sherds dating from the 6th century were registered during the excavation, i.e. about two sherds pr. m^{2} excavated area. It is not wise to make calculations of the number of complete vases, but sherds occurred of most of the wares current in Eastern Greece during the first half of the 6th century. Among the determinable East Greek sherds from Period G ${ }^{2}$, 55.6% were grouped as Ionian cups,

[^51]30.6% as vases of Wild Goat or Derivative Styles and 13.8% were other wares. If compared to the whole amount of East Greek pottery (the greater part from the second quarter) 59.3 \% signifies the group determined as East Greek during the excavation, but not examined in detail, 22.6% the Ionian cups, 12.4% the vases of Wild Goat or Derivative Styles and 5.7% other wares. The genuine Wild Goat Style comes to an end early in the second quarter of the 6th century, but simplified versions together with a floral style live on till shortly before the middle of the century. These late groups of which the shapes are mostly limited to amphorae, hydriae, dishes and fruit-stands are well represented on Sūkās: 171-191 are from amphorae; among the sherds catalogued as belonging to indeterminate closed vases, 192-253, the largest number may be from similar vases; 295-309 are from shallow dishes, while 285-293 are from fruit-stands. Rhodes is suggested as supplier of most of these late groups; ${ }^{573}$ of the Ionian cups from Sūkās a large amount may possibly be Rhodian, too, ${ }^{574}$ mostly from among the standard cups, group 5, and the lip cups, group 6. The rosette decorated and other related hemispherical bowls, which in Greece have only appeared in quantities in Vroulia, ${ }^{575}$ are represented on Sūkās in small numbers, 138-149. The origin of the two remaining categories from the first half of the 6 th century, the wares with wave patterns and the one-handled bowls, is still obscure. Beside their own pottery, the Eastern Greeks living on Tall Sūkās had a taste for Corinthian vases, which they probably acquired through their home cities. ${ }^{576}$ The Corinthian import is not plentiful, nearly every Corinthian sherd registered during the excavation is included in the present catalogue, but the continuity from EC to LC is obvious.

The G^{2} building is thought to have been destroyed about the middle of the 6 th century. A Fikellura sherd, 328, which was found "on top of the ruined west wall", ${ }_{577}$ might be dated about 550 B.C. or $550-540$ B.C. ${ }^{578}$ A blackish layer covered parts of the north-eastern angle of the building and there were traces of charcoal and ashes all over the surrounding area; thus it is argued that a hostile devastation may have taken place, and this has been connected with Nabonidus's campaign in $553-552$ B.C. ${ }^{579}$ The temple was not rebuilt during the second half of the 6 th century and only the eastern part of the building was in use. ${ }^{580}$ The altar was probably still in function, and the peribolos does not seem to have been demolished until the end of the century. ${ }^{581}$ The ceramic evidence fully stresses the impression of decline gained from the architectural remains of the G^{1} period (552-498 B.C.). The East Greek imports

[^52]are scarce; the greater part belong to the third quarter: several sherds of vases from the Ionian black-figured schools, $\mathbf{3 3 7} \mathbf{- 3 6 5}$, but only nine sherds of Fikellura vases $\mathbf{3 2 7}$ 331; the band cup, $12 \% \mathrm{~b}$, may too be as late. Of the plastic figures, 422 is probably from the third quarter, whereas the protome, 420, is from the last quarter of the 6th century. Surprisingly there is a fragment of a Chian amphora, 325, from the late 6th or the early 5th century; at this late period there was still a local production of vases imitating Greek shapes, for instance 390.

The evidence from Sūkās is strongly in contrast to that from the neighbouring Al-Mina, where the Greek pottery frequency culminates during the 7 th century, but decreases in the 6 th. ${ }^{582} \mathrm{~J}$. Boardman holds the explanation that during the period of Babylonian supremacy the Greeks in North Syria may have been allowed only to live on Sūkās. ${ }^{583}$ The Babylonians were defeated by the Persians in 539 B.C., ${ }^{584}$ and in the fourth quarter of the 6th century the frequency of Greek ceramics increases in Al-Mīna. At this time some of the Greeks from $S \bar{u} k a ̄ s$ may have moved to Al-Mīna, which was then rebuilt on a larger scale and the new city is supposed to be purely Greek. ${ }^{585} \mathrm{~A}$ warlike event in connection with the Ionian revolt in 498 B.C. is suggested to have put an end to the remainder of the Greek settlement on Tall Sūkās. ${ }^{586}$

As mentioned, most of the pottery from the end of the 7th and the first half of the 6 th century occurring on Sūkās belongs to groups which conventionally, but sometimes surely correctly, are connected with Rhodes. The same groups are found in considerable amounts too on other sites overseas: Naukratis, Tocra and Istros, ${ }^{587}$ and single pieces in most of the other Greek cities on the shores of the Black Sea. ${ }^{588}$ Pottery may be a reliable indicator of the origin of the people who carried and used it; but the wide distribution of Rhodian ceramics does not agree with the modest rôle played by Rhodes in the overseas ventures. ${ }^{589}$ Historically the city of Miletus was the most enterprising colonizer, ${ }^{590}$ operating especially in the Pontic area; here Istros was founded in $657 / 6$ B.C. according to Eusebius, but according to pseudo-Skymnos not until later in the century; ${ }^{591}$ the earliest pottery is from the last third of the 7 th century. Among the Milesian cities on the Black Sea, Istros has hitherto been most fully explored

[^53]and the pottery groups found there closely correspond to those from Sūkās; only one group, the bird bowls which appeared in considerable numbers in Istros ${ }^{592}$ as in Al-Mina, ${ }^{593}$ is totally lacking among our finds. Miletus was not only active on the shores of the Black Sea, but furthermore took part in the foundation of Naukratis in Egypt. Here a sanctury to the Milesian deity, Apollo, was erected, ${ }^{594}$ and it was to the Milesian Apollo, at Didyma, that the Egyptian pharaoh Necho dedicated his armour after his Syrian campaign in 608 B.C. against the Babylonians. ${ }^{595}$ J. Boardman has suggested that Milesian activity should be expected too in Al-Mina, ${ }^{596}$ and the notable similarity between the pottery groups from Istros and Sūkās may perhaps further imply such a relation. Not much Milesian pottery has yet been identified, ${ }^{597}$ and the city perhaps did not have a local production of finer vases itself. If so, it may have imported vases from other cities and this could explain why Rhodian pottery, for instance the shallow dishes, has travelled so far. ${ }^{598}$ Wild Goat vases in black-figure technique are found on nearly all sites overseas, ${ }^{599}$ including Sūkās, see 154-155, 166-167, 204-210, 257-263, 282-284. A Rhodian origin for this style is no longer regarded as a sound idea; a more northern origin is now preferred. ${ }^{600}$ If the suggestion is valid, the northern region supplied quite an amount of exports to Milesian colonies; Mr. Boardman has already noted that vases from the North Ionian island, Chios, always seem to occur in Milesian cities. ${ }^{601}$ Besides the black-figured Wild Goat vases, other East Greek Black Figure wares from the first half of the 6th century, 332-336, are represented on Sūkās, and the North Ionian element still exists there in the third quarter, when vases of the so-called "Clazomenian" koiné occur. Nevertheless, in spite of the similarity between the pottery groups from Istros and Sūkās we cannot be definite about a Milesian origin of the settlers on the tall, because we have no possibility of comparisons with the pottery used in Eastern Greek colonies not founded by Miletus. Only Massalia, founded by Phocaeans, c. 600 B.C., ${ }^{602}$ has yielded material, but this may not be entirely representative since it has been impossible to carry out extensive excavations here. Chian vases and Ionian cups were present, and some of the non-localized East Greek groups, the wares with wave patterns, the stripe-decorated wares, and some of the hemispherical bowls too, ${ }^{603}$ but vases in Wild Goat Style were almost absent. At all events Sūkās was not a Milesian colony, as it was no real Greek colony, but a Phoenician town, in which Greek merchants, Milesians(?),
${ }^{592}$ Lambrino, Vases, 39-46.
593 JHS 60 1940, 14 fig. $8 \mathrm{f}-\mathrm{k}$.
${ }^{594}$ Her. II 178.3.
${ }^{595}$ Her. II 159.3.
${ }^{596}$ Boardman, GO, 74.
597 Samos V 75-76.
${ }^{598}$ However, the possible Rhodian participation in the foundation of Cyrene may explain why so much Rhodian pottery is found in Tocra, see Tocra, 14-15.
${ }^{599}$ See notes $587-588$.
${ }^{600}$ Tocra, 64, JHS 86 1966, 286.
${ }_{601}$ Boardman, GO, 250-251.
${ }^{602}$ Huxley, Early Ionians, 71 notes 79-80. See further E. Langlotz, Die kulturelle und künstlerische Hellenisierung der Küsten des Mittelmeers durch die Stadt Phokæa. Köln 1966, 10 note 1, 14-19.
${ }^{603}$ Villard, Marseille, 36-50, 54-57 pls. 19-28.

Chians(?) or other Eastern Greeks(?), were permitted to live among Orientals, i.e. some sort of évoikıouós. ${ }^{604}$ However in the first half of the 6th century there is safe evidence of direct Greek contact with Northern Phoenicia, and the influence known from these regions, for instance in the early East Greek architecture, is not only to be explained by contact through 7th century Al-Mina. ${ }^{605}$
${ }^{604}$ Sūkās I 129.
${ }^{605}$ The oriental influence, i.e. Syro-Hittite is seen for instance in the tradition of decorating the lower column drums with sculpture, see F. Krischen, Weltwunder der Baukunst in Babylonien und Jonien, Tübingen 1956, 64-66. For the columna caelata from Ephesus, Didyma and Kyzikos, see D. G. Hogarth, Excavations at Ephesus, British Museum, London 1908, 293-312, JdI 78 1963, 102-112, K. Tuchelt, Die archaischen Skulpturen von Didyma, Ist. Forsch. 27 1970, 99-103, Antike Kunst 8 1965, 99-102. On the suggestion by B. Ridgeway-that the carved drums from Didymaion may imitate metal appliqué-see Hesp 35 1966, 191 note 16. See further B. Wesenberg, Kapitelle und Basen. Düsseldorf 1971, 87-89, on the North Syrian leaf-base, which may have influenced East Greek bases, ibid. 111-116.

$$
2
$$

Appendix

List of Provenances of the Aegean, Corinthian and Eastern Greek Pottery and Terracottas from Tall Sūkās

The squares are those indicated on the plan, Sūkās I 13 fig. 4. Regarding the location within the squares, see ibid. 20 , cf. 18-19.

The numbering of layers is that used during the excavation, cf. the preliminary reports in AASyr VIII/IX-XV 2, 1958/59-1965. Where possible the final designation of strata given in Sūkās I and forthcoming publications of the architectural finds, cf. Sūkās I 11-12 and 127, has been employed. A concordance will be printed on completion of the entire series of publications on the Carlsberg Expedition to Phoenicia.

Square		Location	TS.no.	Cat.no.
E 8	NW	located object		
		IX	12	ad 94
	NE	not precisely located objects		
		layer 1	85	ad 277
		-	92	ad 267
		-	96	ad $\mathbf{2 5 2}$
		layer 2	110	ad 389
	SW	located objects		
		XXXVI	$483)$	
		xxxviif	484	24
		XLVI	497	
		and E 8 SE layer 4, E 8 NW		
		layer 3		
		not precisely located objects		
		layer 2	18	ad 115
		-	127	ad 128 a
		layer 4	520	62
	SE	not precisely located objects		
		layer 3	26	ad 302
		layer 4	1537	ad 15
F 5	NE	located object		
		XXVI	1325	390
	SE	located objects		
		XI	541	161
		XII	536	ad 245
		XII	537	ad 118
		$\left.\begin{array}{l} \text { xIV } \\ \text { xy } \end{array}\right\}$	961	ad 134
		XXI	522	ad 118
		XXIII	524	114
		not precisely located objects		
		layer 1	178	210
		-	180	ad 122
		-	181	ad 115
		layer 3	677	166
		11/9 1958	302	ad 257
		-	304	ad 297
		- -	306	74
		13/9 -	315	195
		14/9 -	971	144
		20/9 -	1357	251
		5/10 -	1549	ad 123
		6/10 -	1679	ad 245
F 6	NW	not precisely located object		
		layer 1 in front of N -wall	969	41
F 7	E	located objects		
		II	3326	374

Square		Location References	TS.no.	Cat.no.
F 8	NW	located objects		
		I	1768	388
		XVIII	1773	27
		XXXVI	1923	ad 111
		not precisely located objects		
		layer 2 Sūkās I 50, 142, 152		
		figs. $53 \mathrm{~b}-\mathrm{c}, 54 \mathrm{a}-\mathrm{b}$.	2018	37
		layer 5 baulk towards E 8	2838	344 b
F 11	NW	located object		
		III	742	348
F 15	SW	not precisely located objects		
		layer 6 (?) W. of tower	2629	329
	SE	located objects		
		XXIV	1929	ad 115
		XxV	2290	111
		not precisely located object		
		town wall in same height as		
		layer 9	1790	268
F $15 /$ G 15		not precisely located object		
		layer 4	3479	378 a
F 16	SW	located objects		
		XIV	2281	319
		XIX	1939	ad 107
		XXIV	1940	ad 238
		XxV	2311	274
		XXVI	2312	327
		not precisely located objects		
		layer 10	1797	ad 88
		B	1798	ad 267
G 5	NW	not precisely located objects		
		layer 2 baulk	3540	ad 68
		cleaning of facade of W-wall	207	238
		between stones in town wall	3529	ad 118
		-	3530	ad 107
		-	3531	ad 107
		-	3532	ad 107
		-	3533	ad 121
		-	3534	ad 238
	NE	located objects		
		V	542	ad 137
		V	543	ad 132 b
		V	544	ad 115
		XVI	1020	387
		XVI	1021	116
		XVII	549	208
		XXII	557	ad 108
		XXX	1030	ad 128 c

Square
Location

G 5
not precisely located objects

layer 1	28	ad 143
-	29	ad 266
-	30	ad 225
-	188	ad 116
-	189	ad 132 a
-	190	ad 140
-	191	370 a
layer 2 baulk	3521	ad 129
- -	3522	ad 131
- -	3525	ad 108
- -	3527	ad 107
layer 3	$\left.\begin{array}{l} 551 \\ 765 \end{array}\right\}$	ad 134
-	3500	ad 132 a
-	3501	ad 122
-	3541	ad 118
-	3542	149
-	3543	ad 109
-	3546	ad 267
-	3552	108
-	3553	ad 128 c
-	3554	ad 107
-	3555	ad 123
-	3556	ad 122
-	3557	ad 142
layers 3-4	3545	66
layer 4	3504	121
-	3505	60
-	3508	249
-	3512	ad 267
-	3513	235
- baulk	3516	ad 107
- -	3518	ad 128 c
- -	3519	ad 132 a
-	3520	39
- -	3560	ad 123
-	3561	127 b
- -	3562	ad 107
-	3563	ad 128 c
- -	3564	ad 103
-	3565	209
- -	3567	ad 143
- -	3811	ad 122
- -	3829	78
20/9 1958	644	55
- -	1379	336

Square		Location	TS.no.	Cat.no.
G 5		14/9 1958	1512	134
		25/9 -	1516	182
		6/10 -	1868	82
	SW	not precisely located objects		
		layer 1 baulk towards W	185	ad 132 a
		cleaning of W -wall	608	294
		cleaning of W -wall	609	ad 267
		in front of W-wall	1696	ad 246
	SE	located objects		
		I	71	ad 118
		III	72	ad 107
		VI	1018	389
		XXV	1022	ad 107
		XXV	1024	ad 52
		XXV	1027	43
		XXVI	1028	ad 128 c
		XXXV	758	ad 132 a
		XXXVIII	710	ad 107
		not precisely located objects		
		layer 1	31	ad 108
		-	33	ad 251
		-	34	ad 111
		-	55	ad 141 a
		-	78	201
		-	81	ad 118
		-	330	ad 302
		layer 2 baulk	3523	190
		-	3524	354
		layer 3	552	ad 107
		-	553	ad 122
		-	554	ad 125
		-	555	ad 132 a
		17/9 1958	265	ad 267
		13/9 -	284	ad 132 a
		- -	285	ad 132 a
		- -	294	215
		- -	295	ad 148
		- -	296	ad 297
		- -	318	ad 267
		- -	320	ad 107
		- -	321	ad 219
		28/9 -	611	244
		- -	612	72
		baulk towards W	1117	113
		8/10 1958	1376	77
		14/9 -	1378	153
		17/9 -	1513	52

Square	Location	TS.no.	Cat.no.
G 5	17/9 1958	1514	179
	24/9 -	1515	ad 89
	27/9 -	1517	300
G 7 SW	not precisely located objects		
	layer 3	1345	ad 142
	16/9 1958	1360	377
SE	located objects		
	IV	1035	ad 109
	V and layer 3	1036	411
	VI	779	ad 272
	VI	780	ad 142
	VII	775	ad 128 e
	VII	776	ad 107
	VII	777	ad 116
	VIII	774	ad $\mathbf{2 6 7}$
	X	1037	307
	XIII	1038	69
	XIX	668	216
	XX	1042	53
	XX	1043	ad 108
	XXII	2037	ad 107
	XXIV	1800	ad 241
	XLI	2135	ad 141 a
	XLII	1954	ad 107
	XLV	1957	ad 18
	XLVI)		170 b
	XLII	1959	170 b
	LXXIV	2269	258
	LXXVI	1972	141 b
	LXXVII	1973	ad 108
	LXXVIII	1974	ad 170 b
	LXXXVIII	2270	170 a
	LXXXVIII	2271	ad 132 a
	not precisely located objects		
	layer 1	1520	159
	layer 2 on floors	1044	279
	-	1380	332
	-	1382	73
	layer 3	1383	146
	layer 9 ashes in N-W part	1947	ad 106
	layer 16 SE angle	1986	340
G $7 \mathrm{SE} / \mathrm{G} 8 \mathrm{SW}$	not precisely located object		
	layer 2	347	ad 297
G 8 NW	not precisely located objects		
	layers 1-2	1122	189
	layers 1-6 descent to G 8 SW	1810	ad 120
	layers 1-6 descent to G 8 SW	1811	ad 128 c

Square		Location	TS.no.	Cat.no.
G 8		layers $1-7$ descent to G 8 SW	1988	308
		layers 1-7 descent to G 8 SW	1989	ad 240
	SW	located objects		
		III	276	ad 147
		III	289	188
		IV	1052	293
		VII	1053	ad 216
		XII	1064	ad 59
		XIV	1065	96
		XIV	1066	92
		XIX	667	262
		III		
		XIII		
		XX	274	154
		XXVI		
		XLI		
		XX	1067	138
		Xxy	1073	384
		xXV	1075	97
		XXV	1076	306
		XXV	1077	ad 72
		XXV	1078	75
		xxy	1079	ad 297
		xXV	1080	ad 240
		XxV	1081	ad 297
		xxy	1083	ad 143
		xxy	1084	ad 189
		xxy	1085	ad 246
		XxV	1086	245
		XxV	1099	162
		XXV	1100	ad 52
		XxV	1689	ad 107
		xxxviif	1096	ad 107
		XLI	803	ad 138
		XLVIII	1102	ad 331
		XLIX	1103	ad 297
		L	794	ad 105
		LV	790	115
		not precisely located objects		
		layer 1	332	94
		layer 2	640	158
		-	1068	ad 52
		-	1108	ad 243
		-	1109	ad 88
		-	1110	ad 267
		-	1523	180
		-	4924	ad 108

Square		Location	TS.no.	Cat.no.
G 8		layer 3	1521	ad 123
		layer 4	793	ad 115
		11/9 1958	313	ad 268
		1958	1087	157
		24/9 1958	1683	240
	SE	located objects		
		IX	1058	185
		X	1059	57
		XV	810	ad 302
		XXIV	379	ad 246
		XxViII	1088	54
		XxX	628	350
		XL	804	217
		XLIII	798	ad 108
		LIV	1692	ad 108
		LVII	1105	303
		LVII	1106	ad 132 a
		LX	785	ad 107
		LXII	669	239
		not precisely located objects		
		layer 2	1341	227
		-	1342	ad 242
		-	1384	ad 122
		layer 3	1355	29
		layer 6	234	310
		- SE/SW baulk	662	261
		layer 6	1111	ad 306
		-	1339	254
		layer 8	619	402
		/SW 26/10 1958	1346	63
G 10	NE	located objects		
		XVIII	4811	ad 118
		XIX	4401	272
		XIX	4402	ad 297
		XXII	4408	ad 241
		XXIII	4409	ad 242
		LXVII	4792	ad 4
		not precisely located objects		
		layer 2	4364	422
		layer 5	4657	3
	SE	located objects		
		XLI	4648	160
		XLIX	4645	289
		LIV	4644	352
		LVII	4789	ad 109
		LIX	4522	14
		$\begin{aligned} & \text { LXXIX } \\ & \text { IXXX } \end{aligned}$	4802	ad 267

Square

G 10

G 11

Location

LXXX
LXXXI
not precisely located objects
layer 6
layer 7
layer 8 or 2
depth 1.5 m i.e. layer 11 in G 11 SW located objects

LXXIII
XCV
CXIII
not precisely located object
layer 2
located objects
X
XXV
XXV
XXIX
L
XXXIV
XXXIV
XXXIV
XXXIV
XXXVII
XXXVIII
XXXIX
XL
XLVIII
XLIX
L
L
L
LIII
LVI
LVIII
LXIII
LXIII
LXIV
LXIV
LXIX
LXX
LXXIV
LXXIV
LXXIV
LXXIV
LXXIV
LXXIV

TS.no. Cat.no.
$4801 \quad 317$
4642 156

353 a
ad 105
417
420

191
248
ad 323

341

61
ad 297
ad 225
323
203
198
ad 142
ad 191
ad 107
297
250
218
87
ad 191
150
ad 107
ad 137
ad 108
243
291
ad 128 c
ad 106
ad 288
241
ad 107
ad 267
151
ad 246
ad 18
148
ad 170 b ad 250

Square		Location	TS.no.	Cat.no.
G 11		XLVI	1174	ad 251
		XLVI	1177	91
		LII	1190	366
		LIX	830	196
		LIX	1182	ad 137
		LX	831	ad 118
		LXI	828	ad 265
		LXI	829	ad 189
		LXVII	1687	ad 108
		Lxxxv	1115	ad 118
		LxxxViif	678	ad 267
		LxxxViri	854	ad 244
		LXXXVIII	1420	397
		XCI	851	ad 115
		XCVIII	1213	267
		CII	595	288
		CVI	269	ad 266
		not precisely located objects		
		layer 1	647	ad 188
		-	648	ad 191
		layer 2 baulk	578	335
		layer 3 SW-corner	635	337
		layer 4	625	330
		layer 6	232	48
		-	1387	45
		-	1388	141 a
		-	1485	222
		layer 8 ?	1389	ad 146
G 12	NW	not precisely located object		
		layer 3	4434	80
	NE	not precisely located object		
		layer 13	3858	ad 35 a
	SW	located objects		
		$\begin{aligned} \mathrm{I}= & \mathrm{G} 11 \mathrm{SE} \\ & \mathrm{LXXXVIII} \end{aligned}$	954	176
		$\begin{aligned} \mathrm{I}= & \mathrm{G} 11 \mathrm{SE} \\ & \mathrm{LXXXVIII} \end{aligned}$	955	ad 134
		$\begin{aligned} \mathrm{I}= & \mathrm{G} 11 \mathrm{SE} \\ & \mathrm{LXXXVIII} \end{aligned}$	1428	400
		XX	4861	117
		not precisely located object		
		layer 2	4386	312
	SE	located objects		
		XVII	4578	399
		XXXIII	4577	100
		XLV	4835	ad 346
		LV	4440	320

Square		Location R	References	Final indication of stratum	TS.no.	Cat.no.
G 12		LIX			3282	200
		XCVI			4506	104
G 13	NW	located objects				
		XCVIII S	Sūkās I 60 pl . IV no. 1 fig. 25 d	J	4514	265
		LXXII	Sūkās I 60 pl. IV no. 2 fig. 25 e	G^{2}	4572	353 b
		not precisely located objects layer 2				
		-			3291	ad 108
		-			3576	ad 107
		-			3577	ad 308
		-			3578	ad 123
		-			3579	ad 235
		-			3581	316
	SE	located objects				
		III			1995	ad 107
		VII		E	1997	186
		VIII		E	1998	ad 107
		VIII		E	1999	132 b
		XIV S	Sūkās I 61 pl. IV			
			no. 11	G^{2}	2129	ad 120
		XXIII		G^{2}	2345	ad 118
		XXV S	Sūkās I 60 pl. IV no. 6.	G^{2}	2347	ad 108
		XXIX S	Sūkās I 60-61 pl. IV no. 7.	G^{2}	2350	ad 141 a
		LXVII S	Sūkās I 60 pl. IV no. 3 fig. 25 f.	G^{3}	4574	339
		LXXXVII	Sūkās I 44 pl. III no. 12 fig. 16 a	H^{1}	4478	145
		not precisely located objects				
		layer 6		G^{2}	2336	364
		layer 7		G^{3}	4670	404
	SW	located objects				
		XLVI			3652	234
		XLVI			3653	425
		not precisely located objects				
		layer 1			3569	ad 107
		-			3571	ad 133 a
		-			3572	ad 4
		-			3583	383
		-			3632	174
		-			3638	ad 146
		layer 2			3575	225
		-			3584	ad 118
		-			3585	ad 128 c

Square		Location	TS. no.	Cat. no.
G 19		W. of wall	1877	ad 241
H5	NW	not precisely located objects		
		17/9 1958	623	65
		cleaning of facade of wall	1255	ad 107
	NE	located objects		
		XXVIII	895	ad 108
		XXX	235	321
		XLIII	1008	131
		XLIII	1015	296
		XLIII	1016	129
		XLIII	1017	112
		not precisely located objects		
		layer 1	142	418
		layer 3	211	105
		13/9 1958 baulk	338	ad 302
		5/10 -	653	ad 131
		20/9 -	1340	298
		20/9 -	1344	ad 238
		28/9 -	1395	368
		17/9 -	1721	ad 107
		17/9 -	1722	ad 107
		17/9 -	1730	252
	SW	not precisely located object		
		25/9 1958	633	349
	SE	located objects		
		XII	118	ad 109
		XXIX	1009	347
		XXIX	1010	110
		XXIX	1012	38
		XXXIII	212	130
		XXXIII	$\left.\begin{array}{l} 213 \\ 558 \end{array}\right\}$	120
		not precisely located objects		
		layer 1	171	ad 116
		layer 3(?)	657	ad 131
		17/9 1958	${ }^{525}$)	107
		17/91958	527)	107
		- -	526	ad 107
		- -	528	ad 128 c
		- -	529	ad 238
		9/10 -	1723	102
		17/9 -	1729	ad 111
H 10	NE	located objects		
		LVIII	4641	155
		LXV	4635	ad 165
		XCIX	4630	280
		CII	4562	315

Square		Location	TS. no.	Cat. no.
H 10		CV	4619	193
		CV	4620	282
	SE	located object		
		XXXIX	4615	351
		not precisely located object		
		layer 9	4689	290
H 11	NW	located objects		
		XVI	1884	398
		xxvir	1893	ad 18
		LXXIII	4063	334
		LxXXVI	3822	413
		XCVII	2561	119
		C	2564	ad 238
		CV	2567	ad 132 a
		CXVIII	2571	ad 267
		cxxix		
		$\left.\begin{array}{l}\text { CXXXIII } \\ \text { CL }\end{array}\right\}$	4317	409
		CL		
		$\left.\begin{array}{l} \text { CXXIX } \\ \text { CLI } \end{array}\right\}$	4758	133 a
		CXXIX	4762	395
		CxXXI	2575	ad 268
		CXL	2577	122
		CXLVIII	2586	ad 268
		CLIV	2594	ad 189
		not precisely located objects		
		layer 2 baulk towards G 11	2616	ad 323
		layer 3 baulk	2608	ad 190
		layers 3-4 baulk towards G 11	2613	391
		layer 4 baulk	2603	ad 108
		- -	2606	ad 26
		-	2996	ad $\mathbf{2 8 8}$
		layer 7	3418	ad 111
		-	3422	ad 107
		-	3426	207
		-	3827	361
		layer 8	3440	ad 107
		-	3826	22
		layer 9	3448	ad 128c
		layer 10	3432	ad 106
		-	3433	ad 111
		-	3824	253
		-	3825	ad 143
		layer 11		
		-	3453	ad 145
		-	3454	369
		layer 12	3408	ad 107

Square		Location	TS. no.	Cat. no.
H 11		layer 12	3409	ad 107
		-	3436	58
		-	3458	ad 109
		layer 13	3365	ad 107
		layer 14	3823	147
		layer 15	3377	ad 288
		-	3378	ad 297
		-	3820	ad 389
		layer 16	3383	ad 267
		-	3384	ad 107
		-	3385	ad 132 a
		-	3393	ad 68
		layer 17	2595	423
		-	3396	231
		-	3405	181
		20/10 1960	3437	414
NE		located objects		
		CCIV	4437	358
		CCXIII	4611	359
		CCXIX	4480	ad 143
		CCXXIX	4467	152
		ccxxxviI	4489	344 a
		CCLV	4819	375
		CCCI	4846	98
		CCCII	4837	292
		CCCXIII	4604	ad 35 a
		CCCXXXVI	5553	ad 19
		not precisely located objects		
		layer 2	3465	ad 297
		layer 3	3464	ad 148
		layer 4		
		-	3466	ad 271
		layer 6	4456	401
		-	4460	ad 128e
		layer 12	5628	224
		layer 24	5652	101
SW		not precisely located object		
		layer 12	4694	386
SE		located objects		
		CCLXIV	4528	277
		CCXCIV	4838	136 a
		ccxcvir	4847	95
		CCCX	4843	93
		not precisely located object layer 11	4693	326

Square
Location

L 8
SE
E
located objects

XIII	2123	$\mathbf{3 6 7}$
XVII	2144	ad $\mathbf{2 6 7}$
XXIII	2442	$\mathbf{3 4 3}$
XXIX	2647	ad $\mathbf{1 3 4}$
XXXI	2648	ad $\mathbf{1 3 4}$
XXXII	2226	$\mathbf{3 4 2}$
XXXII	2649	$\mathbf{3 7 3}$
LIII	2690	$\mathbf{3 7 2}$
LIII	2723	ad $\mathbf{2 6 7}$
LV	2323	$\mathbf{2 6 4}$
LVII	2324	$\mathbf{2 5 9}$

LIX
not precisely located objects
layer 2
layer 5 Room XXII

-	-
-	-

-

-	-
-	$X_{X I I}$
-	-
-	

-
-
-

pocket in Room XXII
Room XXIII
XXII
layer 6 Room XXIII

$$
-\quad-\text { XXII }
$$

$-\quad$ fill under break, stone wall

- \quad w. of ashlar pillar
- fill under break, stone wall
w. of ashlar pillar
layer 6 b Room XXII
$\begin{array}{lll}- & - & - \\ - & - & - \\ - & - & \text { XXIII }\end{array}$
layer 7 Room XXII
- $\quad-\quad-$
not precisely located objects

layer 7 Room XI	2843	ad $\mathbf{1 0 8}$
layer $8-$ X	2858	ad $\mathbf{1 4 5}$

Square
L 13

P 11

Location

located objects
XL
LI
not precisely located objects

| layer 4 fill below wall | 2762 | 393 |
| :--- | :--- | :--- | layer 5 Room XXII 2465 ad 144

located objects

XXXVII	906	ad $\mathbf{1 3 2} \mathbf{~ b}$
LV	1296	$\mathbf{3 5 6}$

LVII 1292 ad 92
LVIII 1291 ad 137

LX
672
1299
1300
1298
LXIII
913
937
925
921
2093
2099
2095
2101
2096
2097
2480
2481
2098
2109

LXXXVII	2098	257
LXXXIX	2109	ad 120

XC
XCVI
2110

XCIX
2485
2150
ad 109

C
2151 263

CI 2155
not precisely located objects layer 2 in filling of wall layer 3

$\mathbf{1 2 9 3}$	$\mathbf{3 9 6}$
1446	ad $\mathbf{2 3 8}$
1447	$\mathbf{3 3 8}$
1448	$\mathbf{1 8 3}$
1449	$\mathbf{1 6 8}$
621	$\mathbf{4 0 8}$
2094	$\mathbf{2 0 2}$
2497	ad $\mathbf{3 0 2}$
2498	$\mathbf{5 1}$
2152	$\mathbf{2 8 4}$
2338	$\mathbf{3 1 1}$
2501	ad $\mathbf{3 9 0}$

Square	Location	TS. no.	Cat. no.
P 11	25/10 1958	909	421
	30/9 -	922	380
	4/10 -	1399	ad 139
	- -	1441	ad 146
	19/10 -	1442	ad 59
	1/10 -	1676	ad 3
	- -	1737	371
	- -	1738	333
Surface			
	22 and 29/8 1958	1	81
	- - -	2	123
	6/9 1958	3	ad 267
	7/9 -	48	ad 297
	F 5 W -slope	292	281
	19/10 1958	351	270
	- -	352	295
	- -	356	89
	- -	357	ad 123
	-	359	76
	- -	364	ad 18
		365	ad 18
	-	368	416
	- -	369	ad 416
	S of tall 3/11 1958	427	365
	F 5 W-slope 11/9 1958	512	178
	1958	1314	ad 128 c
	-	1317	68
	J 5 NW in fill outside crousade-wall	1764	346
	1960	2538	ad 268
	W-slope on terrace half-way down	3844	271
	24/10 1961	4714	ad 244
	Eastern spur 4/9 1961	4752	8

PLATES

(Small numbers refer to the catalogue)

Plate I

Plate II

 Fim

Plate IV

Plate V

Plate VI

Plate VII

Plate VIII
1:2

Plate X

Plate XII

Plate XIV

Plate XVI

Plate XVII

Plate XVIII

Plate XX

Det Kongelige Danske Videnskabernes Selskab

Historisk-filologiske Skrifter Hist. Filol. Skr. Dan. Vid. Selsk.

Bind 1 (kr. 208.-)

1. Sander-Hansen, C. E.: Das Gottesweib des Amun. 1940 . 44. -

2. Sander-Hansen, C. E.: Über die Bildung der Modi im Altägyptischen. 1941 30.-
3. Danstrup, John: Esgruserhaandskriftet, en Adam af Bremen-Afskrift af Otto
Sperling den Yngre. Mit deutscher Zusammenfassung. 1943 30.-

Bind 2 (kr. 120.-)

1. Hansen, C. Rise, og Steensberg, Axel: Jordfordeling og Udskiftning. Undersøgelser i tre sjællandske Landsbyer. Med et Bidrag af Werner Christensen. With a Summary in English. 1951

Bind 3 (kr.67.-)

1. Fussing, Hans H.: Stiernholm len 1603-1661. Studier i krongodsets forvaltning. With an English Summary. 1951

Historisk-filosofiske Skrifter
Hist. Filos. Skr. Dan. Vid. Selsk.

Bind 4 (kr. 175.-)

1. Erichsen, W.: Die Satzungen einer ägyptischen Kultgenossenschaft aus der Ptole-
mäerzeit. Nach einem demotischen Papyrus in Prag. 1959................... 15.-

2. MacKenzie, D. N.: The Dialect of Awroman (Hawrāmān-ī Luhōn). Grammatical
Sketch, Texts and Vocabulary. 1966... 45.-

Bind 5 (kr. 240.-)
3. Rirs, P. J.: Sūkās. I. The North-East Sanctuary and the First Settling of Greeks in Syria and Palestine. 1970 100.
4. Mortensen, Peder: Tell Shimshara. The Hassuna Period. With an Introduction by Harald Ingholt and Contributions by Anne-Tinne and Mogens Lønborg Friss, Colin Renfrew, Henrik Tauber and others. 1970 80.-
5. Sass, Else KaI: Comments on Rembrandt's Passion Paintings and Constantijn Huygens's Iconography. 1971 60.-
Bind 6 (kr. 250.-)
6. Neugebauer, O., and Pingree, D.: The Pañcasiddhāntikā of Varāhamihira. Part I. 1970 70.-
Part II. 1971 80.-
7. Ploug, Gunhild: Sūkās. II. The Aegean, Corinthian and Eastern Greek Pottery and Terracottas. 1973 100.-
Bind 7(uafsluttet/in preparation)
8. Danielsen, Niels: Die Frage. Eine sprachwissenschaftliche Untersuchung. 1972. 45.-

[^0]: ${ }^{1}$ See, e.g., D. K. Biswas, "The Maga Ancestry of Varāhamihira," Indian Historical Quarterly 25, 1949, 175-183. Traces of Persian influence on the Pañcasiddhāntikā are to be noticed in I, 23-25 and XV, 19. On the Maga Brāhmanas in general see now H. von Stieteneron, Indische Sonnenpriester. Samba und die Sākadvīpīya-Brāhmaṇa, Schriftenreihe d. Südasiens-Instituts d. Universität Heidelberg 3, Wiesbaden 1966.
 ${ }_{2}$ The date A.D. 505 is certainly not used in the Pañcasiddhāntikā because it is the date of his birth as is sometimes alleged. And there is no compelling reason to accept the tradition that he was one of the Nine Jewels at the court of Vikramāditya, no matter whom that shadowy figure is identified with.
 ${ }^{3}$ See D. Pingree, "The Empires of Rudradāman and Yaśodharman: Evidence from Two Astrological Geographies," JAOS 79, 1959, 267-270.
 ${ }^{4}$ A complete bibliography will appear in the appropriate volume of D. Pingree, A Census of the Exact Sciences in Sanskrit, to be published in the Memoires of the American Philosophical Society.
 ${ }^{5}$ We have no work on interrogations by Varāhamihira himself, but that of his son Pṛthuyaśas, the Ṣaṭpañcāśikā, does survive.

[^1]: ${ }^{6}$ The long discussions by Dikshit and others about whether this date is really Caitraśuklapratipad are irrelevant as their computations are based on the elements of the ārdharātrica system, not on those of the Romaka.

[^2]: ${ }^{7}$ Cf., e.g., I,2; II,31; II,33; V,25; X,62; etc.
 ${ }^{8}$ Cf., e.g., I,12; I,32; I,61-62; II,19; II,33; II,46-47; VI,12; IX,11; X,13-14; XI,4-45; etc.

[^3]: 9 jagadaṇ̣̣akhamadhyasthā mahābhūtamayī kṣitiḥ / bhavāya sarvasattvānạ̣̄ vṛttā gola iti sthitā //
 ${ }^{10}$ tatrāgre grahanakṣatratārāgaṇasamāvṛtaḥ ajasraṃ bhramati vyomni jyotirgolaḥ pradakșinam //
 ${ }^{11}$ tasya cātra cid rudrakṛtanandāṣtakendavaḥ ayanasya yugaṃ proktaṃ brahmārkādimataṃ purā //
 If the precession makes 189411 revolutions in a Kalpa, the yearly motion is approximately $0 ; 0,57^{\circ}$ and the precession amounts to 1° in about 63 years.
 ${ }^{12}$ pakșasaptakhaśūnyābdhiguṇagorthaśarendavah / caturyugārkṣanṇy etāni kathitāni purātanaị̣ // The Vasisṭtha's revolutions of the Moon in a mahāyuga, then, are those of the ārdharātrika system: 57753 336. This is what one expects from Brahmagupta's description of Viṣnucandra's work.
 ${ }^{13}$ divasakareṇāstamayạ̣ samāgamaḥ sítaraśmisahitānām kusutādīnāṃ yuddhaṃ nigadyate 'nyonyayuktānām //
 14 balavatsaumyasamete pāpe kṛcchreṇa kendrage siddhiḥ / balavatpāpasamete saumye siddhir na yātuḥ syāt //

[^4]: 15 See D. Pingree, "The Later Pauliśasiddhānta", Centaurus 14, 1969, 172-241 and also Isis 54, 1963,

[^5]: ${ }_{24}$ They are XIII, 2-3, 5-6, 9,12,27, and 35.
 ${ }^{25} \mathrm{I}, 1,8-10$, and $16-22$; II,13; III,1,10,21, and 25 ; IV,20-23,27-28,30-33,35-36,38,41-44, and 48-49; V, $1-10$; VI, $9-10$ and 15 ; VIII, 1 and $9-18$; IX,1; XII,1-3; XIII,1-34 and $39-42$; XIV, 33 and $39-40$; XV,15 and 18-29; and XVI,15-16.
 ${ }^{26}$ See Pauliśa frag. P 1.
 ${ }^{27}$ In the text he refers only to Avantideśa and Lañkā; but such references do not help to fix his own place of residence. Some commentators place him at Puruṣottama in Orissa on the basis of his reference to the deity Purusottama in the last verse of his work.

 28 They are XIII,36 and XV,17-20.
 ${ }_{29}$ This is XIII, 12.
 ${ }^{30}$ They are XIII, 1 and XV,20 and 29.
 ${ }^{31}$ See G. Bühler quoted in A. E. Gough, Papers Relating to the Collection and Preservation of the Records of Ancient Sanskrit Literature in India, Calcutta 1878, pp. 116 and 132-133.

 Hist.Filos.Skr.Dan.Vid. Selsk. 6, no. 1.

[^6]: ${ }^{32}$ G. Thibaut, "Notes from Varāha Mihira's Panchasiddhāntikā," Journal of the Asiatic Society of Bengal, 53, 1, 1884, 259-293.
 ${ }^{33}$ Reprinted at Lahore in 1930 and at Varanasi (Benares) in 1968.
 ${ }^{34}$ S. B. Dikshit, "The Original Sūrya-siddhānta," Indian Antiquary 19, 1890, 45-54.
 ${ }^{35}$ Dikshit explicitly states (fn. 2) that Modak copied the manuscript from one of the two in the (then) Deccan College Collection, which are our A and B. And Modak's copy reads bhauma ${ }^{\circ}$ in I,8d, șadyanemdri ${ }^{\circ}$ in IX,2c and khakhavedavikalikāh in XVI,11c, all in agreement with β against α.
 ${ }^{36}$ "The Romaka Siddhantas," Indian Antiquary 19, 1890, 133-142.

[^7]: 37 "The Panchasiddhantika," Indian Antiquary 19, 1890, 439-440.
 ${ }^{38}$ J. Burgess, "The Romaka Siddhantas," Indian Antiquary 19, 1890, 284-285.
 39 "The Sines of Arcs in the Pancha-Siddhantika," Indian Antiquary 20, 1891, 228.
 ${ }^{40}$ M. P. Kharegat, "On the Interpretation of certain passages in the Pancha Siddhántiká of Varáhamihira, an old Hindu Astronomical Work," Journal of the Bombay Branch of the Royal Asiatic Society 19, 1895/97, 109-141.
 ${ }^{41}$ We do not discuss here such articles as V. Thiruvenkatacharya, "Ayanamsa and Indian Chronology. The Age of Varahamihira, Kalidasa, Etc.," Journal of Indian History 28, 1950, 103-110, which has been satisfactorily refuted by T. S. Kuppanna Sastri and K. V. Sarma, "The Saka Era of VarahamihiraSalivahana Saka," Journal of Indian History 36, 1958, 343-367. An attempt to understand some passages was made by P. C. Sengupta in $J D L / U C 18$, 1929, art. 3.
 ${ }^{42}$ O. Neugebauer, The Exact Sciences in Antiquity, Princeton 1952, pp. 158-159, 2nd ed., Providence 1957, pp. 165-166.
 ${ }^{43}$ Ibid., pp. 165-166; 2nd ed., pp. 172-173.
 ${ }^{44}$ K. S. Shukla, "On Three Stanzas from the Pañcasiddhāntikā," Ganita 5, 1954, 129-136.
 ${ }^{45}$ T. S. Kuppanna Sastri, "The Vāsisṭtha Sun and Moon in Varāhamihira's Pañcasiddhāntikā," Journal of Oriental Research, Madras 25, 1955/56, 19-41.
 ${ }^{46}$ D. Pingree, "A Greek Linear Planetary Text in India," Journal of the American Oriental Society 79, 1959, 282-284.
 ${ }^{47}$ "Astronomy and Astrology in India and Iran," Isis 54, 1963, 229-246 (see 236-237).

[^8]: ${ }^{49}$ The "stranger to the sphere" is identified as Āryabhaṭa by Pṛthūdakasvāmin.
 ${ }^{50}$ Pṛthūdakasvāmin here quotes a verse from Vișṇucandra's Vasisṭhasiddhānta regarding precession; see above p. 11.
 ${ }^{51}$ Literally, "he who has a multitude of stigmata"; Pṛthūdakasvāmin identifies him with Āryabhaṭa.
 ${ }^{52}$ The passage no longer survives in our Pañcasiddhāntikā.

[^9]: Hist. Filos. Skr. Dan.Vid. Selsk. 6, no. 1.

[^10]: ūna I 10 II 1,11 III $2,5,9,10$ IV $2,4,5,11$, $17,22,28$ V 1,9 VI $1,3,4,5,11$ VII 6 VIII 3 IX 2,12,25 X 1 XII 2,3 XIII 15,25 XIV 10 XVI 13,23,24,25 XVII 19,34, $40,43,44,49,50,51,53,60,75,76,79$
 ūnarātra XV 24
 ūnita II 4 V 5
 ūrdhva XIII 39,40,41,42 XV 15
 ūrdhvaga XIII 32

 ṛkṣa II 7 III 16,20 IV 31 XIV 4 XV 24
 ṛju IV 54 XIII 31

[^11]: ${ }^{1}$) Cf. Nallino, Battānĩ I p. 40 and p. 127 (4).

[^12]: ${ }^{1}$) As is usual in this and in other texts of Indian astronomy, all longitudes are sidereal, save in cases in which the declination of the Sun plays a role. For the sidereal coordinates the beginning of Aries is identical with the beginning of the nakșatra Aśvinĩ.

 Hist.Filos.Skr. Dan.Vid. Selsk. 6, no. 1.

[^13]: $\left.{ }^{1}\right)$ Cf. also IX,5.
 ${ }^{2}$) Ernest W. Brown, Tables of the Motion of the Moon (New Haven 1919) Section II.
 ${ }^{3}$) The 15 tithis of every half-month are divided into three equal series whose members are consecutively called mandā, bhadrā, vijayā, riktā, and pūrṇā; see Bṛhatsaṃhitā 99,2.
 ${ }^{4}$) See e.g., B. L. van der Waerden, Hermes 80 (1952) p. 129-155.

[^14]: ${ }^{1}$) From Tuckerman, Tables. The time difference to midnight Ujjayinī is only 3 h .

[^15]: ${ }^{1}$) Using (after correcting many errors) the edition by Halma "Commentaire de Théon d'Alexandrie... ; Tables manuelles des mouvemens des astres" Paris 1822, 1823.

[^16]: $\left.{ }^{1}\right)$ For the Babylonian parameters cf. ACT II p. 283.

[^17]: ${ }^{1}$) Cf. ACT II p. 302-306.

[^18]: Abbreviations
 In addition to those indicated in the Archäologische Bibliographie, Beilage zum Jahrbuch des deutschen archäologischen Instituts and Sūkās I, 3-4, the following abbreviations are used:

 Agora XII-B. A. Sparks \& L. Talcott, Black and Plain Pottery of the 6th, 5th and 4th Century B.C. Agora XII.1-2. Princeton 1970.
 CIRh III-VIII-G. Jacopi, Clara Rhodos III-VIII. Bergamo 1929-1936.
 Coldstream, Geometric-J. N. Coldstream, Greek Geometric Pottery. A Survey of Ten Local Styles and Their Chronology. London 1968.
 Desborough, Protogeometric - V. R. d'A. Desborough, Protogeometric Pottery, Oxford 1952.
 Emporio-J. Boardman, Greek Emporio. Excavations in Chios 1952-1955. Oxford 1967.
 ÉThas 7-L. Ghali-Kahil, La céramique grecque. Études thasiennes 7. Paris 1960.
 Fabricius, Arch Karta 1 -И. В. ФАБРИЧИУС, Археологическая карта приернормоья украинскои ССР I. Киев 1951.
 Fairbanks, Catalogue-A. Fairbanks, Catalogue of Greek and Etruscan Vases I. Museum of Fine Arts. Boston 1928.
 Hanfmann, Aegean-G. M. A. Hanfmann, On Some Eastern Greek Wares Found at Tarsus. Studies Presented to Hetty Goldman 165-184. New York 1956.
 Histria 2 - E. Condurachi, Histria II. Bucarest 1966.
 Kardara, A - C. Kardara, 'Poঠıккो̀ ’oy
 Kinch, Vroulia - K. F. Kinch, Vroulia. Berlin 1914.
 Lambrino, Vases - M. F. Lambrino, Les vases archaiques d’Histria. Bucarest 1938.
 Materiali-Матевиалы и Исследования по Авхеологии CCCP.
 Mégara Hyblaea 2-F. Vallet \& F. Villard, La céramique archaique. Mégara Hyblaea 2. Paris 1964.
 Hommel, Panionion und Melie-P. Hommel, G. Kleiner, W. Müller-Wiener, Panionion und Melie. JdI, Ergänzungsheft 231967.
 Payne, Necrocorinthia-H. G. G. Payne, Necrocorinthia. A Study of Corinthian Art in the Archaic Period. Oxford 1931.
 Samos V-H. Walter, Frühe samische Gefässe. Samos V. Bonn 1968.
 Schiering-W. Schiering, Werkstätten orientalisierender Keramik auf Rhodos. Berlin 1957.
 SovArch-Советская Arxeoлогия.
 Sūkās I-P. J. Rirs, The North-East Sanctuary and the First Settling of Greeks in Syria and Palestine. Sūkās I. Hist. filos. Skr. Dan. Vid. Selsk. 5.1. København 1970.
 Tocra-J. Boardman \& J. Hayes, Excavations at Tocra 1963-1965. The Archaic Deposits I. Oxford 1966.
 Villard, Marseille-F. Villard, La céramique greque de Marseille. Paris 1960.

[^19]: ${ }^{1}$ F. H. Stubbings, Mycenaean Pottery from the Levant, Cambridge 1951, V. Hankey, Mycenaean Pottery in the Middle East: Notes on Finds since 1951, BSA 62 1967, 107-147.
 ${ }^{2}$ BSA 62 1967, 113.1.
 ${ }^{3}$ C. W. Blegen, Prosymna, Cambridge 1937, pl. 166.658 no. 216,659 no. 57 . The spirals published by A. Furumark, The Mycenaean Pottery, Analysis and Classification, Stockholm 1941, mot. 46 fig. 59.2-4,6, do not represent the superimposed technique, but the special "reserved" technique invented on Crete during LM I, see E. Reisinger, Kretische Vasenmalerei vom Kamares- bis zum Palast-Stil, Berlin 1912, 24 and A. Evans, The Palace of Minos IV.1, London 1935, 267-269 fig. 198a-b (for the Nubian vase, see further H. J. Kantor, The Aegean and the Orient in the Second Millenium B.C, AJA Mongr. 1 1947, 35 note 28 and OpArch 61950,207 fig. 17) and later seen on the Mainland, see A. W. Persson, The Royal Tombs at Dendra near Midea, Lund 1931, 66 fig. 46 (Myc IIIA). For the use of white on Myc II pottery, see C. W. Blegen \& M. Rawson, The Palace of Nestor at Pylos in Western Messenia, Princeton 1966, 390-392.54a figs. 379.600,606, on Myc III pottery, see BSA 42 1947, 11-12. It should be noted that the white spirals on the stirrup-jar from Minat al-Baida are painted on reddish ground, see Evans, PM IV.2, London 1935, 777 fig. 756c, not blackish; the jar has been recognized by A. Furumark as an imitation of a Myc IIIA1 type, see OpArch 61950,207 note 9, not of a Minoan type, as was suggested earlier, see C. F. A. Schaeffer, Ugaritica I, Paris 1939, 72 fig. 68 and Kantor, Aegean and Orient, 19, 76-77.
 ${ }^{4}$ For the latest examples, see Evans, PM I, London 1921, $556-57$ fig. $404 \mathrm{f}, 578-579$ figs. 420, 422 : MM III, L. Pernier, L. Banti, Il Palazzo Minoico di Festos II, Pavia 1951, 403-404 fig. 267 right: late MM III, R. B. Seager, The Cemetery of Pachyammos, Crete, the University Museum Anthropological Publications, Pennsylvania 7.1 1916, 18 pl. 2 middle left: late MM III/LM I, BSA 62 1967, 337-339 pl. 78.a: LM IA.
 ${ }^{5}$ See note 3.
 ${ }^{6}$ C. W. Blegen, Korakou, New York 1921, pl. 2.2,4,8.
 ${ }^{7}$ However, see OpArch 6 1950, 204 fig. 14.A-B: "sub-I" style in Egypt.
 ${ }^{8}$ OpArch 6 1950, 162.
 ${ }^{9}$ For references to Ras Samra, see Kantor, Aegean and Orient, 18 note 15, 19 notes 18-19, to Byblos ibid. 20 notes 27-29, to Alalakh see L. Woolley, Alalakh, Oxford 1955, 370 (ATP/48/16) pl. 129.
 ${ }^{10}$ Kantor, Aegean and Orient, 74.
 ${ }^{11}$ During the Mycenaean Symposium in Nicosia in 1972 Dr. G. Cadogan expressed the view to Professor P. J. Riis that a LM date of the sherd may be possible.
 ${ }_{12}$ Unlike Ras Šamra, where Myc III B prevails, Stubbings, Levant, 71.

[^20]: ${ }^{13}$ Furumark, Analysis, mot. 45 fig. 58.1, P. Dikaios, Enkomi I, Mainz am Rhein 1969, 376.233 Tomb 10 pl. 208.11.
 ${ }^{14}$ Dikaios, Enkomi, 378.271 Tomb 10 pl. 208.14.
 ${ }^{15}$ CVA Heidelberg fasc 3 , pl. 99.3 with text, BCH 93 1969, 582 Tomb II. 9 fig. 11, Dikaios, Enkomi, 371.122 Tomb 10 pl . 211.21.
 ${ }^{16}$ Furumark, Analysis, 85-86.
 17 Stubbings, Levant, 68-69, BSA 62 1967, 145. The writer takes the opportunity to thank Professor P. Aström for sending her a proof of his forthcoming study on the Mycenaean pottery in Cyprus.

 18 Furumark, Analysis, mot. 18 fig. 42.17.
 ${ }^{19}$ Furumark, Analysis, mot. 18 fig. 42.3-4,6.
 ${ }^{20}$ BSA 42 1947, 15-20 figs. 4-5, CVA Cyprus fasc 1, pl. 21.7-9.
 ${ }^{21}$ CVA Brit. Mus. fasc 1, II Cb, pl. 8.6, Stubbings, Levant, pl. 2.4, CVA Brit. Mus. fasc 5, III a, pl. 2.8, OpAth 31960 , 151 Tomb 7/VII pl. 13; for the flower, see BSA 42 1947, 57 fig. 26.
 ${ }_{22}$ Furumark, Analysis, 286 mot. 18 figs. 42.9, 41.D, BSA 62 1967, 114.2, with reference to the early Amman krater, for the latter, see further Mélanges de l'Université Saint Joseph 46 1970/71, 19-20 fig. 3.
 ${ }^{23}$ CVA Cyprus fasc 1, pl. 6.3 , fasc 2 pl. 1: both with transversal stripes on rim; for the Ras Samra krater, see AJA 65 1961, 344.9 no. 3 pl. 109.45-46; all Myc III A.
 ${ }^{24}$ E. Gjerstad, Studies on Prehistoric Cyprus, Uppsala 1926, 211.8, 213.8.
 ${ }_{25}$ Furumark, Analysis, mot. 46 fig. 59.22-23, C. F. A. Schaeffer, Enkomi-Alasia, Paris 1952, 126 fig. 55.1095
 ${ }^{26}$ Furumark, Analysis, mot. 9 fig. 32.16-17: lily, mot. 11 fig. 34.47-48: papyrus, mot. 12 fig. 36.13: sacral ivy.
 ${ }^{27}$ Furumark, Analysis, mot. 53 fig. 65.7, CVA Cyprus fasc 2, pl. 15.2, BSA 62 1967, 141.1 pl. 34.a1.
 ${ }^{28}$ CVA Cyprus fasc 1, pl. 23.7-8.
 29 AJA 60 1956, 144 pl. 56.3-4, JHS 81 1961, 44-48.
 ${ }_{30}$ The writer thanks Professor P. J. Riis for calling her attention to this relationship.
 ${ }^{31}$ BSA 62 1967, 114.4: Tall Sūkās is the first coastal site in Syria with Myc III C.

[^21]: ${ }^{32}$ Furumark, Analysis, mot. 19 fig. 47.48, OpArch III 1944, 201, 208 note 1 fig. 1.1.
 ${ }^{33}$ Furumark, Analysis, 85-86, Stubbings, Levant, 95 fig. 35: Myc III B.
 ${ }^{34}$ CVA Copenhague fasc 1, pl. 48.3-5: Myc III A2 (Stubbings, Levant, 16), pl. 48.1-2: Myc III B (Stubbings, Levant, 19-20), CVA Cyprus fasc 2, pl. 14.5-6: Myc III A2.
 ${ }^{35}$ Furumark, Analysis, mot. 46 fig. 60.52-59: Myc III A-C, CVA Cyprus fasc 1, pl. 18, specially no. 7: III A2, CVA Cyprus fasc 2, pl. 26.4: III A2, É. Coche de la Ferté, Essai de classification de la céramique mycénienne d'Enkomi, Paris 1951, pl. 2.6: III B.
 ${ }^{36}$ Furumark, Analysis, mot. 73 fig. 71: stemmed no. 8, Stubbings, Levant, 37 pl. 9.7, JHS 81 1961, pl. 1.5-6: III B.
 ${ }^{37}$ Stubbings, Levant, pl. 1.9, 11: Myc III A1, Blegen, Prosymna, pl. 186 fig. 716.764: Myc III A.
 ${ }^{38}$ OpArch III 1944, 235 fig. 10.23, BSA 42 1947, $53-54$ pl. 17.3, BCH 93 1969, 582 Tomb II. 13 fig. 19.
 ${ }^{39}$ Furumark, Analysis, mot. 9 fig. 32.16, CVA Brit. Mus. fasc 1, II C b, pl. 12.12: Myc III A1.
 ${ }^{40}$ CVA Cyprus fasc 1, pl. 26.8: Myc III A2, Dikaios, Enkomi, 284 pl. 80.19: Myc III B, Stubbings, Levant, 38 pl. 12.15: Myc III B.
 ${ }^{41}$ BSA 64 1969, 276.68 note 32 fig. 7: Myc III B.
 ${ }^{42}$ For a decorative system like that of 28, except for the interior, see Dikaios, Enkomi, 246 pl. 66.5.
 ${ }^{43}$ Rude Style: Mélanges de l'Université Saint Joseph 46 1970/71, 21-22; on Ashdod see BSA 62 1967, 143, Archaeometry; 13.2 1971, 169-175 pl. 1 and T. Dothan in a lecture given in Nicosia 1972 during the Mycenaean Symposium: Philistine Material Culture and its Mycenaean Affinities, where attention was called to the ware from Beth Shan, for the latter see BSA $621967,127-128$ pls. 28-29. The stirrup-jar from the South Harbour, Sh 78, is to be published later.
 ${ }^{44}$ OpAth 5 1964, 46-57. The review by E. French in BSA 66 1971, 101-87, appeared too late.
 ${ }^{45}$ A. Furumark, The Chronology of Mycenaean Pottery, Stockholm 1941, 86-88 fig. 1, BSA 62 1967, 114.3.
 ${ }^{46}$ In Deiras figurines of this sort were found with late Myc III A2 pottery, see J. Deshayes, Argos, Les fouilles de la Deiras, Paris 1966, 198, 200 DM 19 pl. 54.2. See BSA 66 1971, 109 fig. 1, 131-133.

[^22]: ${ }^{52}$ This group of cups are conventionally called "skyphoi" and for convenience that name has been employed in the catalogue, but the shape is that of a kylix, a term known from an inscription on a cup from the 8th century (see Sūkās I 174-175). For lists see H. G. Buchholz, Berliner Jb 5 1965, 224-229 and Emporio, 117 note 2; add: Emporio, no. 157 fig. 72 pl. 30, M. R. Popham \& L. H. Sackett, Excavations at Lef kandi, Euboea 1964-66, London 1968, 26-27 figs. 59, 65 and BCH 891965,845 fig. 3, Archaeology 1967, 67 fig. above (Sardis), R. Saidah, Découvertes d'objets grecs d'époque protogéométrique et géométrique sur le littoral libanais, IXe congrès international d'archéologie classique, Damas 1969, 66-67 (Halda), Sūkās I 144 note 574 (Niniveh). See furthermore note 543.

[^23]: ${ }^{53}$ NMArb 1961, 124-125 fig. 6.
 ${ }^{54}$ So far a skyphos found on Cyprus seems to be the only specimen with a full central circle, Desborough, Protogeometric, 181 pl. 25.C left (Keraphani).
 ${ }^{55}$ Desborough, Protogeometric, 328 pl . 26.5.
 ${ }^{56}$ B. Hrouda, Tell Halaf IV, Die Kleinfunde aus historischer Zeit, Berlin 1962, 84, 101.188 pl. 69.
 57 Coldstream, Geometric, 156-157. In connecting the material with the evolution of Attic Geometric and in stressing the significance of Attic influence on the Cyclades, J. N. Coldstream has reached a reasonable relative chronology for these skyphoi. The type has no Attic counterpart, it is a descendant from the Cycladic Sub-Protogeometric version of the local skyphos. It must have developed "somewhere near the transition from Early to Middle Geometric in Attica'". The skyphoi from the Rheneia graves, regarded as the culmination of the class, were found with Atticizing MG I vases; for the skyphoi from the Purification Trench there are no valuable contexts, but Coldstream suggests that none of them were made much later than the end of MG II; first, because the shape seems to be the predecessor of Atticizing MG II skyphoi also found in the Trench, and second because there is no reflection on the ceramics found in the western colonies, neither in shape nor in decoration; on the latter see Sūkās I 156.

 58 Coldstream, Geometric, 312-313.
 59 Sūkās I 150-152 fig. 51 a-d.
 ${ }^{60}$ Sūkās I fig. 51 d .
 ${ }^{61}$ It was found in a cinerary urn of the bottom layer in the 8 th century necropolis, Sūkās I 150 note 613 , fig. 52 (no. 38). Coldstream, Geometric, 311 note 6.
 ${ }^{62}$ Sūkās I fig. 51 b.
 ${ }^{63}$ Sūkās I 150-152 notes 614-615.
 64 Sūkās I figs. 51 a, c. Coldstream, Geometric, 311 note 7.
 ${ }^{65}$ Sūkās I 150 note 612 .
 ${ }^{66}$ Sūkās I 152 notes 616-618, for Al-Mīna, see below note 72 .
 67 See note 61 .

[^24]: ${ }^{89}$ AnatSt 9 1959, 163-169, Coldstream, Geometric, 193, 310 note 6, 384.
 ${ }^{90}$ AnatSt 9 1959, 168.4 pl. 24 fig. 1.
 ${ }_{92}$ AnatSt 9 1959, 164. For the multiple brush, see Antiquity 34 1960, 85-89.
 ${ }^{92}$ AnatSt 9 1959, 169.22 pl. 25.
 ${ }^{93} 46$ might be of Boardman's 1st class.
 ${ }^{94}$ AnatSt 9 1959, 166 notes 11-14.
 ${ }^{95}$ Sūkās I 158 note 640 .
 ${ }^{96}$ Sūkās I 158 note 641, R. Saidah, Découvertes d'objects grecs d'époque protogéométrique et géométrique sur le littoral libanais, IXe congrès internationale d'archéologie classique, Damas 1969, 66-67.
 ${ }^{97}$ Tarsus III 280-281.1375-1377 fig. 95.
 98 Coldstream, Geometric, 193.
 99 AnatSt 9 1959, 167.

[^25]: ${ }^{107}$ BSA 48 1953, 303.862 pl .53 . On the EPC group, see further Sūkās II 92-93.
 108 Délos X 67-152 pls. 22-37, Délos XVII 87-112 pls. 54-62, AM 74 1959, 64-68 Beilage 108-112 (Samos), CIRh III, Jalysos passim, see sp. pls. 6-7, CIRh IV, Makro Langoni passim, Checraci passim, ClRh VI/VII, Papatislures passim, Checraci passim, CIRh VIII, Jalysos passim, ÉThas 7, 49-50 pl. 18, BSA 53/54 1958/59, 144-151 pls. 24-30 (Old Smyrna), Histria 2, 117-119 pl. 37, Tocra, 21-40 pls. 4-27, Mégara Hyblaea 2, 57-70 pls. 40-58.

 109 Boardman, GO, 31-34, Sūkās I 163 note 656.
 110 Payne, Necrocorinthia, 309.951 pl. 33.11. For a more carelessly painted shield, see two MC cups with armed riders ASAtene $21 / 221959 / 60,146-148.68 .4$ fig. 124, 148-151.69 fig. 127. It is not likely that the sherd belongs to a kothon, of which the interior is generally reserved, see CVA Heidelberg fasc 1, pl. 19.5-6 or decorated for instance by a rosette, see Délos X 152.528 pl .37.
 ${ }^{111}$ BSA 44 1949, 218-223.3, 17, Corinth VII. $178.337-338$ pl. 42, Corinth X III 104-105 grave 147.1-2 pl. 83, Perachora II 255.2475 pl . 101, Mégara Hyblaea 2, $65 \mathrm{pl} .52 .5-6,9$, Tocra, 25.325, 329-330 note 3 pl. 23. 112 Corinth VII. 165.251 pl. 34.
 ${ }^{113}$ For the decoration inside the foot see Corinth XIII 104-105.162.3 pl. 83, late MC or transition to LC, Tocra, 25.334 pl. 24, Corinth XIII 192 grave 174.1-2 pl. 28.

 114 Tocra, 25.370-81 notes 10-11 pl. 26.
 115 PC: Perachora II 51-53.374-382 pl. 19, Mégara Hyblaea 2, 38 pl. 20.6. MC: Mégara Hyblaea 2, 68 pl. 55.13, Corinth VII. $178.337-338,341$ pl. 42, Tocra, 25.314-316 pl. 23.
 ${ }_{116} 58$ has no band above, a feature more common on smaller kotylai from LC, Mégara Hyblaea 2, 70 pl. 57.7 , BCH 94 1970, 401.10-11 fig. 48, than on the equally bad LPC kotylai; they usually have a band along the edge, BSA 44 1949, 51.6-7 pl. 18. 11-12.

 11759 seems to have a slip on the exterior and may be an imitation. For the type see Tocra, 25.352-94 pls. $25-26$. The broad band looks brighter than the rest of the decoration, but it is not mentioned by the registrar as a red band; for red bands on kotylai, see further Corinth XIII 105, graves 142-b, 163-a, 170-1, 172-b-e, 221-1.

[^26]: ${ }^{118}$ Payne, Necrocorinthia, 334, for decoration like that on 60 see ibid. fig. 181 B, but H. G. G. Payne notes that a few are known in MC; add a piece in a MC grave at Corinth, Corinth XIII grave 163 a pl. 25, for totally similar decoration see CVA Reading fase 1, III C, pl. 2.5 (LC).
 ${ }^{119}$ Perachora II 231-232.2253 pl. 78 (MC), Mégara Hyblaea 2, 64 pl. 49, 67 pl. 55.2 (MC), Corinth XIII 118 X-134 pl. 89 (LC).
 ${ }^{120}$ BSA 44 1949, 200 e, 202-204.1,5,11,24,25, Perachora II 150.1579 pl. 63, Corinth XIII 113 with references, Mégara Hyblaea 2, 69 pl. 56.6, Tocra, $29.52-53$ pl. 9, Berytus 11 1955, 102.26 pl. 21.6, AA 741959 , $9-10$, 18-19.1-3 figs. 1-2, CVA Reading fasc 1, III C, pl. 4.7-11 with text, CVA Frankfurt am Main fase 1, pl. 15.10-12 with text.
 ${ }^{121}$ See preceding note: CVA Reading with references.
 ${ }^{122}$ P. N. Ure, Aryballoi and figurines from Rhitsona in Boetia, Cambridge 1934, 38-39 IV.vi.b 87.15 pl. 8.
 ${ }^{123}$ Ure, Aryballoi, $39-41$ IV.vi.c $86.72-73 \mathrm{pl}$. 8. On 66 there might be traces of white dots on the shield; for a late example with white dots, see CVA Reading fasc 1, IIIC, pl. 4.10 with text.
 ${ }_{124}$ Payne, Necrocorinthia, $146-148$ fig. 54 D, 287.485 A, BSA 44 1949, 201, 202.6, CVA Heidelberg fasc 1, pl. 12.1-3 with text.
 ${ }_{125}$ The dots indicate that the sherd should be ascribed to Hayes Type II see Tocra, 22.79-95 note 10 pl. 9, see further Délos X 91.205 pl. 22, Corinth XIII 114 graves $157-\mathrm{k}, 163-\mathrm{c}$, BCH 94 1970, 399.8-9 fig. 47, CVA Pays Bas fasc 1 , III C, pl. 5.13, CVA Heidelberg fasc 1, pl. 13.1-2 with text, CVA Leipzig fasc 1 , pl. 32.1-9 with text, CVA Frankfurt am Main fasc 1, pl. 16.1-12.
 ${ }^{126}$ Corinth XIII 114 with references.
 ${ }^{127}$ See note 124.
 ${ }^{128}$ Payne, Necrocorinthia, 314.1073-1089, Délos X 140-141.470-474 pls. 34-35, Tocra, 22.13-14 pl. 6, CVA Reading fasc 1, III C, pl. 7.4 with text. No. 68 is mentioned as having a slip and this sherd might too be from a vase imitating Corinthian.
 ${ }^{129}$ Perachora II 15.25 pl .2.
 ${ }^{130}$ Perachora II 144 (with references to the discussions by Payne and Ure) nos. 1547-1548 pl. 87 (alabastra TR/EC), BSA 53/54 1958/59, 144-145.83, 89, 91 pl. 24 (alabastra EC), Mégara Hyblaea 2, 57 pl. 39.4-5 (alabastra TR), AM 74 1959, 64-65 Beilage 109.2-3 (alabastron and aryballos EC), Mégara Hyblaea 2, 66 pl . 54.5 (aryballos MC), CVA Heidelberg fasc 1, pl. 9.11 (alabastron E or MC).
 ${ }^{131}$ Perachora II 210 with references, 214 C; in LC graves: Corinth XIII graves 180-4, 188-4.

[^27]: 137 The motif is most common from LPC to EC.
 138 Mainly on the piriform aryballoi, see for instance CVA Leipzig fase 1, pl. 20.5-6, more seldom on larger vases, but see NSc 1955, 56.13 fig. 13.
 ${ }^{139}$ On white slip amphorae, see Chian.
 ${ }_{140}$ Hanfmann, Aegean, 176-182 figs. 17-25, Tarsus III 316-318.1564-1580, 324-327.1608-1630 figs. 105-108, 148, 150, see further J. Boardman's note on waveline from Tarsus, JHS 85 1965, 9, AM 741959 , $12-27$ (Well F and G passim), 83 1968, 266-268.46-47 fig. 17 pl. 103.1-2 (Samian), Tocra, 42.587 note 3 pl. 29 (Rhodian), 66.843 note 5 pl. 48, Select Exhibition of Sir John and Lady Beazley's Gifts to the Ashmolean Museum 1912-1966, London 1967, 33.85 pl. 7 (Rhodian), Emporio, 137.508 fig. 88, ÉThas 7, 33-34.44-48 pl. 11, BSA 53/54 1958/59, 29 pl. 4 (Smyrnaean), CVA München fasc 6, pl. 305.1-2 (North Ionian), 3 (South Ionian), JdI, Ergh. 23 1967, 144 note 423, BCH 88 1964, 138 note 14, Agora XII $347.1580,1583$ pl. 70 fig. 13, Histria 2, 104-109.536-616 pls. 30-33, 55-57, Fabricius, Arch Karta 1, pl. 8.1,4, Materiali 25 1952, 241 fig. $9.4-5,501956$, 232 fig. 11.2 , 691959 , 167 fig. $15.1,103$ 1962, 46 fig. $31.1,143$ fig. 18, 144 fig. 19.1-3, BCH 92 1968, 281 fig. 42, JHS 58 1938, 146 fig. 28.24, AASyr $8 / 9$ 1958/59, 129, IEJ 12 1962, 106.14, 16 fig. 7. H. Metzger, Xanthos IV. Paris 1972, 47-51.50, 57-66, pp. 54-56 pls. 12, 15-16, 19.
 ${ }^{141}$ See preceding note.

[^28]: 199 Tocra, Type VIII, 113; according to J. Hayes the evolution of this type runs parallel with Type IX of which an early example, 1226, is found in Deposit I, so the type was certainly not established later than 600 B.C.
 ${ }^{200}$ There is a certain resemblance with Samian cups from the latest 7 th century, AM 72 1957, 49 Beilage 72.1, 3 .
 ${ }^{201}$ For the type see BCH 90 1966, 309 fig. 24. Xanthos IV $43-44.43,44-47$ pls. 10,11 fig. 3.
 ${ }^{202} 105$ shows af finities with a Samian cup from c. 600 B.C. AM 72 1957, 49-50 fig. 5, whereas the Sūkās cup does not seem as late as another Samian cup, dated c. 570 B.C. AM 83 1968, 275.72 fig. 27 pl. 107.1. A cup in Munich displays similarity with our cup, CVA München fasc 6, pl. 293.2 fig. 21, dated early in the 6 th century.
 ${ }^{203}$ Villard, Marseille, 43 pls. 23.4-5, 45.7, 8-9, Tocra, 120.1218 fig. 55.
 ${ }^{204}$ Two feet similar to 108 are assigned to Period $\mathrm{G}^{2}(588-552$ B.C.). TS 3804 is found with a Late Wild Goat sherd, Sūkās I 83 note 274 pl. IV no. 107, in the present catalogue similar to 189. Two other fragments of the similar group have a graf fito and a red dipinto under the foot, i.e. TS 2603 and TS 4924, compare, Kardara, A, pl. A, Tocra, 46 fig. 22, Lambrino, Vases, 211-229, Histria 2, pl. 64. The excavators of Palinuro convincingly argue for a durability of the East Greek "standard cup" into the last quarter of the 6th century, see Naumann-Neutsch, Palinuro II, 107-109; this has not been proved from other sites. J. Hayes suggests that most of the cups found in Italy are imitations of probably Rhodian cups, see Tocra, 111 notes 1,3 ; on Palinuro, see further Hommel, Panionion und Melie, 150-151.
 ${ }^{205}$ Tocra, $124.1228,1263$ fig. 56. 1228 and 1263 are similar to 1261 which is found in Deposit III, dated 565-530 B.C.
 ${ }^{206}$ Tocra, 120.1219 fig. 56.
 ${ }^{207}$ CVA Torino fasc 2, pl. 4.1 dated in the second quarter of the 6 th century.
 ${ }^{208}$ For "standard cups" recently published, see BCH 88 1964, 301 fig. 16, 93 1969, 449 fig. 26, Практ. 1966, 138 Пıv. 122γ, CVA Stuttgart fasc 1, pl. 16.11.
 ${ }^{209}$ Hanfmann, Aegean, 169-170, Tarsus III 285, Mél 67 1955, 27-29, Tocra, 114-115.

[^29]: ${ }^{210}$ The group is dated by Vallet \& Villard $560 / 50-30$ B.C., see preceding note: Mél.
 ${ }^{211}$ Tocra, 115. Two fragments of the similar groups belonging to 118 , TS 2345, and to 120, TS 2129, are assigned to Period G ${ }^{2}$ (588-552 B.C.).
 ${ }^{212}$ Tocra, 124.1288 fig. 57.
 ${ }^{213}$ Tocra, 124. 1277 fig. 57. Beside the two rim sherds of 112, a bottom sherd with a foot described as a ring foot is thought by the registrar to belong to the same cup. The ring foot is probably a low conical foot, like on a reconstruction of a cup with thin lines on the interior, Lambrino, Vases, 84 fig. 54 . For the type with thin lines, see AM 59 1934, 89-91 Beilage 6.13. Very refined examples recently published are: CVA Mus. Capitolino fasc 2, pl. 2.5, CVA Orvieto fasc 1, pls. 1-2.2, AA 77 1962, 612 fig. 14, CVA München fasc 6, pl. 293.6-7, 294. 4-5 figs. 25-26, dated in the second quarter of the 6th century.
 ${ }^{214}$ One fragment belonging to the similar group of 114 is found in layers of G^{2} (588-552 B.C.).
 ${ }^{215}$ They more resemble some of the Attic Tocra cups, which are suggested to copy Eastern lip-cups; the date of the Attic type, too, should be before 550 B.C. The Attic Type III, Tocra 115, 118-120, see specifically 129.1353 fig. 64 .
 ${ }^{216}$ CVA Orvieto fasc 1, pl. 1.7 with text: for the same type, see AM 54 1929, 36-37 fig. 28.7.
 217 Tocra, Type XI 114-115.
 ${ }^{218}$ For Samos, Rhodes, Naukratis and Aegina, see AM 59 1934, 90-99 Beilage 6.4-5, 7.1-2, 5, add: Istros: Lambrino, Vases, 85 fig. 56, Chios: Emporio, 171.861-863 with note 1 pl. 65, Smyrna: BSA 60 1965, 118.25 pl. 26 (atticizing), Italy: CVA Mus. Capitolino fasc 2, pl. 2, Tocra: see preceding note, Xanthos IV 43.45 pl. 11, p. 46, nо provenance: CVA München fasc 6, pl. 294.1-2.
 ${ }^{219}$ Emporio, 171.
 ${ }^{220}$ ClRh IV 351.6 fig. 296.
 221 AM 59 1934, 90 Beilage 6.15, CVA Louvre fasc 6, II D, pl. 1.12-17, CVA Orvieto fasc 1, pls. 1-2.2 dated 560-50 B.C., CVA München fasc 6, pls. 293.5, 294.3 fig. 24.
 ${ }^{222}$ CVA Oxford fasc 2, II D, pl. 10.28-29, CVA Louvre fasc 9, II D, pl. 2.7-10, CVA Mannheim fasc 1, pl. 9.5-6, none of them have more than two broader bands; for greater similarity, see Siveking-Hackl, Vasensammlung, 52.525 pl .18.

[^30]: ${ }_{223}$ For East Greek band cups, see AM 59 1934, 89 note 3, AA 29 1914, 222-223 fig. 30, CVA Louvre fasc 9 , II D, pl. 2.1-5, CVA Braunschweig fasc 1, pl. 1.3-4 and S. G. Zervos, Rhodes capitale du Dodécanèse, Paris 1920, 297 fig. 559. In Tocra, only Attic band cups occur, they are dated after c. 550 B.C., Tocra, Types VI-VII 118-120.
 ${ }^{224}$ AM 72 1957, 46 Beilage 67.4, 69.3, 49 Beilage 72, 74 1959, 19 Beilage 38: Well G, 28 Beilage 62: Bothros, 83 1968, 257.22 fig. 9 pl. 95.5.
 ${ }^{225}$ See above groups 5-6. A reserved interior with a painted tondo occurs on a cup from Cyprus in a CypArc II grave, BCH 92 1968, 281 fig. 43.
 ${ }^{226}$ Tocra, 45, 55.734 fig. 28.
 ${ }_{227}^{227}$ Kinch, Vroulia, $26 \mathrm{pl} .18 .9,70 \mathrm{pl} .39 .10,79 \mathrm{pl} .45 .20,78$, the latter found with PC lekythos.
 ${ }^{228}$ Hanfmann, Type II (Aegean, 169, Tarsus III 285), Vallet \& Villard, Type B (Mél 67 1955, 23-27, 29 fig. $4 \mathrm{a}-\mathrm{j}$), Tocra, Type V (Tocra, 112-113). In Tocra the cups occur in Deposit II, so the manufacture of the type may have continued later than 580 B.C. A cup from Tarsus is dated $570-60$ B.C. Tarsus III 291.1414 figs. 96, 144. For a cup with red bands from the Athenian Agora, see E. T. H. Brann, Late Geometric and Protoattic Pottery, Agora VIII, Princeton 1962, 49.148 pl. 8, with references to the cups from Corinth.

[^31]: ${ }^{318}$ On the Louvre amphora (see note 315) there are three bands, but usually the number is one or two: AA 29 1914, 222-223 fig. 29 (Kardara, A, 251.1 (see above note 284), Tocra, 41-42.580 pl. 28, Délos XVII 59-60.8-11 pl. 40 (Schiering, note 185).
 ${ }^{319}$ The Louvre amphora is dated $610-590$ B.C., Kardara, A, 189, whereas the amphorae with very few filling-ornaments, no vertical panels, and only few horizontal bands on the belly are suggested to have a later date, c. 580-60 B.C., see Tocra, 41-42.580-581 pl. 28.

 320 The posture is known already on the later Classical Camiran vases, Kardara, A, 100.13 Paris $=$ Zervos, Rhodes, 59 fig. 108, Schiering, notes 120 , 356 , Rumpf 71 III D 24), it recurs on a later but related vase, CVA München fasc 6, pl. 275.450 (Kardara, A, 93.7, Schiering notes 6, 56, 120, 424, 433, 507, 612, 743 a, Rumpf, 70 III B 2), and on one of the amphorae from Rheneia, Délos XVII 58-59.6 pl. 39 (Schiering, note 185). A similar posture occurs on some of the Fikellura vases, CVA Brit. Mus. fasc 8, II Dl, pl. 3.2, BSA 34 1933/34, 63.
 ${ }^{321}$ Tocra, 41-42.
 ${ }^{322}$ Add to the examples enumerated by J. Hayes (see preceding note) : Histria 2, 59.25-26, 29 pls. 2-3 (early type), 59.27 pl. 2 (later type), $59.28,60.31-32,34 \mathrm{pl} .3$.
 ${ }^{323}$ See note 315 . Goats placed in the shoulder fields of oinochoai seldom have such slanting bodies, see for instance Kardara, A, 100.4 fig. 65 (cf. Zervos, Rhodes, 59 fig. 108 (see above note 320), CVA München fasc 6, pl. 275.450 (Kardara, A, 190.2 (see above note 312); the very slanting body occurs only on the belly friezes, CVA Oxford fasc 2, II D, pl. 2.4-5 (Kardara, A, 208.1 (see above note 282).
 ${ }^{324}$ From the early 6th century, Délos XVII 58-59.6, 8, 10 pls. 39-40 and Vroulia, 228 fig. 116 (Kardara, A, 210.5, Rumpf, 78 II g 4).
 ${ }^{325}$ Gnomon 1965, 506, Tocra, 41-42.
 ${ }^{326}$ Like Délos XVII 58.2 pl. 38 (Schiering, notes 185, 187, 535, 608).
 327 Another variety, see Tocra, 41-42.583 pl. 28.
 ${ }^{328}$ Besides on amphorae, this type of handle-palmette is very frequent on oinochoai, Délos X 38-$39.59-60$ pl. 12 (see above notes 273,282), Homann-Wedeking, Vasenornamentik, 17.5-6: Gruppe R), and we cannot be sure if $\mathbf{1 7 9 - 1 8 0}$ really belong to one of the late amphorae - or to an oinochoe.
 ${ }^{329}$ Histria 2, 59.23-24 pl. 2.
 ${ }^{330}$ Tocra, 41-42. 583 pl. 28.

[^32]: ${ }^{369}$ Column kraters: Boehlau, Nekropolen, 50, 82 pl. 12.5 (Vlastos group: Schiering, notes 287, 295, 298, Rumpf, 80 III c 7), ActaArch 13 1942, 24 fig. 12 (see above note 361), ArchRep 1964/65, 36 fig. 5, krater with ring handles: Sammlung Ludwig, Aachen, 21-22.8.
 ${ }^{370}$ 271-272: rays are well known on handle-plates of the Late Wild Goat Style, ArchRep 1964/65, 36 fig. 5, Histria 2, 62.63 pl. 5, and continue on some of the East Greek, unslipped black-figure kraters, BSA 60 1965, 125.52 pl .32 a ; 273: for similar, but not identical fragments, see CVA Reading fasc 1, II D, pl. 22.25 (Kardara, A, 239.2), Fairbanks, Catalogue, 107.318.2 pl. 34; 274: CVA Oxford fasc 2, II D, pl. 4.24 (Schiering, notes 287, 298, Rumpf, 78 II i 5).
 ${ }^{371}$ For the profile of a Rhodian dinos, see AM 54 1929, 21 fig. 15 (Kardara, A, 218.6 (see above note 363); complete or nearly complete dinoi are hitherto best known among the Aeolic material, Larisa III pls. 16-17, Antike Kunst 7. Beiheft 1970, pls. 1-4.
 ${ }^{372}$ Fairbanks, Catalogue, 106.317 pl. 33 (Kardara, A, 235.1 (see above note 303); but 276 is perhaps rather to be connected with a dish, AM 54 1929, Beilage 12.1 (Schiering, notes 200, 648, Rumpf, 74 III i 61).
 ${ }^{373}$ JHS 44 1924, 200 fig. 32 (Schiering, notes 287, 297, 594, Rumpf, 80 III c 23), CVA Oxford fasc 2, II D, pl. 4.29 (Kardara, A, ${ }^{r} 225.30^{\text {(}}$ (see above note 355), ActaArch 13 1942, 24-25 figs. 13-14 (Kardara, A, 217.2 (see above note 280). See above note 355.
 ${ }^{374}$ Blinkenberg, Lindos I 282.985 pl. 46 (Kardara, A, 208.7 (see above note 296).
 375 CIRh VI/VII 523-524 figs. 54-57 (Schiering, notes 69, 72, 308, 317).
 ${ }^{376}$ Naukratis II pl. 8.1 (Kardara, A, 244.3 (see above note 344).
 ${ }^{377}$ Kardara, A, 271-294; Antike Kunst 7. Beiheft 1970, 1-18 pls. 1-10.
 ${ }^{378}$ On the abandoning of the name "panther" see J. Boardman, Antike Kunst 13 1970, 94.
 ${ }^{379}$ CVA California fasc 1, pl. 6.2, CVA Mannheim fasc. 1, pl. 7.7-9.
 ${ }^{380}$ Naukratis II pl. 7.5 (Kardara, A, 235.2, Schiering, notes 267, 277, 278, 455, 534, 591, 597, 646, 756, Rumpf, 81 III f 19), for the stylization of the breast, see ActaArch 13 1942, 27 fig. 16 (Kardara, A, 208.3 (see above note 279).
 ${ }^{381}$ EC: CVA Louvre fasc 6, III C a, pl. 11.4, 7; see other Wild Goat versions from Naukratis: a Rhodian bowl, ActaArch 13 1942, 26 fig. 15 (Kardara, A, 211.1 (see above note 286), and a Rhodian dinos in Boston, Fairbanks, Catalogue, 106.317 pl. 33 (Kardara, A, 235.1 (see above note 303).
 ${ }_{382}$ Tocra, 43-44.614-700 figs. 24, 26, pls. 33-37.
 ${ }^{383}$ Tocra, pl. 34.618, 621, 625.
 ${ }^{384}$ Délos XVII 63.28 pl. 44 (Schiering, notes 200, 226).
 ${ }^{385}$ Délos X 40.66 pl. 13 (Schiering, note 200, Rumpf, 81 III h 32).

[^33]: ${ }^{318}$ On the Louvre amphora (see note 315) there are three bands, but usually the number is one or two : AA 29 1914, 222-223 fig. 29 (Kardara, A, 251.1 (see above note 284), Tocra, 41-42.580 pl. 28, Délos XVII 59-60.8-11 pl. 40 (Schiering, note 185).
 ${ }^{319}$ The Louvre amphora is dated $610-590$ B.C., Kardara, A, 189, whereas the amphorae with very few filling-ornaments, no vertical panels, and only few horizontal bands on the belly are suggested to have a later date, c. 580-60 B.C., see Tocra, 41-42.580-581 pl. 28.
 ${ }^{320}$ The posture is known already on the later Classical Camiran vases, Kardara, A, 100.13 Paris $=$ Zervos, Rhodes, 59 fig. 108, Schiering, notes 120 , 356 , Rumpf 71 III D 24), it recurs on a later but related vase, CVA München fasc 6, pl. 275.450 (Kardara, A, 93.7, Schiering notes 6, 56, 120, 424, 433, 507, 612, 743 a, Rumpf, 70 III B 2), and on one of the amphorae from Rheneia, Délos XVII 58-59.6 pl. 39 (Schiering, note 185). A similar posture occurs on some of the Fikellura vases, CVA Brit. Mus. fasc 8, II Dl, pl. 3.2, BSA 34 1933/34, 63.
 ${ }^{321}$ Tocra, 41-42.
 ${ }^{322}$ Add to the examples enumerated by J. Hayes (see preceding note) : Histria 2, 59.25-26, 29 pls. 2-3 (early type), 59.27 pl .2 (later type), $59.28,60.31-32,34 \mathrm{pl} .3$.
 ${ }^{323}$ See note 315 . Goats placed in the shoulder fields of oinochoai seldom have such slanting bodies, see for instance Kardara, A, 100.4 fig. 65 (cf. Zervos, Rhodes, 59 fig. 108 (see above note 320), CVA München fasc 6, pl. 275.450 (Kardara, A, 190.2 (see above note 312); the very slanting body occurs only on the belly friezes, CVA Oxford fasc 2, II D, pl. 2.4-5 (Kardara, A, 208.1 (see above note 282).
 ${ }^{324}$ From the early 6th century, Délos XVII 58-59.6, 8, 10 pls. 39-40 and Vroulia, 228 fig. 116 (Kardara, A, 210.5, Rumpf, 78 II g 4).

 325 Gnomon 1965, 506, Tocra, 41-42.
 ${ }^{326}$ Like Délos XVII 58.2 pl. 38 (Schiering, notes 185, 187, 535, 608).
 327 Another variety, see Tocra, 41-42.583 pl. 28.
 328 Besides on amphorae, this type of handle-palmette is very frequent on oinochoai, Délos X 38 -39.59-60 pl. 12 (see above notes 273, 282), Homann-Wedeking, Vasenornamentik, 17.5-6: Gruppe R), and we cannot be sure if $\mathbf{1 7 9 - 1 8 0}$ really belong to one of the late amphorae - or to an oinochoe.
 ${ }^{329}$ Histria 2, 59.23-24 pl. 2.
 330 Tocra, 41-42. 583 pl. 28.

[^34]: ${ }^{355}$ Lambrino, Vases, 275-278.46-51 (assigned to oinochoai). Dark friezes with incised floral motifs, lotuses (like 252) are frequent on dinoi and kraters in mixed technique, CVA Oxford fasc 2, II D, pl. 4.29 (Kardara, A, 225.30, Schiering, notes 287, 297, 409, 484, 587, 594, 778, Rumpf, 80 III c 21), Kinch, Vroulia, pl. 15 (Kardara, A, 217.2 (see above note 280). A group of amphorae and situlae together with the Vroulia cups display the same technique, CVA Karlsruhe fasc 2, pl. 47.5 with text, CVA Brit. Mus. fasc 8, II Dm, pls. 2-8 Appendix A VIII, Kinch, Vroulia, 174-194 figs. 58-72 pls. 10-12, 46.
 ${ }^{356}$ Schiering, Werkstätten, 40-41. See furthermore BSA 60 1965, 122-123 and Payne, Necrocorinthia, 300-301. Some of our fragments have no description of their interiors, and the writer is aware of the fact that they might have belonged to closed vases. When catalogued as belonging to kraters, it is mainly because of the large dimensions of the figures represented and the vertical, glazed panels, which seem broader than is usual on oinochoai.
 ${ }^{357}$ Like that of a krater in Leningrad, Kardara, A, 250.1 fig. 199. For the corner-palmette on 254 compare Histria 2, 62.64 pl. 5.
 ${ }^{358}$ This is seldom seen, but occurs on an Aeolic krater from Pitane, ArchRep 1964/65, 36 fig. 5.
 ${ }^{359}$ The same sort of tongues appear on some of the North Ionian kraters, too, for instance BSA 60 1965, 121.34 pl. 27.
 ${ }^{360}$ This is strange on Wild Goat kraters; nevertheless see a fragment in the Hague assigned by W. Schiering to the Vlastos group, Werkstätten, 40 note 308.
 ${ }^{361}$ For a corner-palmette similar to that of $\mathbf{2 5 7}$, see the krater in Bonn, ActaArch 13 1942, 24 fig. 12 (Schiering, notes $308,314,317,409,468,588$, Rumpf, 83 IV d 1); the other side of the same krater is published in AA 51 1936, 378-379.27 fig. 30.
 ${ }^{362}$ Protomes of griffins on Late Wild Goal vases usually have very long and rather powerful necks: JHS 44 1924, 200 fig. 31 (Kardara, A, 228.4 fig. 237, Schiering, notes 437, 439, Rumpf, 80 III e 9), CVA Oxford fasc 2, II D, pl. 4.36 (Kardara, A, 224.20 fig. 238, Schiering, notes 287, 437, 542, 755, Rumpf, 80 III e 4), Tocra, 41.590 fig. 23 pl. 30, Kardara, A, $235.4,237.2$ fig. 197 and Schiering, Werkstätten note 437 with further references. See furthermore CVA München fasc 6, p. 20 text to no. 3 .
 ${ }_{363}$ For regular wings, see AM 54 1929, 20, 22, fig. 15.3, Beilage 10.2 (Kardara, A, 218.6, Schiering, note 294, Rumpf, 80 III e 1), R. Lullies, Griechische Kunstwerke Sammlung Ludwig, Aachen, Aachen Kunstblätter 37 1968, 21-22.8, Kinch, Vroulia, pl. 15 (Kardara, A, 217.2 (see above note 280).
 ${ }^{364}$ CVA Altenburg fasc 1, pls. 2-3, Corinth XIII 172 grave 135.3 pls. 18, 89.
 ${ }^{365}$ AA 51 1936, 378-379.27 fig. 30, ActaArch 131942,24 fig. 12 (see above note 361).
 ${ }^{366}$ Kardara, A, 232.2 fig. 229; ActaArch 13 1942, 24 fig. 12 (see above note 361).
 ${ }^{367}$ Kardara, A, 211.1 fig. 225 (see above note 286), AA 27 1912, 334 fig. 20 (Schiering, notes 185, 186, Rumpf, 82 IV b 1).
 ${ }^{368}$ See the catalogue. For inscriptions on vases in Rhodian Wild Goat Style, see Kardara, A, pl. A.

[^35]: ${ }^{369}$ Column kraters: Boehlau, Nekropolen, 50, 82 pl. 12.5 (Vlastos group: Schiering, notes 287, 295, 298, Rumpf, 80 III c 7), ActaArch 13 1942, 24 fig. 12 (see above note 361), ArchRep 1964/65, 36 fig. 5, krater with ring handles: Sammlung Ludwig, Aachen, 21-22.8.
 ${ }^{370}$ 271-272: rays are well known on handle-plates of the Late Wild Goat Style, ArchRep 1964/65, 36 fig. 5, Histria 2, 62.63 pl .5 , and continue on some of the East Greek, unslipped black-figure kraters, BSA 60 1965, 125.52 pl. 32 a; 273: for similar, but not identical fragments, see CVA Reading fasc 1, II D, pl. 22.25 (Kardara, A, 239.2), Fairbanks, Catalogue, 107.318 .2 pl. 34; 274: CVA Oxford fase 2, II D, pl. 4.24 (Schiering, notes 287, 298, Rumpf, 78 II i 5).
 ${ }^{371}$ For the profile of a Rhodian dinos, see AM 54 1929, 21 fig. 15 (Kardara, A, 218.6 (see above note 363); complete or nearly complete dinoi are hitherto best known among the Aeolic material, Larisa III pls. 16-17, Antike Kunst 7. Beiheft 1970, pls. 1-4.
 ${ }^{372}$ Fairbanks, Catalogue, 106.317 pl. 33 (Kardara, A, 235.1 (see above note 303); but 276 is perhaps rather to be connected with a dish, AM 54 1929, Beilage 12.1 (Schiering, notes 200, 648, Rumpf, 74 III i 61).
 ${ }^{373}$ JHS 44 1924, 200 fig. 32 (Schiering, notes 287, 297, 594, Rumpf, 80 III c 23), CVA Oxford fasc 2, II D, pl. 4.29 (Kardara, A, 225.30 (see above note 355), ActaArch 13 1942, 24-25 figs. 13-14 (Kardara, A, 217.2 (see above note 280). See above note 355.
 ${ }^{374}$ Blinkenberg, Lindos I 282.985 pl. 46 (Kardara, A, 208.7 (see above note 296).
 ${ }^{375}$ CIRh VI/VII 523-524 figs. 54-57 (Schiering, notes 69, 72, 308, 317).
 ${ }^{376}$ Naukratis II pl. 8.1 (Kardara, A, 244.3 (see above note 344).
 ${ }^{377}$ Kardara, A, 271-294; Antike Kunst 7. Beiheft 1970, 1-18 pls. 1-10.
 ${ }^{378}$ On the abandoning of the name "panther" see J. Boardman, Antike Kunst 13 1970, 94.
 ${ }^{379}$ CVA California fasc 1, pl. 6.2, CVA Mannheim fasc. 1, pl. 7.7-9.
 ${ }^{380}$ Naukratis II pl. 7.5 (Kardara, A, 235.2, Schiering, notes 267, 277, 278, 455, 534, 591, 597, 646, 756, Rumpf, 81 III f 19), for the stylization of the breast, see ActaArch 13 1942, 27 fig. 16 (Kardara, A, 208.3 (see above note 279).
 ${ }^{381}$ EC: CVA Louvre fasc 6, III C a, pl. 11.4, 7; see other Wild Goat versions from Naukratis: a Rhodian bowl, ActaArch 13 1942, 26 fig. 15 (Kardara, A, 211.1 (see above note 286), and a Rhodian dinos in Boston, Fairbanks, Catalogue, 106.317 pl. 33 (Kardara, A, 235.1 (see above note 303).
 ${ }^{382}$ Tocra, 43-44.614-700 figs. 24, 26, pls. 33-37.
 ${ }^{383}$ Tocra, pl. 34.618, 621, 625.
 ${ }^{384}$ Délos XVII 63.28 pl. 44 (Schiering, notes 200, 226).
 ${ }^{385}$ Délos X 40.66 pl .13 (Schiering, note 200, Rumpf, 81 III h 32).

[^36]: ${ }^{386}$ Fairbanks, Catalogue, 112-113.323.2-3, 13 pl. 35, F. Robert, Trois sanctuaires sur le rivage occidental, Délos XX, Paris 1952, 39 fig. 34.3.
 ${ }^{387}$ See, for instance, Kardara, A, 191.1-5 (Rumpf, 73 III g 12 (Schiering, 200, 231), Rumpf, 74 III i 24 (Schiering, notes 200, 648), i 45 (Schiering, notes 200, 618, 648), i 59 (Schiering, notes 200, 214, 568, 648), i 56 (Schiering, notes $200,213,568,648$) and Tocra, 43 note 7 ; but they are far from being as frequent as in the 7th century, see Kardara, A, 121-124 (121.3 (Schiering, note 200, Rumpf, 74 i 43), 121.4 (Schiering, note 200, Rumpf, 74 III i 38), 121.5 (Schiering, note 200), 122.1 (Schiering, notes 200, 205, 460, 627, Rumpf, 74 III i 35), 123.7 (Schiering, notes 200, 211, 566, 648, Rumpf, 75 III i 68), 123.10 (Schiering, notes 200, 648, Rumpf, 75 III i $75-77$), 123.6 (Schiering, notes 200, 552, 648, Rumpf, 74 III i 42), 124.12 (Schiering, note 200), 124.16 (Schiering, notes 200, 648, 780 , Rumpf, 75 III i 71); usually on the later 6 th century dishes and fruit-stands the tondo is enlarged, the outer frieze abandoned and supplied by broad bands, Tocra, pls. 34-36. For motives similar to our 290-291, but for the outer frieze, see Délos X 39.62 pl. 13 (Kardara, A, 241.8, Schiering, notes 200, 224, 227, Rumpf, 81 III h 31), Naukratis I pl. 7.1 (Schiering, note 200, Rumpf, 82 III h 74); for the squares, see CVA Cambridge fasc 2, II D, pl. 18.28, Fairbanks, Catalogue, 114.324.10 pl. 35.
 ${ }^{388}$ This is the totally flat-bottomed type provided with different numbers of furrows, established already from the middle of the 7th century and living on into the 6 th century: for the early group, see Kardara, A, 81-85 (83.1 (Schiering, notes 244, 256), 83.2 (Schiering, notes 244, 441, Rumpf, 76 II d 21), 84.3 (Schiering, notes 74, 80, 244, 252, 255, 494, 799, Rumpf, 76 II d 2), 84.4 (Schiering, notes 75, 244, 472, Rumpf, 77 II d 40), 84.5 (Fairbanks, 35.323.7, Rumpf, 77 II e 4), 84.6 (Schiering, notes 244, 251, 353, 433, 749 b, Rumpf, 77 II d 36), 84.1 (Schiering, notes 47, 106, 652, Rumpf, 69 I a 6), 85.2 (Schiering, notes 107, 652, Rumpf, 69 I a 7), 85.3 (Schiering, note 318, Rumpf, 79 II m 7), for the profile, see Kinch, Vroulia, pl. 35 (Kardara, A, 83.1, Schiering, notes 244, 256), the Gorgon group, see Kardara, A, 204-207 (207.1 (Schiering, notes 71, 244, 252, 253, 467, 607, 622, 786, 787, Rumpf, 76 II d 18), 207.2 (Schiering, notes 69, 71, 79, 244, 254, 564, 624, 633, 792, 794, 795, 796, 797, 799, Rumpf, 76 II d 1), 207.3 (Schiering, notes 71, 75, 244, 262, 451, 792, Rumpf, 76 II d 5), the Thasian group, see BCH 851961 , $98-122$ figs. 2, 5-7, 13-14; 6th century plates: Kardara, A, 284-289 (284.1 (Schiering, notes 244, 257, 259, 377, Rumpf, 76 II d 9), 284.2 (Schiering, notes 257, 259, 337, 354, 710), 284.1 (Schiering, notes 244, 245, 251, Rumpf, 77 II d 46), 284.2 (Schiering, note 244, Rumpf, 77 II d 48), 284.3 (Schiering, note 244, Rumpf, 77 II d 47), 284.4 (Schiering, notes 244, 387, 568, Rumpf, 77 II d 49), 284.5 (Schiering, note 244, Rumpf, 77 II d 54), 285.6 (Schiering, note 244, Rumpf, 77 II d 50), 285.7 (Schiering, note 244, Rumpf 77 II d 51), 285.8, 285.9, 288.12, 288.2, 289.1 (Schiering, notes 150, 244, 422, 525, 567, Rumpf 77 II d 29, 37, 52, 53, 67), 286.10 (Schiering, notes 244, 251, 386, Rumpf 77 II d 45), 286.11 (Schiering, notes 244, 386, Rumpf 77 d 55), 286.12 (Schiering, notes 73, 76), 286.1 (Schiering, notes 244, 257, 411, 422, 585, Rumpf, 76 II d 12), 286.3 (Schiering, notes 244, 394, Rumpf, 76 II d 20), 287.4 (Schiering, notes 244, 415, Rumpf 76 II d 19), 287.5 (Schiering, notes 244, 415), 287.1 (Schiering, notes 244, 251, 422, Rumpf, 76 II d 24), 287.2 (Schiering, notes 244, 251, 254, 422, Rumpf, 76 II d 23), 287.3 (Schiering, notes 76, 244, 251, 254, 422, Rumpf, 77 II d 32), 287.4 (Schiering, notes 244, 251, 422, 662, Rumpf, 77 II d 30), 287.5 (Schiering, note 244, Rumpf, 77 II d 31), 287.6 (Schiering, notes 78, 244, 422, Rumpf, 76 II d 22), 287.7 (Schiering, notes 76, 244, 422, Rumpf, 77 II d 34), 287.8 (Schiering, notes 244, 422, Rumpf, 77 II d 26), 287.9 (Schiering, notes 244, 422, Rumpf 77 III i 33), 287.10 (Schiering, notes 244, 411, 422, Rumpf 77 II d 27), 288.11 (Schiering, notes 244, 411, 422, Rumpf, 77 II d 28), 288.12 see above, 288.13 (Schiering, notes 244, 257, 411, 422, 585, 618, Rumpf, 76 II d 13), 288.14 (Schiering, notes 244, 257, 411, 422, 585, 618, Rumpf, 76 II d 14), 288.2 (Schiering, notes 244, 485, Rumpf, 77 d 43), 288.3 (Schiering, pp. 35, 73, 74, Beil. 9.7), 288.1 (Schiering, notes 244, 257, 338, 585, Rumpf, 76 II d 15), 288.2 see above, 288.1 (Schiering, notes 244, 487, 802, Rumpf, 77 II d 57), 288.2 (Schiering, notes 244, 487, Rumpf, 77 II d 56), 289.1 (Schiering, note 490), 289.1 see above, 289.2 (Schiering, notes 244, 252, 258, 548, 585, Rumpf, 76 II d 17), 289.3 (Schiering, notes 244, 252, 258, 548, 585, Rumpf, 76 II d 16), 289.1 (Schiering, note 200, Rumpf, 82 III h 80), for the profile, see Kinch, Vroulia, 221 fig. 109 (Kardara, A, 284.1, Schiering, notes 244, 245, 251, Rumpf, 77 II d 46). Only the shallow dishes with floral decoration from the late 7 th and the 6 th century have a ring foot: Kardara, A, 128-129 (128.2 (Schiering, notes 231, 232, 237, 548, 623, Rumpf, 73 III g 5), 128.1 (Schiering, notes 231,

[^37]: ${ }^{397}$ For references, see Emporio, 157 notes 2-5, 158 notes 1-2.
 ${ }^{398}$ Emporio, 157.732 pl. 59, Tocra, 58.774 pl. 40.
 ${ }^{399}$ Lambrino, Vases, 305-306.12-13 figs. 295-297 pl. 3 and perhaps Naukratis I pl. 5.1-2.
 400 The decoration of the phialai is very restricted, usually consisting only of horizontal, narrow stripes, see note 397 and BSA 60 1965, 141.13-15 pls. 43-44.
 ${ }^{401}$ E. Langlotz, Griechische Vasen, Martin von Wagner-Museum der Universität Würzburg, München 1932, pl. 13 below.

[^38]: ${ }^{402}$ Compare the fragment in Oxford, CVA Oxford fasc 2, II D, pl. 5.6. Rim ornaments similar to that of $\mathbf{3 1 3}$ are often connected with the "Z. 2 writer", BSA 47 1952, 161, 166-167.45, 62,64 pl. $34.13-16$, BSA 51 1956, 57 note 1, 58.
 ${ }^{403}$ Naukratis I pl. 5.25.
 ${ }^{404}$ Tocra, 58-60, Type III; the latest pottery in Deposit II is about 565 B.C.
 ${ }^{405}$ Like Tocra, $59.783-785 \mathrm{pl} .42$; but we cannot be definite about the vase shape, kantharoi have similar rims, see below note 407. It is on fragments of this sort that inscriptions, dedications to Chian and to Naukratite deities, occur, see BSA 47 1952, 159-170 and BSA 51 1956, 56-59. J. Boardman has suggested that the factory for the latter was at Naukratis" . . . near the places of dedication", and it cannot be excluded that the vases to which our fragments belonged may have been manufactured at Naukratis.
 ${ }^{406}$ Simple Figure chalices: Tocra, $59.792-794$ pls. 44-45, black-figured chalices : ibid. 59.787 pl. 44, plain chalices: ibid. $59-60.797 \mathrm{pl} .45$; most of them are small chalices.
 ${ }^{407}$ Like, for instance, kantharoi or phialai, BSA 47 1952, 159, Emporio, 157.
 ${ }^{408}$ The Chian lids are usually slipped on the interior and occasionally decorated with friezes, BSA 51 1956, 58 note 1, Emporio, 166 note 2; as mentioned, our fragment is plain on the interior.
 ${ }^{409}$ Emporio, 166.824 fig. 115 pl. 62.
 ${ }^{410}$ ÉThas 7, 40.24 pl. 13.
 ${ }^{411}$ Emporio, 157.724 fig. 106 pl. 58.
 ${ }^{412}$ The tails of the sphinx on our fragment, and on the one from Thasos (see note 410) and the one from Emporio (see note 411), are clearly related to the Wild Goat tradition, see Samos V pl. 124, whereas the tails of the figures on the Simple Figure chalices and on vases in black-figure are usually placed higher up the buttocks, see Tocra, 59.781, 784 pls. 41-42, Emporio, 166.824 pl. 62, JHS 44 1924, pl. 12. For a seated sphinx on a Fikellura amphora, see CVA Oxford fasc 2, II D, pl. 6.4 (BSA 34 1933/34, 10.E1).
 ${ }^{413}$ The latest of the Chian jugs are often unslipped, see Emporio, 144; but, as mentioned, the lack of slip on 321 is not sufficient to term the jug late.

[^39]: 427 Kinch, Vroulia, $174-185$ pls. $10-12$, ClRh III $28-29.2$ figs. $11-12$ ($=$ CVA Rodi fasc 2, II Dm, pl. 4) CIRh VI/VII 25-26.4 figs. 26-27, CVA Rodi fasc 2, II Dm, pl. 3.1-2, Cook, Greek Painted Pottery, 140-141.
 ${ }^{428}$ JHS 44 1924, 188-189 figs. 14-17.
 429a LAAA 26 1940, 117. IV pl. 49.3-4, Garstang, Mersin, 258.3-4 fig. 161.
 ${ }^{429}$ b See CVA Brit. Mus. fasc. 8,31 note 7.
 ${ }^{430}$ BSA $341933 / 34,1-98$ pls. 1-19, CVA Brit. Mus. fasc 8, II D l, pls. 1-14. For the overseas sites, see further ArchRep 1961/62, 37 fig. 10 (=AJA 71 1967, 500 pl. 115.12), Berytus $111955,106.64-74$ (74 = CVA Brit. Mus. fasc 8, Appendix B), Tocra, 42.586 pl. 29, Calif St Clas Arch 3 1970, $56-57$ note 3, Tarsus III 322-323.1603 pls. 107,149 (compare Tarsus III 303.1483 pl. 100), Lambrino, Vases, $310-344$ figs. 302-341 pls. 4-6, Histria 2, 92-95.388-415 pls. 23-26, Fabricius, Arch Karta 1, 59 fig. 18, pls. 7.1, 9.5, 11.5, Sov Arch 16 1952, 250 fig. 12.1, Materiali 50 1956, 43 fig. 8 , 561957 , 183 fig. $1.1,185$ fig. 2 b. 1,1031962 , 125 fig. $9.1-2$, 128 fig. 10 A1-8, 129 fig. 10 B9-13, ArchRep 1962/63, 45 note 30. Xanthos IV 29-30, 36 pls. 4-5.
 ${ }^{431}$ The expedition is most grateful to Professor M. E. Mellink who kindly made available photographs of sherds kept at Bryn Mawr College from Forrer's Soundings on Sūkās. Among these were several East Greek sherds, most of them replices of pieces included in the present catalogue, except one, a tripartite handle, which is probably from a Fikellura vase (see BSA $341933 / 34,15 \mathrm{~J} 1$ pl. 6, CVA Brit. Mus. fasc 8, II D l, pl. $3.3=$ BSA $341933 / 34,5$ B 1) rather than from a vase in Wild Goat Style (see late 7th century: CVA Bibl. Nat. fasc 1, pl. 4.5-6 (Kardara, A, 107.9), 6th Cent.: CVA Rodi fasc 2, II Dh, pl. 7 (Kardara, 208.2). See further, Villard, Marseille, 39 note 4.

 II 73.7
 ${ }^{432}$ CVA Brit. Mus. fasc 8, II D l, pl. 13.1 (= BSA $341933 / 34$, 5 B 4 Lion Group), Délos XV on the pl. 51 (= BSA $341933 / 34$, 8 C 2 Group of BM B 117), whereas the cable ornament, more common st 34 earlier Fikellura vases (BSA $341933 / 34,71-73$) was enframed by short strokes from the beginning, B 1933/34, 5-8 B Lion Group.
 ${ }^{433}$ CVA Oxford fasc 2, II D, pl. 6.1 (= BSA $341933 / 34$, 22 L 14 Running Man Group); no. 14 is dated to the end of the third quarter of the 6 th century.

[^40]: ${ }^{434}$ BSA 34 1933/34, 16-17 J 12 pl. 7 b.
 ${ }^{435}$ For the same sort of meander and square, see Délos XVII 72-73.5 pl. 50 ($=$ BSA 34 1933/34, 13 G 10 Mykonos Group, "No. 1 may be about 550 , the others not much later").
 ${ }^{436}$ CVA Brit. Mus. fasc 8, II D l, pl. 2.3 ($=$ BSA $341933 / 34,8$ C 1 Group of BM B 117), BSA 34 1933/34, 15 J 1 pl. 5 Altenburg Group, BSA $341933 / 34,48$ Y 13 pl. 15 b Amphoriskos.
 ${ }^{437}$ The fullest account hitherto given is by J. M. Cook in BSA 60 1965, 114-137; see further the remarks by J. Boardman in JHS 78 1958, 12 and J. Hayes, Tocra, 64.
 ${ }^{438}$ See note 437: Cook; add Gnomon 1965, 506-507. See further above notes 305, 342-343.
 ${ }^{439}$ BSA 60 1965, 120.32 fig. 4 pl. 26, JHS 81887,121 pl. 79 above; according to Chr. Kardara the latter is Late Rhodian, Kardara, A, 245.4 fig. 198.
 ${ }^{440}$ JHS 81887 , 121 pl. 79 above.

[^41]: ${ }^{454}$ See JHS 19 1889, 163-164. They occur on the vases of the Northampton-group; for references to the latter, see CVA München fasc 6, text to pls. 297-299, and further BSA 601965,121 . They are some times on the Campanadinoi, for an example, see K. Masner, Die Sammlung antiker Vasen und Terrakotten im K. K. Österreichischen Museum. Wien 1892, 20.215 pl . 5. In Attika they are found only on some of the vases assigned to the Amasis Painter and to the Affecter, on both see G. Karo in JHS 191889 and further J. D. Beazley, Attic Black-Figure Vase Painters. Oxford 1956, 150-152, 238-247. They are frequent in Corinthian and Laconian, see Karo, loc. cit. The fabric of $\mathbf{3 4 6 - 3 4 7}$ is not Attic.
 ${ }^{455}$ S. Karouzou, The Amasis Painter, Oxford 1956, 13-14 pl. 24 below. On a band-cup in the Louvre a man is leaning forward and holding his hand up to the back of his head, but here this is to carry a burden (which is not preserved), CVA Louvre fasc 9, III He, pl. 82.4, 7. On the Amasis Painter, see further J. Boardmann in JHS 78 1958,1-3.
 ${ }^{456}$ Men leaning forward are seen on a Siana cup representing a sporting contest, but they are onlookers and their arms are not raised to the back of their heads, CVA Louvre fasc 8, III He, pl. 78.1.
 ${ }^{457}$ See Karouzou passim, and for instance Exekias, W. Technau, Exekias, Leipzig 1936, passim. See further an odd Attic skyphos from Ialysos, painted in the manner of Amasis, ClRh 8 120-125.11 fig. 108-111.

 458 The border of the hair is crossed by the fillet, which was surely meant to be placed above the ear, as usual in Attic, where the fillet is only seldom broken by the ear, see notes 455 and 457. On East Greek Black-Figure the fillet is not usually set above the ear, BSA $601965,123.43$ pl. 29, CVA Brit. Mus. fasc 8 , II Dn, pls. 1-13; exceptions: BSA 60 1965, 130.68 fig. 12 pl. 34, AD II.5, pls. $54.3,55.1$ a.

 459 AM 56 1931, Beilage 46.1, Délos X 177.589 pl. 44, E. Fölzer, Die Hydria, Leipzig 1906, pl. 4.49-50.
 460 Tocra, 96.
 ${ }^{461}$ Attic: JdI 76 1961, 12 fig. 14, Corinthian: AJA 73 1969, pl. 35.5.
 ${ }^{462}$ Payne, Necrocorinthia, pl. 37.3.
 ${ }^{463}$ If 352 is not Attic itself. Early: CVA Louvre fasc 2, III Hd, pl. 14.2 upper frieze left, CVA Louvre fasc 12, III He, pl. 158.4, later examples: A. Rumpf, Sakonides, Leipzig 1937, pl. 23.
 ${ }_{464}$ Attic: CVA Louvre fasc 2, III Hd, pl. 20.2, Corinthian: CVA Orvieto fasc 1, III C, pl. 3.1.

[^42]: 481 Tocra, 46.766-768 notes 4-5 pl. 39.
 ${ }^{482}$ The long neck and the fastening of the handle equal that of the latest black-figured lekythoi in Attica, C. H. E. Haspels, Attic Black-Figured Lekythoi, Paris 1936, 181, 191 pl. $54.4 \mathrm{a}-\mathrm{b}$, assigned to the workshop of the Beldam Painter.
 ${ }^{483}$ A complete example is known from the Athenian Agora in a context dated c. $520-490$ B.C., see Agora XII 210.1725 note $4,358 \mathrm{pl} .80$ with references to the Eastern finds, add: Perachora II 374.4054 pl . 156, Robinson, Catalogue of Greek Vases, $71.215-\mathrm{C} 418$ pl. 15, CVA München fasc 6 , pl. 303.6, Schiering, Werkstätten, note 180, Fabricius, Arch Karta 1, pl. 9.4, Materiali 25 1952, fig. 9.1, 69 1959, 170 fig. 24, 180 fig. 44.1.
 ${ }^{484}$ For the common, flat-based and squat jugs, see above note 414 .

[^43]: ${ }^{485} 370 \mathrm{~b}$ was found with six fragments of bowls, Sūkās I 83 note 267 pl . IV nos. $93-98$ (in the present catalogue $133 \mathrm{~b}, 136 \mathrm{~b}$, one fragment belonging to the similar group of 133 a (i.e. TS 3271), and three fragments belonging to the similar group of 137 (i.e. TS 3205, TS 3206, TS 3209).
 ${ }^{486}$ See 320 and note 340 (371).
 ${ }^{487}$ BSA $341933 / 34$, 12 G 1 pl. 15 a Mykonos Group.
 ${ }^{488}$ CVA München fasc 6, pls. 303-305, BSA 53/54, 1958/59, 29 pl. 4 b-c.
 ${ }^{489}$ In Olynthus vases of this sort are Pre-Persian, D. M. Robinson, Excavations at Olynthus V, Baltimore 1933, 33 P 47 pl 30, and in Nymphaion the earliest pottery is from the middle of the 6 th century, ArchRep 1962/63, 48 fig. 33. Other examples: Larisa III pl. 54.13, Villard, Marseille, 48 note 2 pl. 24.11-12, BCH 87 1963, 330-333 fig. 11, 90 1966, 309 fig. 23. Xanthos IV 47-48.52-55, p. 54-55 pls. 13-14.
 ${ }^{490}$ Compare the one-piece amphora with, BCH 87 1963, 330-33 fig. 11. For the decoration, see Lambrino, Vases, 129.5 figs. 78-79, D. M. Robinson, Excavations at Olynthus XIII, Baltimore 1950, 47 P 3 pl. 3 below.
 ${ }^{491}$ CIRh III 130 grave C pl. 4, 145 grave CXXXVI pl. 4, 149 grave CXLV pl. 4.
 492 Agora XII 192-93.1503, 341 pl. 64 ; compare, too, the amphora from Rhodes, ClRh III 81-82 fig. 72 determined by J. Hayes as Lakonian, Tocra, 88 note 1: Second to third quarter of the 6th century.
 ${ }^{493}$ Compare Sūkās I 78 note 251 Pl . IV no. 74 fig. 26 e.
 ${ }^{494}$ Tocra, 52.653 pl. 36. See above note 396.
 ${ }^{495}$ Tarsus III 312-313.1545-1548 figs. 104, 147, ActaArch 33 1962, 222-243 pl. I a.
 ${ }^{496}$ Tocra, 44-45.734 fig. 28 pl. 38.
 ${ }^{497}$ L. H. Jeffery, The Local Scripts of Archaic Greece, Oxford 1961, 345-346, 348, 356.4, 6 pl. 67.
 498 Jeffery, Scripts, 346: third and fourth quarters of the 6th century.

[^44]: 499 AM 83 1968, 268.48-49 fig. 18 pl. 103.3-4.
 ${ }^{500}$ A type known from the first half of the 6 th century, G. M. A. Richter \& K. J. Milne, Shapes and Names of Athenian Vases, New York 1935, fig. 12; $\mathbf{3 8 7}$ is certainly earlier than an amphora in Munich, dated to the third quarter of the 6th century, CVA München fasc 6, pl. 304.1. Compare an amphora from Melie, Hommel, Panionion und Melie, 144 Typ. 1.7 fig. $82 \mathrm{a}-\mathrm{b}$.
 ${ }^{501}$ The neck of 388 is longer than that of $\mathbf{3 8 7}$, and 388 might perhaps be contemporary with the amphora in Munich (see preceding note).

 502 Excavations of the Athenian Agora, Picture Book No. 61961 , fig. 35 middle behind: found in the debris of the Persian destruction 480-79 B.C. Compare Lambrino, Vases, 114-115 figs. 76-77.
 ${ }^{503}$ BSA 49 1954, 134, 136-137.27-28 fig. 5.
 ${ }^{504}$ Compare BSA 49 1954, 155.274 fig. 10 n : said to be a "foreign amphora".
 ${ }^{505}$ OpAth III 1960, 121 fig. 16.1 Type V : 600-475 B.C.
 ${ }^{506}$ OpAth. III 1960, 121 fig. 16.2 Type VI: CypClas I $475-400$ B.C., for the Archaic type see preceding
 note.
 507 ArchRep 1965/66, 34 fig. 12.
 ${ }^{508}$ CIRh III 82-83 fig. 73, similar: Boehlau, Nekropolen, 147-148 pl. 7.3-4, 6.
 ${ }^{509}$ CIRh III 146 grave CXXXIX pl. IV, probably 6 th century context, see ibid., pl. I.
 510 Agora XII 136.899-908 fig. 9 pl. 34.
 ${ }^{511}$ Similar Samian salt cellars were dated later, i.e. the 4 th century, see AM 54 1929, 43 fig. 30.2.

[^45]: ${ }^{512}$ Hommel, Panionion und Melie, 158.1-4 pl. 6 a.
 ${ }_{513}$ Not identical, but compare Lambrino, Vases, 223-24.26, 28 figs. 188-189.
 ${ }^{514}$ AASyr 11 1961, 139 fig. 11 B.
 ${ }_{515}$ Compare Kardara, A, pl. A, M. Guarducci, Epigrafia greca, Roma 1967, 422-423: K $=20$.
 ${ }^{516}$ That version of the alfa occurs in the first half of the 6th century, Jeffery, Scripts, 356.6 pl. 67.
 ${ }_{517}$ The writer wants to thank Professor E. Hammershaimb for the interpretation of the letters; see further H. Donner, W. Röllig, Kanaanäische und aramäische Inschriften, Wiesbaden 1969, nos. 11, 261 vol. III pls. 3, 21.
 ${ }^{518}$ CVA Louvre fasc 12, pl. $174.1-2$ (c. 510 B.C.), pl. 189.2 (c. $490-80$ B.C.). See furthermore a krater on a red-figured kylix, dated c. 510, A. Greifenhagen, Antike Kunstwerke, Berlin 1960, 40 pl. 51 below.
 ${ }^{519}$ Tocra, 113 fig. 56.1204 . 6th century, thick-walled cups are known, too, from Samos AM 72 1957, 50 Beilage 74.3-4, 83 1968, 275-279.72-74 fig. 27 pl . 107.1, 3, 5.
 ${ }_{520}$ See above, foot belonging to the similar group of 109 i.e. TS 3543.
 ${ }^{521}$ Jeffery, Scripts, 345-46.358.48 a-c pl. 69.

[^46]: ${ }^{522}$ O. Broneer, Terracotta Lamps, Corinth IV.2, Cambridge Massachusetts 1930, Type I, 31-33.5 fig. 14, Type III, 38-39.14 fig. 16, Tocra, 140.1438 fig. 68 pl. 90.
 ${ }^{523}$ See for instance, AM 54 1929, 54 fig. 45.
 ${ }^{524}$ AM 54 1929, 53-54 figs. 44-45, Tocra, 139-140.1424-1438 fig. 68 pl. 90.
 ${ }^{525}$ AM 72 1957, 50-51 Beilage 76.3, $831968,274-275.68 \mathrm{~h}$, i, k, l fig. 23 pl. 105.
 ${ }_{526}$ R. H. Howland, Greek Lamps and Their Survivals, Agora IV, Princeton 1958, Type 24 A 63.243 pls. 8,37 . The Samian fragments assigned from the 4 th to the 3rd century have central openings which are apparently smaller than the one on our fragment, AM $541929,54-55$ fig. 46.1 .

[^47]: 527 Blinkenberg, Lindos I 589; on account of the concave back a female head from Byblos is to be interpreted as a protome, M. Dunand, Fouilles de Byblos II, Paris 1954, 85.7291 fig. 65; SovArch 16 1952, 263 fig. 22 protome from Nymphaion.
 ${ }^{528}$ CIRh IV 173.7 fig. 86 grave LXXV, 188.1 fig. 203 grave LXXXVII, 222.18 fig. 246 grave CVIII, all from Makro Langoni, the contexts are the second half of the 6th century; CIRh VIII 191.18 fig. 181 Sep.no. 78 Ialysos c. 525-450 B.C. See further R. A. Higgins, BMC Terracottas, London 1954, 67-70 and Délos XXIII 73-80.103-158 pls. 9-18.
 ${ }^{529}$ CIRh IV 188.1 fig. 203 (see preceding note).
 ${ }^{530}$ Compare a Samian head assigned to the last quarter of the 6 th century, E. Buschor, Samische Standbilder III, Berlin 1934, 35 fig. 133.
 ${ }^{531}$ Emporio, 189.72, 191 note 10, with references to the Samian fragments.
 ${ }^{532}$ E. Buschor, Standbilder III, fig. 191. Most of the figurines from Lindos are probably early, see AA 79 1964, 506-507.3; only one Lindian rider looks more modulated, Blinkenberg, Lindos I 481.1976 pl. 88.
 ${ }^{533}$ AA 79 1964, 531-534.20 fig. 16, a female statuette or a female alabastron, dated to the third quarter of the 6 th century.

[^48]: ${ }^{534}$ Délos XXIII 64-66.52, 57 pl. 4, O. Rubensohn, Das Delion von Paros, Wiesbaden 1962, 140.T3233 pl. 25, Tocra, $152.17-19 \mathrm{pl}$.96 , second half of the 6 th century.
 ${ }_{535}$ Corinth XII $172,175.1216$ pl. 77 (definitely PC), 1218 pl. 78 (7th-6th century), Corinth XV 271, 279.49 (late 7th or early 6 th century), Lindos I 133-134, 138.361 pl .14 left, $139.366 \mathrm{pl} .13,140.375 \mathrm{pl} .14$ (8th to 6th century).
 ${ }^{536}$ See above note 9.

[^49]: ${ }^{537}$ Stubbings, Levant, 61-62.
 ${ }^{538}$ Stubbings, Levant, 71-72.
 ${ }^{539}$ Sūkās I 129-132. See the spectral analysis, Sūkās I Appendix: one sherd from Sūkās, a surface find made before the excavations begun, seems to belong to the Thessalian or Euboean group.
 ${ }^{540}$ Boardman, GO, 61-70, Sūkās I 159-162.
 ${ }^{541}$ See above notes 77-78.
 ${ }^{542}$ See above notes 52 and 57 .
 ${ }^{543}$ BSA 52 1957, 5-6, Boardman, GO, 63-66, ActaArch 33 1962, 255 note 117, JHS 85 1965, 12 note 27, Gnomon 42 1970, 500.
 ${ }^{544}$ See above note 89.
 ${ }^{545}$ Coldstream, Geometric, 105: "the first phase of the Orientalizing style, manifested in the oinochoai of the Cumae Group, and in the globular aryballoi with outline figures Less well known, but more relevant to our quest is the enormous mass of EPC material whose decoration is still linear; for these vases represent the last truly creative stage in the Geometric tradition of Corinth."
 ${ }^{546}$ See above note 86 .

[^50]: ${ }^{547}$ Orientals did not care for Greek pottery, see Sūkās I 129 note 481.
 ${ }^{548}$ For references see the catalogue.
 ${ }^{549}$ Sūkās I 46, for the rectangular building, see notes 556-559.
 ${ }^{550}$ Sūkās I 34-36 pl. II.
 ${ }^{551}$ Sūkās I 58. Traces of fire were observed on the floors of Complex III, see ibid, 52.
 ${ }^{552}$ Sūkās I 47-48.
 ${ }^{553}$ However, see P. J. Riis's suggestion, Sūkās I 129, about a connection between the early Greeks and Complex III. The latter included a hearth, and the cella of the later Greek temple was laid immediately above the hearth; it is assumed that cults in connection with this hearth were perhaps already performed by the early Greeks, and that they were living in Complex III itself.
 ${ }^{554}$ Sūkās I 52.
 ${ }^{555}$ See preceding note.
 ${ }^{556}$ For the G^{2} building, see Sūkās I 60-71 pl. IV, and for the tiles, nos. 38-39, see ibid., 52, 63 and 68-69.
 ${ }^{557}$ Sūkās I 44-59 pl. III.
 ${ }_{558}$ Sūkās I 52-59.
 ${ }^{559}$ Sūkās I 42-44, 47-49 pl. III.

[^51]: ${ }^{566}$ Samos V 63-81; on Ephesus, see further ArchRep 1964/65, 43 and CalifStClasArch 3 1970, 57 note 3 .
 ${ }_{567}$ But rarely found outside Rhodes, see note 427.
 ${ }^{568}$ Sūkās I 46, 56.
 ${ }^{569}$ Sūkās I 58-59.
 ${ }^{570}$ Sūkās I 68-69.37 pl. 4 fig. 28 a, 86.
 ${ }^{571}$ Sūkās I 86.
 ${ }_{572}$ Sūkās I 62-71.

[^52]: ${ }^{573}$ Tocra, 41-42 notes 6-7, 43-44, Boardman, GO, 72 c.
 ${ }^{574}$ See above notes 180-181.
 ${ }^{575}$ See above note 250 .
 ${ }^{576}$ See the remarks by J. Boardman, GO, 73, on Corinthian pottery, which occurs all over Greece, and on nearly every overseas site where the Greeks were involved. See further JHS $661946,84$.
 ${ }^{577}$ Sūkās I 86, 88.
 ${ }^{578}$ See above note 435.
 ${ }^{579}$ Sūkās I 86-87.
 ${ }^{580}$ Sūkās I 89-90 pl. V.
 ${ }^{581}$ Sūkās I 88-89.

[^53]: 582 Boardman, GO, 70-76.
 ${ }^{583}$ Boardman, GO, 76.
 ${ }_{54}$ Boardman, GO, 77.
 585 JHS 58 1938, 20-30: Levels IV-II, Boardman, GO, 77.
 ${ }_{586}$ Sūkās I 91.
 ${ }^{587}$ Naukratis I pls. 4-7, 10, 13, II pls. 5-9, 11-13, Tocra, pls. 28-39, 87, Lambrino, Vases, passim, Histria 2, pls. 1-19.
 ${ }_{588}$ Fabricius, Arch Karta 1, pls. 7-11, Materiali 50 1956, 223-230 figs. 1-2, 4, 8-9, 56 1957, 183-185 figs. 1, 2 a-b, 103 1962, 10-129 figs. 1-6 B, 9-10 B.
 ${ }_{58}$ According to tradition it founded only two colonies eastwards, Phaselis, see P. M. Fraser, G. E. Bean, The Rhodian Peraea and Islands, Oxford 1954, 54 note 1, J. Bérard, L'Expansion et la colonisation grecques jusqu'aux guerres médiques, Paris 1960, 79 and Soloi, see REA 2.5 1927, 935-938, JHS 85 1965, 15 and took part in the foundation of Apollonia, see C. Roebuck, Ionian Trade and Colonization, New York 1959, 122 note 37.
 ${ }_{590}$ Roebuck, Ionian Trade, 119-123, Bérard, L'Expansion, 103-105.
 ${ }^{591}$ JHS 55 1935, 133-134, JHS 66 1946, 77, G. L. Huxley, The Early Ionians, London 1966, 68-69.

